256
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Regulation of Human Cytomegalovirus Latency: an Update

&
Pages 533-546 | Published online: 28 Nov 2014

References

  • Bate SL , DollardSC , CannonMJ . Cytomegalovirus seroprevalence in the United States. The national health and nutrition examination surveys, 1988–2004 . Clin. Infect. Dis.50 ( 11 ), 1439 – 1447 ( 2010 ).
  • Crough T , KhannaR . Immunobiology of human cytomegalovirus: from bench to bedside . Clin. Microbiol. Rev.22 ( 1 ), 76 – 98 ( 2009 ).
  • Manicklal S , EmeryVC , LazzarottoT , BoppanaSB , GuptaRK . The ‘silent’ global burden of congenital cytomegalovirus . Clin. Microbiol. Rev.26 ( 1 ), 86 – 102 ( 2013 ).
  • Davison AJ , DolanA , AkterPet al. The human cytomegalovirus genome revisited. Comparison with the chimpanzee cytomegalovirus genome . J. Gen. Virol.84 ( Pt 1 ), 17 – 28 ( 2003 ).
  • Murphy E , RigoutsosI , ShibuyaT , ShenkTE . Reevaluation of human cytomegalovirus coding potential . Proc. Natl Acad. Sci. USA100 ( 23 ), 13585 – 13590 ( 2003 ).
  • Murphy E , YuD , GrimwoodJet al. Coding potential of laboratory and clinical strains of human cytomegalovirus . Proc. Natl Acad. Sci. USA100 ( 25 ), 14976 – 14981 ( 2003 ).
  • Stern-Ginossar N , WeisburdB , MichalskiAet al. Decoding human cytomegalovirus . Science338 ( 6110 ), 1088 – 1093 ( 2012 ).
  • Zhang Z , EversDL , McCarvilleJF , DantonelJC , HuongSM , HuangES . Evidence that the human cytomegalovirus IE2–86 protein binds Mdm2 and facilitates mdm2 degradation . J. Virol.80 ( 8 ), 3833 – 3843 ( 2006 ).
  • Yee LF , LinPL , StinskiMF . Ectopic expression of HCMV IE72 and IE86 proteins is sufficient to induce early gene expression but not production of infectious virus in undifferentiated promonocytic THP-1 cells . Virology363 ( 1 ), 174 – 188 ( 2007 ).
  • Hwang ES , ZhangZ , CaiHet al. Human cytomegalovirus IE1–72 protein interacts with p53 and inhibits p53-dependent transactivation by a mechanism different from that of IE2–86 protein . J. Virol.83 ( 23 ), 12388 – 12398 ( 2009 ).
  • Webel R , HakkiM , PrichardM , RawlinsonWD , MarschallM , ChouS . Differential properties of cytomegalovirus pUL97 kinase isoforms affect viral replication and maribavir susceptibility . J. Virol.88 ( 9 ), 4776 – 4785 ( 2014 ).
  • Kalejta RF . Tegument proteins of human cytomegalovirus . Microbiol. Mol. Biol. Rev.72 ( 2 ), 249 – 265 ( 2008 ).
  • Meier J , LienickeU , TschirchE , KrügerDH , WauerRR , PröschS . Human cytomegalovirus reactivation during lactation and mother-to-child transmission in preterm infants . J. Clin. Microbiol.43 ( 3 ), 1318 – 1324 ( 2005 ).
  • Mehler K , OberthuerA , Lang-RothR , KribsA . High rate of symptomatic cytomegalovirus infection in extremely low gestational age preterm infants of 22–24 weeks’ gestation after transmission via breast milk . Neonatology105 ( 1 ), 27 – 32 ( 2014 ).
  • Schleiss MR . Developing a vaccine against congenital cytomegalovirus (CMV) infection. What have we learned from animal models? Where should we go next?Future Virol.8 ( 12 ), 1161 – 1182 ( 2013 ).
  • Liu XF , WangX , YanS , ZhangZ , AbecassisM , HummelM . Epigenetic control of cytomegalovirus latency and reactivation . Viruses5 ( 5 ), 1325 – 1345 ( 2013 ).
  • Sinclair J , SissonsP . Latency and reactivation of human cytomegalovirus . J. Gen. Virol.87 ( Pt 7 ), 1763 – 1779 ( 2006 ).
  • Kumar A , AbbasW , HerbeinG . HIV-1 latency in monocytes/macrophages . Viruses6 ( 4 ), 1837 – 1860 ( 2014 ).
  • Slobedman B , MocarskiES . Quantitative analysis of latent human cytomegalovirus . J. Virol.73 ( 6 ), 4806 – 4812 ( 1999 ).
  • Bolovan-Fritts CA , MocarskiES , WiedemanJA . Peripheral blood CD14(+) cells from healthy subjects carry a circular conformation of latent cytomegalovirus genome . Blood93 ( 1 ), 394 – 398 ( 1999 ).
  • Mendelson M , MonardS , SissonsP , SinclairJ . Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors . J. Gen. Virol.77 ( Pt 12 ), 3099 – 3102 ( 1996 ).
  • Reeves MB , MacAryPA , LehnerPJ , SissonsJG , SinclairJH . Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers . Proc. Natl Acad. Sci. USA102 ( 11 ), 4140 – 4145 ( 2005 ).
  • Taylor-Wiedeman J , SissonsJG , BorysiewiczLK , SinclairJH . Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells . J. Gen. Virol.72 ( Pt 9 ), 2059 – 2064 ( 1991 ).
  • Tey SK , GoodrumF , KhannaR . CD8+ T-cell recognition of human cytomegalovirus latency-associated determinant pUL138 . J. Gen. Virol.91 ( Pt 8 ), 2040 – 2048 ( 2010 ).
  • Egger G , LiangG , AparicioA , JonesPA . Epigenetics in human disease and prospects for epigenetic therapy . Nature429 ( 6990 ), 457 – 463 ( 2004 ).
  • Cavalli G . Chromatin and epigenetics in development: blending cellular memory with cell fate plasticity . Development133 ( 11 ), 2089 – 2094 ( 2006 ).
  • Feinberg AP , OhlssonR , Henikoff , S . The epigenetic progenitor origin of human cancer . Nat. Rev. Genet.7 ( 1 ), 21 – 33 ( 2006 ).
  • Fu M , GaoY , ZhouQet al. Human cytomegalovirus latent infection alters the expression of cellular and viral microRNA . Gene536 ( 2 ), 272 – 278 ( 2014 ).
  • Liu X , ChenX , YuXet al. Regulation of microRNAs by epigenetics and their interplay involved in cancer . J. Exp. Clin. Cancer Res.32 ( 1 ), 96 ( 2013 ).
  • O’Connor CM , DiMaggioPAJr , ShenkT , GarciaBA . Quantitative Proteomic Discovery of Dynamic Epigenome Changes that Control Human Cytomegalovirus (HCMV) Infection . Mol. Cell. Proteomics . 13 ( 9 ), 2399 – 2410 ( 2014 ).
  • Pavelin J , ReynoldsN , ChiwesheS , WuG , TiribassiR , GreyF . Systematic microRNA analysis identifies ATP6V0C as an essential host factor for human cytomegalovirus replication . PLoS Pathog.9 ( 12 ), e1003820 ( 2013 ).
  • Rode K , DohnerK , BinzAet al. Uncoupling uncoating of herpes simplex virus genomes from their nuclear import and gene expression . J. Virol.85 ( 9 ), 4271 – 4283 ( 2011 ).
  • Nevels M , NitzscheA , PaulusC . How to control an infectious bead string: nucleosome-based regulation and targeting of herpesvirus chromatin . Rev. Med. Virol.21 ( 3 ), 154 – 180 ( 2011 ).
  • Nitzsche A , PaulusC , NevelsM . Temporal dynamics of cytomegalovirus chromatin assembly in productively infected human cells . J. Virol.82 ( 22 ), 11167 – 11180 ( 2008 ).
  • Nitzsche A , SteinhäusserC , MückeK , PaulusC , NevelsM . Histone H3 lysine 4 methylation marks postreplicative human cytomegalovirus chromatin . J. Virol.86 ( 18 ), 9817 – 9827 ( 2012 ).
  • Sinclair J . Chromatin structure regulates human cytomegalovirus gene expression during latency, reactivation and lytic infection . Biochim. Biophys. Acta1799 ( 3–4 ), 286 – 295 ( 2010 ).
  • Bego M , MaciejewskiJ , KhaiboullinaS , PariG , StJS . Characterization of an antisense transcript spanning the UL81–82 locus of human cytomegalovirus . J. Virol.79 ( 17 ), 11022 – 11034 ( 2005 ).
  • Bego MG , KeyesLR , MaciejewskiJ , St JeorSC . Human cytomegalovirus latency-associated protein LUNA is expressed during HCMV infections in vivo . Arch. Virol.156 ( 10 ), 1847 – 1851 ( 2011 ).
  • Rossetto CC , Tarrant-ElorzaM , PariGS . Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14 (+) monocytes and CD34 (+) cells . PLoS Pathog.9 ( 5 ), e1003366 ( 2013 ).
  • Reeves M , SinclairJ . Regulation of human cytomegalovirus transcription in latency: beyond the major immediate-early promoter . Viruses5 ( 6 ), 1395 – 1413 ( 2013 ).
  • Reeves MB , LehnerPJ , SissonsJG , SinclairJH . An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodeling . J. Gen. Virol.86 ( Pt 11 ), 2949 – 2954 ( 2005 ).
  • Stinski MF , IsomuraH . Role of the cytomegalovirus major immediate early enhancer in acute infection and reactivation from latency . Med. Microbiol. Immunol.197 ( 2 ), 223 – 231 ( 2008 ).
  • Groves IJ , ReevesMB , SinclairJH . Lytic infection of permissive cells with human cytomegalovirus is regulated by an intrinsic ‘pre-immediate-early’ repression of viral gene expression mediated by histone post-translational modification . J. Gen. Virol.90 ( Pt 10 ), 2364 – 2374 ( 2009 ).
  • Ioudinkova E , ArcangelettiMC , RynditchAet al. Control of human cytomegalovirus gene expression by differential histone modifications during lytic and latent infection of a monocytic cell line . Gene384 , 120 – 128 ( 2006 ).
  • Nevels M , PaulusC , ShenkT . Human cytomegalovirus immediate-early 1 protein facilitates viral replication by antagonizing histone deacetylation . Proc. Natl. Acad. Sci. USA101 ( 49 ), 17234 – 17239 ( 2004 ).
  • Reeves M , SinclairJ . Aspects of human cytomegalovirus latency and reactivation . Curr. Top. Microbiol. Immunol.325 , 297 – 313 ( 2008 ).
  • Reeves MB . Chromatin-mediated regulation of cytomegalovirus gene expression . Virus Res.157 ( 2 ), 134 – 143 ( 2011 ).
  • Liu R , BaillieJ , SissonsJG , SinclairJH . The transcription factor YY1 binds to negative regulatory elements in the human cytomegalovirus major immediate early enhancer/promoter and mediates repression in non-permissive cells . Nucleic Acids Res.22 ( 13 ), 2453 – 2459 ( 1994 ).
  • Bain M , MendelsonM , SinclairJ . Ets-2 repressor factor (ERF) mediates repression of the human cytomegalovirus major immediate-early promoter in undifferentiated non-permissive cells . J. Gen. Virol.84 ( Pt 1 ), 41 – 49 ( 2003 ).
  • Wright E , BainM , TeagueL , MurphyJ , SinclairJ . Ets-2 repressor factor recruits histone deacetylase to silence human cytomegalovirus immediate-early gene expression in non-permissive cells . J. Gen. Virol.86 ( Pt 3 ), 535 – 544 ( 2005 ).
  • Sourvinos G , MorouA , SanidasIet al. The downregulation of GFI1 by the EZH2-NDY1/KDM2B-JARID2 axis and by human cytomegalovirus (HCMV) associated factors allows the activation of the HCMV major IE promoter and the transition to productive infection . PLoS Pathog.10 ( 5 ), e1004136 ( 2014 ).
  • David BC , NicoleGV , DaciaKL . Epigenetic regulation of latent HSV-1 gene expression . Biochim. Biophys. Acta.1799 ( 3–4 ), 246 – 256 ( 2010 ).
  • Chen HS , LuF , LiebermanPM . Epigenetic regulation of EBV and KSHV latency . Curr. Opin. Virol.3 ( 3 ), 251 – 259 ( 2013 ).
  • Hirabayashi Y , GotohY . Epigenetic control of neural precursor cell fate during development . Nat. Rev. Neurosci.11 ( 6 ), 377 – 388 ( 2010 ).
  • He A , ShenX , MaQet al. PRC2 directly methylates GATA4 and represses its transcriptional activity . Genes Dev.26 ( 1 ), 37 – 42 ( 2012 ).
  • Shen X , LiuY , HsuYJet al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency . Mol. Cell32 ( 4 ), 491 – 502 ( 2008 ).
  • Abraham CG , KuleszaCA . Polycomb repressive complex 2 targets murine cytomegalovirus chromatin for modification and associates with viral replication centers . PLoS One7 ( 1 ), e29410 ( 2012 ).
  • Kirmizis A , BartleySM , KuzmichevAet al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27 . Genes Dev.18 ( 13 ), 1592 – 1605 ( 2004 ).
  • Kuzmichev A , NishiokaK , Erdjument-BromageH , TempstP , ReinbergD . Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein . Genes Dev.16 ( 22 ), 2893 – 2905 ( 2002 ).
  • Zhao Y , SrivastavaD . A developmental view of microRNA function . Trends Biochem. Sci.32 ( 4 ), 189 – 197 ( 2007 ).
  • Gottwein E . Roles of microRNAs in the life cycles of mammalian viruses . Curr. Top. Microbiol. Immunol.371 , 201 – 227 ( 2013 ).
  • ten Oever BR . RNA viruses and the host microRNA machinery . Nat. Rev. Microbiol.11 ( 3 ), 169 – 180 ( 2013 ).
  • Tuddenham L , PfefferS . Roles and regulation of microRNAs in cytomegalovirus infection . Biochim. Biophys. Acta1809 ( 11–12 ), 613 – 622 ( 2011 ).
  • Barth S , PfuhlT , MamianiAet al. Epstein–Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5 . Nucleic Acids Res.36 ( 2 ), 666 – 675 ( 2008 ).
  • Cai X , LuS , ZhangZ , GonzalezCM , DamaniaB , CullenBR . Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells . Proc. Natl Acad. Sci. USA102 ( 15 ), 5570 – 5575 ( 2005 ).
  • Lei X , BaiZ , YeFet al. Regulation of NF-kappaB inhibitor IkappaBalpha and viral replication by a KSHV microRNA . Nat. Cell Biol.12 ( 2 ), 193 – 199 ( 2010 ).
  • Grey F , AntoniewiczA , AllenEet al. Identification and characterization of human cytomegalovirus-encoded microRNAs . J. Virol.79 ( 18 ), 12095 – 12099 ( 2005 ).
  • Grey F , MeyersH , WhiteEA , SpectorDH , NelsonJ . A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication . PLoS Pathog.3 ( 11 ), e163 ( 2007 ).
  • Murphy E , VanicekJ , RobinsH , ShenkT , LevineAJ . Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency . Proc. Natl Acad. Sci. USA105 ( 14 ), 5453 – 5458 ( 2008 ).
  • Stern-Ginossar N , SalehN , GoldbergMD , PrichardM , WolfDG , MandelboimO . Analysis of human cytomegalovirus-encoded microRNA activity during infection . J. Virol.83 ( 20 ), 10684 – 10693 ( 2009 ).
  • Shen ZZ , PanX , MiaoLFet al. Comprehensive analysis of human cytomegalovirus microRNA expression during lytic and quiescent infection . PLoS One9 ( 2 ), e88531 ( 2014 ).
  • Poole E , McGregor DallasSR , ColstonJ , JosephRS , SinclairJ . Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34(+) progenitors . J. Gen. Virol.92 ( Pt 7 ), 1539 – 1549 ( 2011 ).
  • Mocellin S , MarincolaFM , YoungHA . Interleukin-10 and the immune response against cancer: a counterpoint . J. Leukoc. Biol.78 ( 5 ), 1043 – 1051 ( 2005 ).
  • Weekes MP , TanSY , PooleEet al. Latency-associated degradation of the MRP1 drug transporter during latent human cytomegalovirus infection . Science340 ( 6129 ), 199 – 202 ( 2013 ).
  • Umashankar M , PetrucelliA , CicchiniLet al. A novel human cytomegalovirus locus modulates cell type-specific outcomes of infection . PLoS Pathog.7 ( 12 ), e1002444 ( 2011 ).
  • Avdic S , CaoJZ , CheungAK , AbendrothA , SlobedmanB . Viral interleukin-10 expressed by human cytomegalovirus during the latent phase of infection modulates latently infected myeloid cell differentiation . J. Virol.85 ( 14 ), 7465 – 7471 ( 2011 ).
  • Arav-Boger R , BattagliaCA , LazzarottoTet al. Cytomegalovirus (CMV)-encoded UL144 (truncated tumor necrosis factor receptor) and outcome of congenital CMV infection . J. Infect. Dis.194 ( 4 ), 464 – 473 ( 2006 ).
  • Suzuki H , TakatsukaS , AkashiHet al. Genome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer . Cancer Res.71 ( 17 ), 5646 – 5658 ( 2011 ).
  • Iorio MV , PiovanC , CroceCM . Interplay between microRNAs and the epigenetic machinery. An intricate network . Biochim. Biophys. Acta1799 ( 10–12 ), 694 – 701 ( 2010 ).
  • Soderberg-Naucler C , FishKN , NelsonJA . Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors . Cell91 ( 1 ), 119 – 126 ( 1997 ).
  • Soderberg-Naucler C , StreblowDN , FishKN , Allan-YorkeJ , SmithPP , NelsonJA . Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent . J. Virol.75 ( 16 ), 7543 – 7554 ( 2001 ).
  • Kondo K , KaneshimaH , MocarskiES . Human cytomegalovirus latent infection of granulocyte-macrophage progenitors . Proc. Natl Acad. Sci. USA91 ( 25 ), 11879 – 11883 ( 1994 ).
  • Cheung AK , AbendrothA , CunninghamAL , SlobedmanB . Viral gene expression during the establishment of human cytomegalovirus latent infection in myeloid progenitor cells . Blood108 ( 12 ), 3691 – 3699 ( 2006 ).
  • Fish KN , StengleinSG , IbanezC , NelsonJA . Cytomegalovirus persistence in macrophages and endothelial cells . Scand. J. Infect. Dis. Suppl.99 , 34 – 40 ( 1995 ).
  • Goodrum F , ReevesM , SinclairJ , HighK , ShenkT . Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro . Blood110 ( 3 ), 937 – 945 ( 2007 ).
  • Hahn G , JoresR , MocarskiES . Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells . Proc. Natl Acad. Sci. USA95 ( 7 ), 3937 – 3942 ( 1998 ).
  • Stevenson EV , Collins-McMillenD , KimJH , CieplySJ , BentzGL , YurochkoAD . HCMV reprogramming of infected monocyte survival and differentiation: a Goldilocks phenomenon . Viruses6 ( 2 ), 782 – 807 ( 2014 ).
  • Goodrum FD , JordanCT , HighK , ShenkT . Human cytomegalovirus gene expression during infection of primary hematopoietic progenitor cells. a model for latency . Proc. Natl Acad. Sci. USA99 ( 25 ), 16255 – 16260 ( 2002 ).
  • Slobedman B , CaoJZ , AvdicSet al. Human cytomegalovirus latent infection and associated viral gene expression . Future Microbiol.5 ( 6 ), 883 – 900 ( 2010 ).
  • Umashankar M , GoodrumF . Hematopoietic long-term culture (hLTC) for human cytomegalovirus latency and reactivation . Methods Mol. Biol.1119 , 99 – 112 ( 2014 ).
  • Goodrum F , JordanCT , TerhuneSS , HighK , ShenkT . Differential outcomes of human cytomegalovirus infection in primitive hematopoietic cell subpopulations . Blood104 ( 3 ), 687 – 695 ( 2004 ).
  • Petrucelli A , RakM , GraingerL , GoodrumF . Characterization of a novel Golgi apparatus-localized latency determinant encoded by human cytomegalovirus . J. Virol.83 ( 11 ), 5615 – 5629 ( 2009 ).
  • Umashankar M , RakM , BughioF , ZagalloP , CavinessK , GoodrumFD . Antagonistic determinants controlling replicative and latent states of human cytomegalovirus infection . J. Virol.88 ( 11 ), 5987 – 6002 ( 2014 ).
  • Petrucelli A , UmashankarM , ZagalloP , RakM , GoodrumF . Interactions between proteins encoded within the human cytomegalovirus UL133-UL138 locus . J. Virol.86 ( 16 ), 8653 – 8662 ( 2012 ).
  • Gatherer D , SeirafianS , CunninghamCet al. High-resolution human cytomegalovirus transcriptome . Proc. Natl Acad. Sci. USA108 ( 49 ), 19755 – 19760 ( 2011 ).
  • Pignatelli S , LazzarottoT , GattoMRet al. Cytomegalovirus gN genotypes distribution among congenitally infected newborns and their relationship with symptoms at birth and sequelae . Clin. Infect. Dis.51 ( 1 ), 33 – 41 ( 2010 ).
  • Pignatelli S , DalMP , RossiniG , LandiniMP . Genetic polymorphisms among human cytomegalovirus (HCMV) wild-type strains . Rev. Med. Virol.14 ( 6 ), 383 – 410 ( 2004 ).
  • Dal Monte P , PignatelliS , RossiniG , LandiniMP . Genomic variants among human cytomegalovirus (HCMV) clinical isolates: the glycoprotein n (gN) paradigm . Hum. Immunol . 65 ( 5 ), 387 – 94 ( 2004 ).
  • Coaquette A , BourgeoisA , DirandC , VarinA , ChenW , HerbeinG . Mixed cytomegalovirus glycoprotein B genotypes in immunocompromised patients . Clin. Infect. Dis.39 ( 2 ), 155 – 161 ( 2004 ).
  • Gorzer I , KerschnerH , Redlberger-FritzM , Puchhammer-StocklE . Human cytomegalovirus (HCMV) genotype populations in immunocompetent individuals during primary HCMV infection . J. Clin. Virol.48 ( 2 ), 100 – 103 ( 2010 ).
  • Dieamant DC , BononSH , PeresRMet al. Cytomegalovirus (CMV) genotype in allogeneic hematopoietic stem cell transplantation . BMC Infect. Dis.13 , 310 ( 2013 ).
  • Banan AA , YaghobiR , RamziM , MehrabaniD . Impact of human cytomegalovirus infection UL55-nested polymerase chain reaction method in hematopoietic stem cell transplant donors and recipients . Transplant Proc.41 ( 7 ), 2898 – 2899 ( 2009 ).
  • Arav-Boger R , PassR . Viral load in congenital cytomegalovirus infection . Herpes14 ( 1 ), 17 – 22 ( 2007 ).
  • Neirukh T , QaisiA , SalehNet al. Seroprevalence of cytomegalovirus among pregnant women and hospitalized children in Palestine . BMC Infect. Dis.13 , 528 ( 2013 ).
  • Arav-Boger R , BogerYS , FosterCB , BogerZ . The use of artificial neural networks in prediction of congenital CMV outcome from sequence data . Bioinform. Biol. Insights2 , 281 – 289 ( 2008 ).
  • Cekinovic D , LisnicVJ , JonjicS . Rodent models of congenital cytomegalovirus infection . Methods Mol. Biol.1119 , 289 – 310 ( 2014 ).
  • Belzile JP , StarkTJ , YeoGW , SpectorDH . Human cytomegalovirus infection of human embryonic stem cell-derived primitive neural stem cells is restricted at several steps but leads to the persistence of viral DNA . J. Virol.88(8) , 4021 – 4039 ( 2014 ).
  • Fishman JA , EmeryV , FreemanRet al. Cytomegalovirus in transplantation – challenging the status quo . Clin. Transplant.21 ( 2 ), 149 – 158 ( 2007 ).
  • Rubin RH . The pathogenesis and clinical management of cytomegalovirus infection in the organ transplant recipient: the end of the ‘silo hypothesis’ . Curr. Opin. Infect. Dis.20 ( 4 ), 399 – 407 ( 2007 ).
  • Ramanan P , RazonableRR . Cytomegalovirus infections in solid organ transplantation: a review . Infect. Chemother.45 ( 3 ), 260 – 271 ( 2013 ).
  • Powers C , FruhK . RhesusCMV . An emerging animal model for human CMV . Med. Microbiol. Immunol.197 ( 2 ), 109 – 115 ( 2008 ).
  • Hummel M , ZhangZ , YanSet al. Allogeneic transplantation induces expression of cytomegalovirus immediate-early genes in vivo: a model for reactivation from latency . J. Virol.75 ( 10 ), 4814 – 4822 ( 2001 ).
  • Zhang Z , KimSJ , VargheseT , ThomasG , HummelM , AbecassisM . TNF receptor independent activation of the cytomegalovirus major immediate early enhancer in response to transplantation . Transplantation85 ( 7 ), 1039 – 1045 ( 2008 ).
  • Ljungman P , BrandanR . Factors influencing cytomegalovirus seropositivity in stem cell transplant patients and donors . Haematologica92 ( 8 ), 1139 – 1142 ( 2007 ).
  • Ogawa-Goto K , UenoT , OshimaKet al. Detection of active human cytomegalovirus by the promyelocytic leukemia body assay in cultures of PBMCs from patients undergoing hematopoietic stem cell transplantation . J. Med. Virol.84 ( 3 ), 479 – 486 ( 2012 ).
  • Ariza-Heredia EJ , NesherL , ChemalyRF . Cytomegalovirus diseases after hematopoietic stem cell transplantation: a mini-review . Cancer Lett.342 ( 1 ), 1 – 8 ( 2014 ).
  • Gerna G , LilleriD , ChiesaAet al. Virologic and immunologic monitoring of cytomegalovirus to guide preemptive therapy in solid-organ transplantation . Am. J. Transplant.11 ( 11 ), 2463 – 2471 ( 2011 ).
  • Gayoso I , CantisanS , CerratoCet al. Clinical factors influencing phenotype of HCMV-specific CD8+ T cells and HCMV-induced interferon-gamma production after allogeneic stem cells transplantation . Clin. Dev. Immunol.347213 ( 2013 ).
  • Marty FM , WinstonDJ , RowleySDet al. CMX001 to prevent cytomegalovirus disease in hematopoietic-cell transplantation . N. Engl. J. Med.369 ( 13 ), 1227 – 1236 ( 2013 ).
  • Springer KL , WeinbergA . Cytomegalovirus infection in the era of HAART: fewer reactivations and more immunity . J. Antimicrob. Chemother.54 ( 3 ), 582 – 586 ( 2004 ).
  • Ford N , ShubberZ , SaranchukPet al. Burden of HIV-related cytomegalovirus retinitis in resource-limited settings: a systematic review . Clin. Infect. Dis.57 ( 9 ), 1351 – 1361 ( 2013 ).
  • Kumar A , AbbasW , HerbeinG . TNF and TNF receptor superfamily members in HIV infection: new cellular targets for therapy?Mediators. Inflamm.484378 ( 2013 ).
  • Simon CO , SeckertCK , DreisD , ReddehaseMJ , GrzimekNK . Role for tumor necrosis factor alpha in murine cytomegalovirus transcriptional reactivation in latently infected lungs . J. Virol.79 ( 1 ), 326 – 340 ( 2005 ).
  • Le VT , TrillingM , HengelH . The cytomegaloviral protein pUL138 acts as potentiator of tumor necrosis factor (TNF) receptor 1 surface density to enhance ULb′-encoded modulation of TNF-alpha signaling . J. Virol.85 ( 24 ), 13260 – 13270 ( 2011 ).
  • Montag C , WagnerJA , GruskaI , VetterB , WiebuschL , HagemeierC . The latency-associated UL138 gene product of human cytomegalovirus sensitizes cells to tumor necrosis factor alpha (TNF-alpha) signaling by upregulating TNF-alpha receptor 1 cell surface expression . J. Virol.85 ( 21 ), 11409 – 11421 ( 2011 ).
  • Iyer JV , ConnollyJ , AgrawalRet al. Cytokine analysis of aqueous humor in HIV patients with cytomegalovirus retinitis . Cytokine64 ( 2 ), 541 – 547 ( 2013 ).
  • Smith MS , GoldmanDC , BaileyASet al. Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model . Cell Host Microbe8 ( 3 ), 284 – 291 ( 2010 ).
  • Hornef MW , BeinG , FrickeLet al. Coincidence of Epstein–Barr virus reactivation, cytomegalovirus infection, and rejection episodes in renal transplant recipients . Transplantation60 ( 5 ), 474 – 480 ( 1995 ).
  • Khameneh ZR , SoinJ , DurlikM , LaoM , PaczekL , GaciongZ . Factors affecting reactivation of Epstein–Barr virus infection after kidney allograft transplantation . Ann. Transplant.4 ( 2 ), 18 – 22 ( 1999 ).
  • Arcenas R , WidenRH . Epstein–Barr virus reactivation after superinfection of the BJAB-B1 and P3HR-1 cell lines with cytomegalovirus . BMC Microbiol.2 , 20 ( 2002 ).
  • Barton ES , WhiteDW , CathelynJSet al. Herpesvirus latency confers symbiotic protection from bacterial infection . Nature447 ( 7142 ), 326 – 329 ( 2007 ).
  • Saghafian-Hedengren S , SohlbergE , TheorellJet al. Epstein–Barr virus coinfection in children boosts cytomegalovirus-induced differentiation of natural killer cells . J. Virol.87 ( 24 ), 13446 – 13455 ( 2013 ).
  • DesJardin JA , GibbonsL , ChoEet al. Human herpesvirus 6 reactivation is associated with cytomegalovirus infection and syndromes in kidney transplant recipients at risk for primary cytomegalovirus infection . J. Infect. Dis.178 ( 6 ), 1783 – 1786 ( 1998 ).
  • Lautenschlager I , LinnavuoriK , LappalainenM , SuniJ , HockerstedtK . HHV-6 reactivation is often associated with CMV infection in liver transplant patients . Transpl. Int.13 ( Suppl 1 ), S351 – S353 ( 2000 ).
  • Herbein G , StrasswimmerJ , AltieriM , Woehl-JaegleML , WolfP , ObertG . Longitudinal study of human herpesvirus 6 infection in organ transplant recipients . Clin. Infect. Dis.22 ( 1 ), 171 – 173 ( 1996 ).
  • Sampaio AM , GuardiaAC , MilanAet al. Co-infection and clinical impact of human herpesvirus 5 and 6 in liver transplantation . Transplant. Proc.44 ( 8 ), 2455 – 2458 ( 2012 ).
  • Guardia AC , StucchiRS , MilanA , CostaSC , BoinIF . Human herpesvirus-6 and cytomegalovirus DNA in liver donor biopsies and their correlation with HLA matches and acute cellular rejection . Braz. J. Infect. Dis.18 ( 2 ), 220 – 224 ( 2014 ).
  • Duan YL , YeHQ , ZavalaAGet al. Maintenance of large numbers of virus genomes in human cytomegalovirus-infected T98G glioblastoma cells . J. Virol.88 ( 7 ), 3861 – 3873 ( 2014 ).
  • Khan Z , YaiwKC , WilhelmiVet al. Human cytomegalovirus immediate early proteins promote degradation of connexin 43 and disrupt gap junction communication. Implications for a role in gliomagenesis . Carcinogenesis35 ( 1 ), 145 – 154 ( 2014 ).
  • Lepiller Q , TripathyMK , Di MartinoV , KantelipB , HerbeinG . Increased HCMV seroprevalence in patients with hepatocellular carcinoma . Virol. J.8 , 485 ( 2011 ).
  • Lepiller Q , KhanKA , Di MartinoV , HerbeinG . Cytomegalovirus and tumors: two players for one goal-immune escape . Open. Virol. J.5 , 60 – 69 ( 2011 ).
  • Lepiller Q , AbbasW , KumarA , TripathyMK , HerbeinG . HCMV activates the IL-6-JAK-STAT3 axis in HepG2 cells and primary human hepatocytes . PLoS One8 ( 3 ), e59591 ( 2013 ).
  • Michaelis M , DoerrHW , CinatlJ . The story of human cytomegalovirus and cancer: increasing evidence and open questions . Neoplasia11 ( 1 ), 1 – 9 ( 2009 ).
  • Bongers G , MaussangD , MunizLRet al. The cytomegalovirus-encoded chemokine receptor US28 promotes intestinal neoplasia in transgenic mice . J. Clin. Invest120 ( 11 ), 3969 – 3978 ( 2010 ).
  • Cobbs CS , HarkinsL , SamantaMet al. Human cytomegalovirus infection and expression in human malignant glioma . Cancer Res.62 ( 12 ), 3347 – 3350 ( 2002 ).
  • Dziurzynski K , ChangSM , HeimbergerABet al. Consensus on the role of human cytomegalovirus in glioblastoma . Neuro. Oncol.14 ( 3 ), 246 – 255 ( 2012 ).
  • Rahbar A , OrregoA , PeredoIet al. Human cytomegalovirus infection levels in glioblastoma multiforme are of prognostic value for survival . J. Clin. Virol.57 ( 1 ), 36 – 42 ( 2013 ).
  • Yamashita Y , ItoY , IsomuraH , TakemuraNet al. Lack of presence of the human cytomegalovirus in human glioblastoma . Mod. Pathol.27 ( 7 ), 922 – 929 ( 2014 ).
  • Della CM , FalcoM , MuccioL , BertainaA , LocatelliF , MorettaA . Impact of HCMV infection on NK cell development and function after HSCT . Front Immunol.4 , 458 ( 2013 ).
  • Courivaud C , BamoulidJ , GauglerBet al. Cytomegalovirus exposure, immune exhaustion and cancer occurrence in renal transplant recipients . Transpl. Int.25 ( 9 ), 948 – 955 ( 2012 ).
  • La RC , DiamondDJ . The immune response to human CMV . Future Virol.7 ( 3 ), 279 – 293 ( 2012 ).
  • Lopez-Verges S , MilushJM , SchwartzBSet al. Expansion of a unique CD57(+)NKG2Chi natural killer cell subset during acute human cytomegalovirus infection . Proc. Natl Acad. Sci. USA108 ( 36 ), 14725 – 14732 ( 2011 ).
  • Della CM , FalcoM , PodestaMet al. Phenotypic and functional heterogeneity of human NK cells developing after umbilical cord blood transplantation: a role for human cytomegalovirus? Blood 119 ( 2 ), 399 – 410 ( 2012 ).
  • Della CM , FalcoM , BertainaAet al. Human cytomegalovirus infection promotes rapid maturation of NK cells expressing activating killer Ig-like receptor in patients transplanted with NKG2C-/- umbilical cord blood . J. Immunol.192 ( 4 ), 1471 – 1479 ( 2014 ).
  • Foley B , CooleyS , VernerisMRet al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function . Blood119 ( 11 ), 2665 – 2674 ( 2012 ).
  • Velardi A . Natural revenge over cytomegalovirus . Blood119 ( 11 ), 2438 – 2439 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.