811
Views
0
CrossRef citations to date
0
Altmetric
Review

Oxidative Stress and DNA Methylation Regulation in the Metabolic Syndrome

, &
Pages 283-300 | Published online: 05 May 2015

References

  • Holliday R . The inheritance of epigenetic defects . Science238 ( 4824 ), 163 – 170 ( 1987 ).
  • Bird A . DNA methylation patterns and epigenetic memory . Genes Dev.16 ( 1 ), 6 – 21 ( 2002 ).
  • Ehrlich M , Gama-SosaMA , HuangLHet al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells . Nucleic Acids Res.10 ( 8 ), 2709 – 2721 ( 1982 ).
  • Larsen F , GundersenG , LopezR , PrydzH . CpG islands as gene markers in the human genome . Genomics13 ( 4 ), 1095 – 1107 ( 1992 ).
  • Jones PA , TakaiD . The role of DNA methylation in mammalian epigenetics . Science293 ( 5532 ), 1068 – 1070 ( 2001 ).
  • Bestor TH , GundersenG , KolstoAB , PrydzH . CpG islands in mammalian gene promoters are inherently resistant to de novo methylation . Genet. Anal. Tech. Appl.9 ( 2 ), 48 – 53 ( 1992 ).
  • Pradhan S , BacollaA , WellsRD , RobertsRJ . Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation . J. Biol. Chem.274 ( 46 ), 33002 – 33010 ( 1999 ).
  • Li E , BeardC , JaenischR . Role for DNA methylation in genomic imprinting . Nature366 ( 6453 ), 362 – 365 ( 1993 ).
  • Beard C , LiE , JaenischR . Loss of methylation activates Xist in somatic but not in embryonic cells . Genes Dev.9 ( 19 ), 2325 – 2334 ( 1995 ).
  • Okano M , XieS , LiE . Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases . Nat. Genet.19 ( 3 ), 219 – 220 ( 1998 ).
  • Okano M , BellDW , HaberDA , LiE . DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development . Cell99 ( 3 ), 247 – 257 ( 1999 ).
  • Hsieh CL . In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b . Mol. Cell Biol.19 ( 12 ), 8211 – 8218 ( 1999 ).
  • Bestor TH . The DNA methyltransferases of mammals . Hum. Mol. Genet.9 ( 16 ), 2395 – 2402 ( 2000 ).
  • Morgan HD , SantosF , GreenK , DeanW , ReikW . Epigenetic reprogramming in mammals . Hum. Mol. Genet.14 Spec No 1 , R47 – R58 ( 2005 ).
  • Fatemi M , HermannA , GowherH , JeltschA . Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA . Eur. J. Biochem.269 ( 20 ), 4981 – 4984 ( 2002 ).
  • Kim GD , NiJ , KelesogluN , RobertsRJ , PradhanS . Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases . EMBO J.21 ( 15 ), 4183 – 4195 ( 2002 ).
  • Hark AT , SchoenherrCJ , KatzDJ , IngramRS , LevorseJM , TilghmanSM . CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus . Nature405 ( 6785 ), 486 – 489 ( 2000 ).
  • Loenen WA . S-adenosylmethionine: jack of all trades and master of everything?Biochem. Soc. Trans.34 ( Pt 2 ), 330 – 333 ( 2006 ).
  • Hendrich B , BirdA . Identification and characterization of a family of mammalian methyl-CpG binding proteins . Mol. Cell Biol.18 ( 11 ), 6538 – 6547 ( 1998 ).
  • Nan X , MeehanRR , BirdA . Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2 . Nucleic Acids Res.21 ( 21 ), 4886 – 4892 ( 1993 ).
  • Boyes J , BirdA . Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein . EMBO J.11 ( 1 ), 327 – 333 ( 1992 ).
  • Hsieh CL . Dependence of transcriptional repression on CpG methylation density . Mol. Cell Biol.14 ( 8 ), 5487 – 5494 ( 1994 ).
  • Kass SU , LandsbergerN , WolffeAP . DNA methylation directs a time-dependent repression of transcription initiation . Curr. Biol.7 ( 3 ), 157 – 165 ( 1997 ).
  • Mohandas T , SparkesRS , ShapiroLJ . Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation . Science211 ( 4480 ), 393 – 396 ( 1981 ).
  • Graves JA . 5-azacytidine-induced re-expression of alleles on the inactive X chromosome in a hybrid mouse cell line . Exp. Cell Res.141 ( 1 ), 99 – 105 ( 1982 ).
  • Venolia L , GartlerSM , WassmanER , YenP , MohandasT , ShapiroLJ . Transformation with DNA from 5-azacytidine-reactivated X chromosomes . Proc. Natl Acad. Sci. USA79 ( 7 ), 2352 – 2354 ( 1982 ).
  • Jaenisch R , SchniekeA , HarbersK . Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues . Proc. Natl Acad. Sci. USA82 ( 5 ), 1451 – 1455 ( 1985 ).
  • Sado T , FennerMH , TanSS , TamP , ShiodaT , LiE . X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation . Dev. Biol.225 ( 2 ), 294 – 303 ( 2000 ).
  • Barros SP , OffenbacherS . Epigenetics: connecting environment and genotype to phenotype and disease . J. Dent. Res.88 ( 5 ), 400 – 408 ( 2009 ).
  • Miranda TB , JonesPA . DNA methylation: the nuts and bolts of repression . J. Cell Physiol.213 ( 2 ), 384 – 390 ( 2007 ).
  • Arnaud P , FeilR . Epigenetic deregulation of genomic imprinting in human disorders and following assisted reproduction . Birth Defects Res. C. Embryo. Today75 ( 2 ), 81 – 97 ( 2005 ).
  • Tobi EW , LumeyLH , TalensRPet al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific . Hum. Mol. Genet.18 ( 21 ), 4046 – 4053 ( 2009 ).
  • Hales CN , BarkerDJ . The thrifty phenotype hypothesis . Br. Med. Bull.60 , 5 – 20 ( 2001 ).
  • Morgan HD , SutherlandHG , MartinDI , WhitelawE . Epigenetic inheritance at the agouti locus in the mouse . Nat. Genet.23 ( 3 ), 314 – 318 ( 1999 ).
  • Waterland RA . Do maternal methyl supplements in mice affect DNA methylation of offspring?J. Nutr.133 ( 1 ), 238 ( 2003 ).
  • Waterland RA . Assessing the effects of high methionine intake on DNA methylation . J. Nutr.136 ( 6 Suppl. ), S1706 – S1710 ( 2006 ).
  • Waterland RA , DolinoyDC , LinJR , SmithCA , ShiX , TahilianiKG . Maternal methyl supplements increase offspring DNA methylation at axin fused . Genesis44 ( 9 ), 401 – 406 ( 2006 ).
  • Cooney CA , DaveAA , WolffGL . Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring . J. Nutr.132 ( 8 Suppl. ), S2393 – S2400 ( 2002 ).
  • Burdge GC , Slater-JefferiesJ , TorrensC , PhillipsES , HansonMA , LillycropKA . Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations . Br. J. Nutr.97 ( 3 ), 435 – 439 ( 2007 ).
  • Lillycrop KA , PhillipsES , JacksonAA , HansonMA , BurdgeGC . Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring . J. Nutr.135 ( 6 ), 1382 – 1386 ( 2005 ).
  • Lillycrop KA , Slater-JefferiesJL , HansonMA , GodfreyKM , JacksonAA , BurdgeGC . Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications . Br. J. Nutr.97 ( 6 ), 1064 – 1073 ( 2007 ).
  • Burdge GC , LillycropKA , PhillipsES , Slater-JefferiesJL , JacksonAA , HansonMA . Folic acid supplementation during the juvenile-pubertal period in rats modifies the phenotype and epigenotype induced by prenatal nutrition . J. Nutr.139 ( 6 ), 1054 – 1060 ( 2009 ).
  • Bogdarina I , WelhamS , KingPJ , BurnsSP , ClarkAJ . Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension . Circ. Res.100 ( 4 ), 520 – 526 ( 2007 ).
  • Van Straten EM , BloksVW , HuijkmanNCet al. The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction . Am. J. Physiol. Regul. Integr. Comp. Physiol.298 ( 2 ), R275 – R282 ( 2010 ).
  • Sinclair KD , AllegrucciC , SinghRet al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status . Proc. Natl Acad. Sci. USA104 ( 49 ), 19351 – 19356 ( 2007 ).
  • Torrens C , BrawleyL , AnthonyFWet al. Folate supplementation during pregnancy improves offspring cardiovascular dysfunction induced by protein restriction . Hypertension47 ( 5 ), 982 – 987 ( 2006 ).
  • Plagemann A , HarderT , BrunnMet al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome . J. Physiol.587 ( Pt 20 ), 4963 – 4976 ( 2009 ).
  • Godfrey KM , RedmanCW , BarkerDJ , OsmondC . The effect of maternal anaemia and iron deficiency on the ratio of fetal weight to placental weight . Br. J. Obstet. Gynaecol.98 ( 9 ), 886 – 891 ( 1991 ).
  • Gambling L , DunfordS , WallaceDIet al. Iron deficiency during pregnancy affects postnatal blood pressure in the rat . J. Physiol552 ( Pt 2 ), 603 – 610 ( 2003 ).
  • Dahri S , SnoeckA , Reusens-BillenB , RemacleC , HoetJJ . Islet function in offspring of mothers on low-protein diet during gestation . Diabetes40 ( Suppl. 2 ), 115 – 120 ( 1991 ).
  • Blondeau B , AvrilI , DucheneB , BreantB . Endocrine pancreas development is altered in foetuses from rats previously showing intra-uterine growth retardation in response to malnutrition . Diabetologia45 ( 3 ), 394 – 401 ( 2002 ).
  • Hales CN , BarkerDJ , ClarkPMet al. Fetal and infant growth and impaired glucose tolerance at age 64 . BMJ303 ( 6809 ), 1019 – 1022 ( 1991 ).
  • Montague CT , FarooqiIS , WhiteheadJPet al. Congenital leptin deficiency is associated with severe early-onset obesity in humans . Nature387 ( 6636 ), 903 – 908 ( 1997 ).
  • Vaisse C , ClementK , Guy-GrandB , FroguelP . A frameshift mutation in human MC4R is associated with a dominant form of obesity . Nat. Genet.20 ( 2 ), 113 – 114 ( 1998 ).
  • Yeo GS , FarooqiIS , AminianS , HalsallDJ , StanhopeRG , O’rahillyS . A frameshift mutation in MC4R associated with dominantly inherited human obesity . Nat. Genet.20 ( 2 ), 111 – 112 ( 1998 ).
  • Large V , ReynisdottirS , EleborgL , Van HarmelenV , StrommerL , ArnerP . Lipolysis in human fat cells obtained under local and general anesthesia . Int. J. Obes. Relat Metab Disord.21 ( 1 ), 78 – 82 ( 1997 ).
  • Klannemark M , OrhoM , LanginDet al. The putative role of the hormone-sensitive lipase gene in the pathogenesis of Type II diabetes mellitus and abdominal obesity . Diabetologia41 ( 12 ), 1516 – 1522 ( 1998 ).
  • Clement K , RuizJ , Cassard-DoulcierAMet al. Additive effect of A–>G (-3826) variant of the uncoupling protein gene and the Trp64Arg mutation of the beta 3-adrenergic receptor gene on weight gain in morbid obesity . Int. J. Obes. Relat Metab Disord.20 ( 12 ), 1062 – 1066 ( 1996 ).
  • Maddux BA , SbracciaP , KumakuraSet al. Membrane glycoprotein PC-1 and insulin resistance in non-insulin-dependent diabetes mellitus . Nature373 ( 6513 ), 448 – 451 ( 1995 ).
  • Ristow M , Muller-WielandD , PfeifferA , KroneW , KahnCR . Obesity associated with a mutation in a genetic regulator of adipocyte differentiation . N. Engl. J. Med.339 ( 14 ), 953 – 959 ( 1998 ).
  • Clausen JO , HansenT , BjorbaekCet al. Insulin resistance: interactions between obesity and a common variant of insulin receptor substrate-1 . Lancet346 ( 8972 ), 397 – 402 ( 1995 ).
  • Kiskinis E , HallbergM , ChristianMet al. RIP140 directs histone and DNA methylation to silence Ucp1 expression in white adipocytes . EMBO J.26 ( 23 ), 4831 – 4840 ( 2007 ).
  • Milagro FI , CampionJ , Garcia-DiazDF , GoyenecheaE , PaternainL , MartinezJA . High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats . J. Physiol. Biochem.65 ( 1 ), 1 – 9 ( 2009 ).
  • Campion J , MilagroFI , GoyenecheaE , MartinezJA . TNF-alpha promoter methylation as a predictive biomarker for weight-loss response . Obesity (Silver. Spring)17 ( 6 ), 1293 – 1297 ( 2009 ).
  • Park JH , StoffersDA , NichollsRD , SimmonsRA . Development of Type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1 . J. Clin. Invest.118 ( 6 ), 2316 – 2324 ( 2008 ).
  • Ling C , DelGS , LupiRet al. Epigenetic regulation of PPARGC1A in human Type 2 diabetic islets and effect on insulin secretion . Diabetologia51 ( 4 ), 615 – 622 ( 2008 ).
  • Barres R , OslerME , YanJet al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density . Cell Metab.10 ( 3 ), 189 – 198 ( 2009 ).
  • Lomba A , MilagroFI , Garcia-DiazDF , MartiA , CampionJ , MartinezJA . Obesity induced by a pair-fed high fat sucrose diet: methylation and expression pattern of genes related to energy homeostasis . Lipids Health Dis.9 , 60 ( 2010 ).
  • Einstein F , ThompsonRF , BhagatTDet al. Cytosine methylation dysregulation in neonates following intrauterine growth restriction . PLoS ONE5 ( 1 ), e8887 ( 2010 ).
  • Lee HA , LeeDY , LeeHJ , HanHS , KimI . Enrichment of (pro)renin receptor promoter with activating histone codes in the kidneys of spontaneously hypertensive rats . J. Renin. Angiotensin. Aldosterone. Syst.13 ( 1 ), 11 – 18 ( 2011 ).
  • Jiang Q , YuanH , XingX , LiuJ , HuangZ , DuX . Methylation of adrenergic beta1 receptor is a potential epigenetic mechanism controlling antihypertensive response to metoprolol . Indian J. Biochem. Biophys.48 ( 5 ), 301 – 307 ( 2011 ).
  • Cho HM , LeeHA , KimHY , HanHS , KimIK . Expression of Na+-K+ -2Cl- cotransporter 1 is epigenetically regulated during postnatal development of hypertension . Am. J. Hypertens.24 ( 12 ), 1286 – 1293 ( 2011 ).
  • Chelbi ST , MondonF , JammesHet al. Expressional and epigenetic alterations of placental serine protease inhibitors: SERPINA3 is a potential marker of preeclampsia . Hypertension49 ( 1 ), 76 – 83 ( 2007 ).
  • Goyal R , GoyalD , LeitzkeA , GheorgheCP , LongoLD . Brain renin-angiotensin system: fetal epigenetic programming by maternal protein restriction during pregnancy . Reprod. Sci.17 ( 3 ), 227 – 238 ( 2010 ).
  • Lu Z , XuX , HuXet al. PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload . Antioxid. Redox. Signal.13 ( 7 ), 1011 – 1022 ( 2010 ).
  • Beckman KB , AmesBN . The free radical theory of aging matures . Physiol. Rev.78 ( 2 ), 547 – 581 ( 1998 ).
  • Buettner GR , NgCF , WangM , RodgersVG , SchaferFQ . A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state . Free Radic. Biol. Med.41 ( 8 ), 1338 – 1350 ( 2006 ).
  • Jones P , SuggettA . The catalse-hydrogen peroxide system. Kinetics of catalatic action at high substrate concentrations . Biochem. J.110 ( 4 ), 617 – 620 ( 1968 ).
  • Gaetani GF , FerrarisAM , RolfoM , MangeriniR , ArenaS , KirkmanHN . Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes . Blood87 ( 4 ), 1595 – 1599 ( 1996 ).
  • Flohe L , BrandI . Kinetics of glutathione peroxidase . Biochim. Biophys. Acta191 ( 3 ), 541 – 549 ( 1969 ).
  • Fazeli G , StopperH , SchinzelR , NiCW , JoH , SchuppN . Angiotensin II induces DNA damage via AT1 receptor and NADPH oxidase isoform Nox4 . Mutagenesis27 ( 6 ), 673 – 681 ( 2012 ).
  • Davel AP , CeravoloGS , WenceslauCF , CarvalhoMH , BrumPC , RossoniLV . Increased vascular contractility and oxidative stress in beta(2)-adrenoceptor knockout mice: the role of NADPH oxidase . J. Vasc. Res.49 ( 4 ), 342 – 352 ( 2012 ).
  • Zielinska-Przyjemska M , OlejnikA , Dobrowolska-ZachwiejaA , GrajekW . In vitro effects of beetroot juice and chips on oxidative metabolism and apoptosis in neutrophils from obese individuals . Phytother. Res.23 ( 1 ), 49 – 55 ( 2009 ).
  • Morgan D , RebelatoE , AbdulkaderFet al. Association of NAD(P)H oxidase with glucose-induced insulin secretion by pancreatic beta-cells . Endocrinology150 ( 5 ), 2197 – 2201 ( 2009 ).
  • Finkel T . Oxygen radicals and signaling . Curr. Opin. Cell Biol.10 ( 2 ), 248 – 253 ( 1998 ).
  • Haase H , MaretW . Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants . Biometals18 ( 4 ), 333 – 338 ( 2005 ).
  • Rhee SG , BaeYS , LeeSR , KwonJ . Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation . Sci. STKE2000 ( 53 ), e1 ( 2000 ).
  • Jones DP . Radical-free biology of oxidative stress . Am. J. Physiol Cell Physiol295 ( 4 ), C849 – C868 ( 2008 ).
  • Schafer FQ , BuettnerGR . Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple . Free Radic. Biol. Med.30 ( 11 ), 1191 – 1212 ( 2001 ).
  • Skalicky J , MuzakovaV , KandarR , MelounM , RousarT , PalickaV . Evaluation of oxidative stress and inflammation in obese adults with metabolic syndrome . Clin. Chem. Lab Med.46 ( 4 ), 499 – 505 ( 2008 ).
  • Mohamed-Ali V , GoodrickS , BulmerK , HollyJM , YudkinJS , CoppackSW . Production of soluble tumor necrosis factor receptors by human subcutaneous adipose tissue in vivo . Am. J. Physiol277 ( 6 Pt 1 ), E971 – E975 ( 1999 ).
  • Volanakis JE . Human C-reactive protein: expression, structure, and function . Mol. Immunol.38 ( 2–3 ), 189 – 197 ( 2001 ).
  • Roebuck KA . Oxidant stress regulation of IL-8 and ICAM-1 gene expression: differential activation and binding of the transcription factors AP-1 and NF-kappaB (Review) . Int. J. Mol. Med.4 ( 3 ), 223 – 230 ( 1999 ).
  • Furukawa S , FujitaT , ShimabukuroMet al. Increased oxidative stress in obesity and its impact on metabolic syndrome . J. Clin. Invest.114 ( 12 ), 1752 – 1761 ( 2004 ).
  • Tian YF , HsiaTL , HsiehCH , HuangDW , ChenCH , HsiehPS . The importance of cyclooxygenase 2-mediated oxidative stress in obesity-induced muscular insulin resistance in high-fat-fed rats . Life Sci.89 ( 3–4 ), 107 – 114 ( 2011 ).
  • D’archivio M , AnnuzziG , VariRet al. Predominant role of obesity/insulin resistance in oxidative stress development . Eur. J. Clin. Invest42 ( 1 ), 70 – 78 ( 2012 ).
  • Codoner-Franch P , Tavarez-AlonsoS , Murria-EstalR , Herrera-MartinG , Alonso-IglesiasE . Polyamines are increased in obese children and are related to markers of oxidative/nitrosative stress and angiogenesis . J. Clin. Endocrinol. Metab96 ( 9 ), 2821 – 2825 ( 2011 ).
  • Stancliffe RA , ThorpeT , ZemelMB . Dairy attentuates oxidative and inflammatory stress in metabolic syndrome . Am. J. Clin. Nutr.94 ( 2 ), 422 – 430 ( 2011 ).
  • Cosentino F , HishikawaK , KatusicZS , LuscherTF . High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells . Circulation96 ( 1 ), 25 – 28 ( 1997 ).
  • Lee AY , ChungSS . Contributions of polyol pathway to oxidative stress in diabetic cataract . FASEB J.13 ( 1 ), 23 – 30 ( 1999 ).
  • Matsunami T , SatoY , SatoT , YukawaM . Antioxidant status and lipid peroxidation in diabetic rats under hyperbaric oxygen exposure . Physiol Res.59 ( 1 ), 97 – 104 ( 2010 ).
  • Grattagliano I , VendemialeG , BosciaF , Micelli-FerrariT , CardiaL , AltomareE . Oxidative retinal products and ocular damages in diabetic patients . Free Radic. Biol. Med.25 ( 3 ), 369 – 372 ( 1998 ).
  • Davi G , CiabattoniG , ConsoliAet al. In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation . Circulation99 ( 2 ), 224 – 229 ( 1999 ).
  • Chao PC , HuangCN , HsuCC , YinMC , GuoYR . Association of dietary AGEs with circulating AGEs, glycated LDL, IL-1alpha and MCP-1 levels in Type 2 diabetic patients . Eur. J. Nutr.49 ( 7 ), 429 – 434 ( 2010 ).
  • Rabbani N , ChittariMV , BodmerCW , ZehnderD , CerielloA , ThornalleyPJ . Increased glycation and oxidative damage to apolipoprotein B100 of LDL cholesterol in patients with Type 2 diabetes and effect of metformin . Diabetes59 ( 4 ), 1038 – 1045 ( 2010 ).
  • Vericel E , JanuelC , CarrerasM , MoulinP , LagardeM . Diabetic patients without vascular complications display enhanced basal platelet activation and decreased antioxidant status . Diabetes53 ( 4 ), 1046 – 1051 ( 2004 ).
  • Chabrashvili T , TojoA , OnozatoMLet al. Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney . Hypertension39 ( 2 ), 269 – 274 ( 2002 ).
  • Lassegue B , GriendlingKK . Reactive oxygen species in hypertension; an update . Am. J. Hypertens.17 ( 9 ), 852 – 860 ( 2004 ).
  • Weber DS , RocicP , MellisAMet al. Angiotensin II-induced hypertrophy is potentiated in mice overexpressing p22phox in vascular smooth muscle . Am. J. Physiol Heart Circ. Physiol288 ( 1 ), H37 – H42 ( 2005 ).
  • Fukui T , IshizakaN , RajagopalanSet al. p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats . Circ. Res.80 ( 1 ), 45 – 51 ( 1997 ).
  • Rajagopalan S , KurzS , MunzelTet al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone . J. Clin. Invest97 ( 8 ), 1916 – 1923 ( 1996 ).
  • Laursen JB , RajagopalanS , GalisZ , TarpeyM , FreemanBA , HarrisonDG . Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension . Circulation95 ( 3 ), 588 – 593 ( 1997 ).
  • Kitiyakara C , ChabrashviliT , ChenYet al. Salt intake, oxidative stress, and renal expression of NADPH oxidase and superoxide dismutase . J. Am. Soc. Nephrol.14 ( 11 ), 2775 – 2782 ( 2003 ).
  • Kitiyakara C , WilcoxCS . Antioxidants for hypertension . Curr. Opin. Nephrol. Hypertens.7 ( 5 ), 531 – 538 ( 1998 ).
  • Berry C , BrosnanMJ , FennellJ , HamiltonCA , DominiczakAF . Oxidative stress and vascular damage in hypertension . Curr. Opin. Nephrol. Hypertens.10 ( 2 ), 247 – 255 ( 2001 ).
  • Fukai T , FolzRJ , LandmesserU , HarrisonDG . Extracellular superoxide dismutase and cardiovascular disease . Cardiovasc. Res.55 ( 2 ), 239 – 249 ( 2002 ).
  • Griendling KK , FitzgeraldGA . Oxidative stress and cardiovascular injury: Part II: animal and human studies . Circulation108 ( 17 ), 2034 – 2040 ( 2003 ).
  • Griendling KK , SorescuD , Ushio-FukaiM . NAD(P)H oxidase: role in cardiovascular biology and disease . Circ. Res.86 ( 5 ), 494 – 501 ( 2000 ).
  • Wang HQ , SmartRC . Overexpression of protein kinase C-alpha in the epidermis of transgenic mice results in striking alterations in phorbol ester-induced inflammation and COX-2, MIP-2 and TNF-alpha expression but not tumor promotion . J. Cell Sci.112 ( Pt 20 ), 3497 – 3506 ( 1999 ).
  • Schreck R , RieberP , BaeuerlePA . Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1 . EMBO J.10 ( 8 ), 2247 – 2258 ( 1991 ).
  • Portugal M , BarakV , GinsburgI , KohenR . Interplay among oxidants, antioxidants, and cytokines in skin disorders: present status and future considerations . Biomed. Pharmacother.61 ( 7 ), 412 – 422 ( 2007 ).
  • Hart CM , KarmanRJ , BlackburnTL , GuptaMP , GarciaJG , MohlerER , Iii . Role of 8-epi PGF2alpha, 8-isoprostane, in H2O2-induced derangements of pulmonary artery endothelial cell barrier function . Prostaglandins Leukot. Essent. Fatty Acids58 ( 1 ), 9 – 16 ( 1998 ).
  • Hayes P , KnausUG . Balancing reactive oxygen species in the epigenome: NADPH oxidases as target and perpetrator . Antioxid. Redox. Signal.18 ( 15 ), 1937 – 1945 ( 2013 ).
  • Campos AC , MolognoniF , MeloFHet al. Oxidative stress modulates DNA methylation during melanocyte anchorage blockade associated with malignant transformation . Neoplasia.9 ( 12 ), 1111 – 1121 ( 2007 ).
  • Hitchler MJ , DomannFE . An epigenetic perspective on the free radical theory of development . Free Radic. Biol. Med.43 ( 7 ), 1023 – 1036 ( 2007 ).
  • Afanas’ev I . New nucleophilic mechanisms of ros-dependent epigenetic modifications: comparison of aging and cancer . Aging Dis.5 ( 1 ), 52 – 62 ( 2014 ).
  • Xiong F , XiaoD , ZhangL . Norepinephrine causes epigenetic repression of PKCepsilon gene in rodent hearts by activating Nox1-dependent reactive oxygen species production . FASEB J.26 ( 7 ), 2753 – 2763 ( 2012 ).
  • Nanduri J , MakarenkoV , ReddyVDet al. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis . Proc. Natl Acad. Sci. USA109 ( 7 ), 2515 – 2520 ( 2012 ).
  • Wongpaiboonwattana W , TosukhowongP , DissayabutraT , MutiranguraA , BoonlaC . Oxidative stress induces hypomethylation of LINE-1 and hypermethylation of the RUNX3 promoter in a bladder cancer cell line . Asian Pac. J. Cancer Prev.14 ( 6 ), 3773 – 3778 ( 2013 ).
  • Zhang R , KangKA , KimKCet al. Oxidative stress causes epigenetic alteration of CDX1 expression in colorectal cancer cells . Gene524 ( 2 ), 214 – 219 ( 2013 ).
  • Cyr AR , HitchlerMJ , DomannFE . Regulation of SOD2 in cancer by histone modifications and CpG methylation: closing the loop between redox biology and epigenetics . Antioxid. Redox. Signal.18 ( 15 ), 1946 – 1955 ( 2013 ).
  • Archer SL , MarsboomG , KimGHet al. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target . Circulation121 ( 24 ), 2661 – 2671 ( 2010 ).
  • Jones PA , TaylorSM . Cellular differentiation, cytidine analogs and DNA methylation . Cell20 ( 1 ), 85 – 93 ( 1980 ).
  • Patel K , DicksonJ , DinS , MacleodK , JodrellD , RamsahoyeB . Targeting of 5-aza-2’-deoxycytidine residues by chromatin-associated DNMT1 induces proteasomal degradation of the free enzyme . Nucleic Acids Res.38 ( 13 ), 4313 – 4324 ( 2010 ).
  • Kim HJ , KimJH , ChieEK , YoungPD , KimIA , KimIH . DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity . Radiat. Oncol.7 , 39 ( 2012 ).
  • Hodge DR , PengB , PompeiaCet al. Epigenetic silencing of manganese superoxide dismutase (SOD-2) in KAS 6/1 human multiple myeloma cells increases cell proliferation . Cancer Biol. Ther.4 ( 5 ), 585 – 592 ( 2005 ).
  • Kamiya T , MachiuraM , MakinoJ , HaraH , HozumiI , AdachiT . Epigenetic regulation of extracellular-superoxide dismutase in human monocytes . Free Radic. Biol. Med.61 , 197 – 205 ( 2013 ).
  • Zelko IN , MuellerMR , FolzRJ . CpG methylation attenuates Sp1 and Sp3 binding to the human extracellular superoxide dismutase promoter and regulates its cell-specific expression . Free Radic. Biol. Med.48 ( 7 ), 895 – 904 ( 2010 ).
  • Chen B , RaoX , HouseMG , NephewKP , CullenKJ , GuoZ . GPx3 promoter hypermethylation is a frequent event in human cancer and is associated with tumorigenesis and chemotherapy response . Cancer Lett.309 ( 1 ), 37 – 45 ( 2011 ).
  • Hahn MA , HahnT , LeeDHet al. Methylation of polycomb target genes in intestinal cancer is mediated by inflammation . Cancer Res.68 ( 24 ), 10280 – 10289 ( 2008 ).
  • Lee OJ , Schneider-StockR , McchesneyPAet al. Hypermethylation and loss of expression of glutathione peroxidase-3 in Barrett’s tumorigenesis . Neoplasia.7 ( 9 ), 854 – 861 ( 2005 ).
  • Peng DF , RazviM , ChenHet al. DNA hypermethylation regulates the expression of members of the Mu-class glutathione S-transferases and glutathione peroxidases in Barrett’s adenocarcinoma . Gut58 ( 1 ), 5 – 15 ( 2009 ).
  • Khor TO , HuangY , WuTY , ShuL , LeeJ , KongAN . Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation . Biochem. Pharmacol.82 ( 9 ), 1073 – 1078 ( 2011 ).
  • Min JY , LimSO , JungG . Downregulation of catalase by reactive oxygen species via hypermethylation of CpG island II on the catalase promoter . FEBS Lett.584 ( 11 ), 2427 – 2432 ( 2010 ).
  • Karius T , SchnekenburgerM , GhelfiJ , WalterJ , DicatoM , DiederichM . Reversible epigenetic fingerprint-mediated glutathione-S-transferase P1 gene silencing in human leukemia cell lines . Biochem. Pharmacol.81 ( 11 ), 1329 – 1342 ( 2011 ).
  • Fang M , ChenD , YangCS . Dietary polyphenols may affect DNA methylation . J. Nutr.137 ( 1 Suppl. ), 223S – 228S ( 2007 ).
  • Fang MZ , ChenD , SunY , JinZ , ChristmanJK , YangCS . Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy . Clin. Cancer Res.11 ( 19 Pt 1 ), 7033 – 7041 ( 2005 ).
  • Yang CS , FangM , LambertJD , YanP , HuangTH . Reversal of hypermethylation and reactivation of genes by dietary polyphenolic compounds . Nutr. Rev.66 ( Suppl 1 ), S18 – S20 ( 2008 ).
  • Xiang N , ZhaoR , SongG , ZhongW . Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells . Carcinogenesis29 ( 11 ), 2175 – 2181 ( 2008 ).
  • Lane M , McphersonNO , FullstonTet al. Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring . PLoS ONE9 ( 7 ), e100832 ( 2014 ).
  • Strakovsky RS , PanYX . In utero oxidative stress epigenetically programs antioxidant defense capacity and adulthood diseases . Antioxid. Redox Signal17 ( 2 ), 237 – 253 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.