183
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Can Genome Engineering be used to Target Cancer-Associated Enhancers?

&
Pages 493-501 | Published online: 28 Nov 2014

References

  • Lee TI , YoungRA . Transcriptional regulation and its misregulation in disease . Cell152 ( 6 ), 1237 – 1251 ( 2013 ).
  • Kelly TK , De CarvalhoDD , JonesPA . Epigenetic modifications as therapeutic targets . Nat. Biotechnol.28 ( 10 ), 1069 – 1078 ( 2010 ).
  • Portela A , EstellerM . Epigenetic modifications and human disease . Nat. Biotechnol.28 ( 10 ), 1057 – 1068 ( 2010 ).
  • Pennacchio LA , BickmoreW , DeanA , NobregaMA , BejeranoG . Enhancers: five essential questions . Nat. Rev. Genet.14 ( 4 ), 288 – 295 ( 2013 ).
  • Calo E , WysockaJ . Modification of enhancer chromatin: what, how, and why?Mol. Cell49 ( 5 ), 825 – 837 ( 2013 ).
  • ENCODE Project Consortium . An integrated encyclopedia of DNA elements in the human genome . Nature489 ( 7414 ), 57 – 74 ( 2012 ).
  • Ong C-T , CorcesVG . Enhancer function: new insights into the regulation of tissue-specific gene expression . Nat. Rev. Genet.12 ( 4 ), 283 – 293 ( 2011 ).
  • Aran D , SabatoS , HellmanA . DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes . Genome Biol.14 ( 3 ), R21 ( 2013 ).
  • Kieffer-Kwon KR , TangZ , MatheEet al. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation . Cell155 ( 7 ), 1507 – 1520 ( 2013 ).
  • Ziller MJ , GuH , MüllerFet al. Charting a dynamic DNA methylation landscape of the human genome . Nature500 ( 7463 ), 477 – 481 ( 2013 ).
  • Hazelett DJ , RhieSK , GaddisMet al. Comprehensive functional annotation of 77 prostate cancer risk loci . PLoS Genet.10 ( 1 ), e1004102 ( 2014 ).
  • Jia L , LandanG , PomerantzMet al. Functional enhancers at the gene-poor 8q24 cancer-linked locus . PLoS Genet.5 ( 8 ), e1000597 ( 2009 ).
  • Lupien M , EeckhouteJ , MeyerCAet al. Foxa1 translates epigenetic signatures into enhancer-driven lineage-specific transcription . Cell132 ( 6 ), 958 – 970 ( 2008 ).
  • Lovén J , HokeHA , LinCYet al. Selective inhibition of tumor oncogenes by disruption of super-enhancers . Cell153 ( 2 ), 320 – 334 ( 2013 ).
  • Whyte WA , OrlandoDA , HniszDet al. Master transcription factors and mediator establish super-enhancers at key cell identity genes . Cell153 ( 2 ), 307 – 319 ( 2013 ).
  • Kim TK , HembergM , GrayJMet al. Widespread transcription at neuronal activity-regulated enhancers . Nature465 ( 7295 ), 182 – 187 ( 2010 ).
  • Kim T , CuiR , JeonYJet al. Long-range interaction and correlation between myc enhancer and oncogenic long noncoding rna carlo-5 . Proc. Natl Acad. Sci. USA111 ( 11 ), 4173 – 4178 ( 2014 ).
  • Mousavi K , ZareH , Dell’OrsoSet al. Ernas promote transcription by establishing chromatin accessibility at defined genomic loci . Mol. Cell51 ( 5 ), 606 – 617 ( 2013 ).
  • Yang X , LayF , HanH , JonesPA . Targeting DNA methylation for epigenetic therapy . Trends Pharmacol. Sci.31 ( 11 ), 536 – 546 ( 2010 ).
  • Li X , ZhangJ , XieY , JiangY , YingjieZ , XuW . Progress of HDAC inhibitor panobinostat in the treatment of cancer . Curr. Drug Targets15 ( 6 ), 622 – 634 ( 2014 ).
  • West AC , JohnstoneRW . New and emerging HDAC inhibitors for cancer treatment . J. Clin. Invest.124 ( 1 ), 30 – 39 ( 2014 ).
  • Eguchi M , NguyenC , LeeSC , KahnM . Icg-001, a novel small molecule regulator of TCF/beta-catenin transcription . Med. Chem.1 ( 5 ), 467 – 472 ( 2005 ).
  • Sur IK , HallikasO , VähärautioAet al. Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors . Science338 ( 6112 ), 1360 – 1363 ( 2012 ).
  • Wasylishen AR , PennLZ . Myc: the beauty and the beast . Genes Cancer1 ( 6 ), 532 – 541 ( 2010 ).
  • Grisanzio C , FreedmanML . Chromosome 8q24-associated cancers and myc . Genes Cancer1 ( 6 ), 555 – 559 ( 2010 ).
  • Ramirez CL , FoleyJE , WrightDAet al. Unexpected failure rates for modular assembly of engineered zinc fingers . Nat. Methods5 ( 5 ), 374 – 375 ( 2008 ).
  • Bogdanove AJ , VoytasDF . Tal effectors: customizable proteins for DNA targeting . Science333 ( 6051 ), 1843 – 1846 ( 2011 ).
  • Cermak T , DoyleEL , ChristianMet al. Efficient design and assembly of custom talen and other tal effector-based constructs for DNA targeting . Nucleic Acids Res.39 ( 12 ), e82 ( 2011 ).
  • Moscou MJ , BogdanoveAJ . A simple cipher governs DNA recognition by tal effectors . Science326 ( 5959 ), 1501 ( 2009 ).
  • Mali P , YangL , EsveltKMet al. RNA-guided human genome engineering via cas9 . Science339 ( 6121 ), 823 – 826 ( 2013 ).
  • Segal DJ , MecklerJF . Genome engineering at the dawn of the golden age . Annu. Rev. Genomics Hum. Genet.14 ( 1 ), 135 – 158 ( 2013 ).
  • Miller JC , HolmesMC , WangJet al. An improved zinc-finger nuclease architecture for highly specific genome editing . Nat. Biotechnol.25 ( 7 ), 778 – 785 ( 2007 ).
  • Lee HJ , KimE , KimJS . Targeted chromosomal deletions in human cells using zinc finger nucleases . Genome Res.20 ( 1 ), 81 – 89 ( 2010 ).
  • Perez-Pinera P , KocakDD , VockleyCMet al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors . Nat. Methods10 ( 10 ), 973 – 976 ( 2013 ).
  • Method of the Year 2011 . Nat. Methods9 ( 1 ), 1 ( 2012 ).
  • Webster DE , BarajasB , BussatRTet al. Enhancer-targeted genome editing selectively blocks innate resistance to oncokinase inhibition . Genome Res.24 ( 5 ), 751 – 760 ( 2014 ).
  • Ochiai H , MiyamotoT , KanaiAet al. TALEN-mediated single-base-pair editing identification of an intergenic mutation upstream of BUB1B as causative of PCS (MVA) syndrome . Proc. Natl Acad. Sci. USA111 ( 4 ), 1461 – 1466 ( 2014 ).
  • Rivenbark AG , StolzenburgS , BeltranASet al. Epigenetic reprogramming of cancer cells via targeted DNA methylation . Epigenetics7 ( 4 ), 350 – 360 ( 2012 ).
  • Maeder ML , AngstmanJF , RichardsonMEet al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins . Nat. Biotechnol.31 ( 12 ), 1137 – 1142 ( 2013 ).
  • Chen H , KazemierHG , De GrooteML , RuitersMHJ , XuGL , RotsMG . Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter . Nucleic Acids Res.42 ( 3 ), 1563 – 1574 ( 2013 ).
  • Mendenhall EM , WilliamsonKE , ReyonDet al. Locus-specific editing of histone modifications at endogenous enhancers . Nat. Biotechnol.31 ( 12 ), 1133 – 1136 ( 2013 ).
  • Stolzenburg S , RotsMG , BeltranASet al. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer . Nucleic Acids Res.40 ( 14 ), 6725 – 6740 ( 2012 ).
  • Perez-Pinera P , OusteroutDG , BrungerJMet al. Synergistic and tunable human gene activation by combinations of synthetic transcription factors . Nat. Methods10 ( 3 ), 239 – 242 ( 2013 ).
  • Gilbert LA , LarsonMH , MorsutLet al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes . Cell154 ( 2 ), 442 – 451 ( 2013 ).
  • Konermann S , BrighamMD , TrevinoAet al. Optical control of mammalian endogenous transcription and epigenetic states . Nature500 ( 7463 ), 472 – 476 ( 2013 ).
  • Wang T , WeiJJ , SabatiniDM , LanderES . Genetic screens in human cells using the CRISPR-Cas9 system . Science343 ( 6166 ), 80 – 84 ( 2014 ).
  • Mali P , AachJ , StrangesPBet al. Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering . Nat. Biotechnol.31 ( 9 ), 833 – 838 ( 2013 ).
  • Cho SW , KimS , KimYet al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases . Genome Res.24 ( 1 ), 132 – 141 ( 2014 ).
  • Hou Z , ZhangY , PropsonNEet al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis . Proc. Natl Acad. Sci. USA110 ( 39 ), 15644 – 15649 ( 2013 ).
  • Cong L , RanFA , CoxDet al. Multiplex genome engineering using CRISPR/Cas systems . Science339 ( 6121 ), 819 – 823 ( 2013 ).
  • Brayer KJ , KulshreshthaS , SegalDJ . The protein-binding potential of C2H2 zinc finger domains . Cell Biochem. Biophys.51 ( 1 ), 9 – 19 ( 2008 ).
  • Persikov AV , SinghM . An expanded binding model for Cys2His2 zinc finger protein-DNA interfaces . Phys. Biol.8 ( 3 ), 035010 ( 2011 ).
  • Lam KN , Van BakelH , CoteAG , Van Der VenA , HughesTR . Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays . Nucleic Acids Res.39 ( 11 ), 4680 – 4690 ( 2011 ).
  • Wolfe SA , GrantRA , Elrod-EricksonM , PaboCO . Beyond the “recognition code”: structures of two Cys2His2 zinc finger/TATA box complexes . Structure9 ( 8 ), 717 – 723 ( 2001 ).
  • Miller JC , TanS , QiaoGet al. A tale nuclease architecture for efficient genome editing . Nat. Biotechnol.29 ( 2 ), 143 – 148 ( 2011 ).
  • Grimmer MR , StolzenburgS , FordE , ListerR , BlancafortP , FarnhamPJ . Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation. . Nucleic Acids Res.42 ( 16 ), 10856 – 10868 ( 2014 ).
  • Deng D , YanC , WuJ , PanX , YanN . Revisiting the tale repeat . Protein Cell5 ( 4 ), 297 – 306 ( 2014 ).
  • Sun N , BaoZ , XiongX , ZhaoH . SunnyTALEN: a second-generation TALEN system for human genome editing . Biotechnol. Bioeng.111 ( 4 ), 683 – 691 ( 2014 ).
  • Wu X , ScottDA , KrizAJet al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells . Nat. Biotechnol.32 ( 7 ), 670 – 676 ( 2014 ).
  • Fu Y , SanderJD , ReyonD , CascioVM , JoungJK . Improving CRISPR-Cas nuclease specificity using truncated guide RNAs . Nat. Biotechnol.32 ( 3 ), 279 – 284 ( 2014 ).
  • Jinek M , EastA , ChengA , LinS , MaE , DoudnaJ . RNA-programmed genome editing in human cells . Elife29 ( 2 ), e00471 ( 2013 ).
  • Hsu PD , ScottDA , WeinsteinJAet al. DNA targeting specificity of RNA-guided Cas9 nucleases . Nat. Biotechnol.31 ( 9 ), 827 – 832 ( 2013 ).
  • Xiao A , ChengZ , KongLet al. CasOT: a genome-wide Cas9/gRNA off-target searching tool . Bioinformatics doi:10.1093/bioinformatics/btt764 ( 2014 ) ( Epub ahead of print ).
  • Bae S , ParkJ , KimJS . Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases . Bioinformatics30 ( 10 ), 1473 – 1475 ( 2014 ).
  • Ran FA , HsuPD , LinCYet al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity . Cell154 ( 6 ), 1380 – 1389 ( 2013 ).
  • Huang Q , GongC , LiJet al. Distance and helical phase dependence of synergistic transcription activation in cis-regulatory module . PLoS One7 ( 1 ), e31198 ( 2012 ).
  • Li L , KrymskayaL , WangJet al. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases . Mol. Ther.21 ( 6 ), 1259 – 1269 ( 2013 ).
  • Lara H , WangY , BeltranASet al. Targeting serous epithelial ovarian cancer with designer zinc finger transcription factors . J. Biol. Chem.287 ( 35 ), 29873 – 29886 ( 2012 ).
  • Liu J , GajT , PattersonJT , SirkSJ , BarbasCF . Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering . PLoS One9 ( 1 ), e85755 ( 2014 ).
  • Ruoslahti E . Peptides as targeting elements and tissue penetration devices for nanoparticles . Adv. Mater.24 ( 28 ), 3747 – 3756 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.