7,280
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenome-Based Personalized Medicine in human Cancer

, &
Pages 119-133 | Published online: 07 Sep 2015

References

  • Guo M , RenJ , BrockMV , HermanJG , CarrawayHE . Promoter methylation of HIN-1 in the progression to esophageal squamous cancer . Epigenetics3 ( 6 ), 336 – 341 ( 2008 ).
  • Fearon ER , VogelsteinB . A genetic model for colorectal tumorigenesis . Cell61 ( 5 ), 759 – 767 ( 1990 ).
  • Guo M , RenJ , HouseMG , QiY , BrockMV , HermanJG . Accumulation of promoter methylation suggests epigenetic progression in squamous cell carcinoma of the esophagus . Clin. Cancer Res.12 ( 15 ), 4515 – 4522 ( 2006 ).
  • Azad N , ZahnowCA , RudinCM , BaylinSB . The future of epigenetic therapy in solid tumours – lessons from the past . Nat. Rev. Clin. Oncol.10 ( 5 ), 256 – 266 ( 2013 ).
  • Hamburg MA , CollinsFS . The path to personalized medicine . N. Engl. J. Med.363 ( 4 ), 301 – 304 ( 2010 ).
  • Collins FS , VarmusH . A new initiative on precision medicine . N. Engl. J. Med.372 ( 9 ), 793 – 795 ( 2015 ).
  • Mirnezami R , NicholsonJ , DarziA . Preparing for precision medicine . N. Engl. J. Med.366 ( 6 ), 489 – 491 ( 2012 ).
  • Katsnelson A . Momentum grows to make ‘personalized’ medicine more ‘precise’ . Nat. Med.19 ( 3 ), 249 ( 2013 ).
  • Dolsten M , SogaardM . Precision medicine: an approach to R & D for delivering superior medicines to patients . Clin. Transl. Med.1 ( 1 ), 7 ( 2012 ).
  • Sharma SV , BellDW , SettlemanJ , HaberDA . Epidermal growth factor receptor mutations in lung cancer . Nat. Rev. Cancer7 ( 3 ), 169 – 181 ( 2007 ).
  • Vogelstein B , PapadopoulosN , VelculescuVE , ZhouS , DiazLAJr , KinzlerKW . Cancer genome landscapes . Science339 ( 6127 ), 1546 – 1558 ( 2013 ).
  • Beggs AD , JonesA , El-BahrawyM , AbulafiM , HodgsonSV , TomlinsonIP . Whole-genome methylation analysis of benign and malignant colorectal tumours . J. Pathol.229 ( 5 ), 697 – 704 ( 2013 ).
  • Takai D , JonesPA . Comprehensive analysis of CpG islands in human chromosomes 21 and 22 . Proc. Natl Acad. Sci. USA99 ( 6 ), 3740 – 3745 ( 2002 ).
  • Stirzaker C , TaberlayPC , StathamAL , ClarkSJ . Mining cancer methylomes: prospects and challenges . Trends Genet.30 ( 2 ), 75 – 84 ( 2014 ).
  • Jeong M , GoodellMA . New answers to old questions from genome-wide maps of DNA methylation in hematopoietic cells . Exp. Hematol.42 ( 8 ), 609 – 617 ( 2014 ).
  • Jeschke J , CollignonE , FuksF . DNA methylome profiling beyond promoters – taking an epigenetic snapshot of the breast tumor microenvironment . FEBS J.282 ( 9 ), 1801 – 1814 ( 2015 ).
  • Irizarry RA , Ladd-AcostaC , WenBet al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores . Nat. Genet.41 ( 2 ), 178 – 186 ( 2009 ).
  • Doi A , ParkIH , WenBet al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts . Nat. Genet.41 ( 12 ), 1350 – 1353 ( 2009 ).
  • Gerson SL . MGMT: its role in cancer aetiology and cancer therapeutics . Nat. Rev. Cancer4 ( 4 ), 296 – 307 ( 2004 ).
  • Esteller M , Garcia-FoncillasJ , AndionEet al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents . N. Engl. J. Med.343 ( 19 ), 1350 – 1354 ( 2000 ).
  • Scolnick DM , HalazonetisTD . Chfr defines a mitotic stress checkpoint that delays entry into metaphase . Nature406 ( 6794 ), 430 – 435 ( 2000 ).
  • Yun T , LiuY , GaoDet al. Methylation of CHFR sensitizes esophageal squamous cell cancer to docetaxel and paclitaxel . Genes Cancer6 ( 1–2 ), 38 – 48 ( 2015 ).
  • Derks S , ClevenAH , MelotteVet al. Emerging evidence for CHFR as a cancer biomarker: from tumor biology to precision medicine . Cancer Metastasis Rev.33 ( 1 ), 161 – 171 ( 2014 ).
  • Li Y , YangY , LuYet al. Predictive value of CHFR and MLH1 methylation in human gastric cancer . Gastric Cancer18 ( 2 ), 280 – 287 ( 2015 ).
  • Taniguchi T , TischkowitzM , AmezianeNet al. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors . Nat. Med.9 ( 5 ), 568 – 574 ( 2003 ).
  • Swisher EM , GonzalezRM , TaniguchiTet al. Methylation and protein expression of DNA repair genes: association with chemotherapy exposure and survival in sporadic ovarian and peritoneal carcinomas . Mol. Cancer8 , 48 ( 2009 ).
  • Heyn H , EstellerM . DNA methylation profiling in the clinic: applications and challenges . Nat. Rev. Genet.13 ( 10 ), 679 – 692 ( 2012 ).
  • Tanaka M , ChangP , LiYet al. Association of CHFR promoter methylation with disease recurrence in locally advanced colon cancer . Clin. Cancer Res.17 ( 13 ), 4531 – 4540 ( 2011 ).
  • Veeck J , RoperoS , SetienFet al. BRCA1 CpG island hypermethylation predicts sensitivity to poly(adenosine diphosphate)-ribose polymerase inhibitors . J. Clin. Oncol.28 ( 29 ), e563 – e564 ( 2010 ).
  • Strathdee G , MackeanMJ , IllandM , BrownR . A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer . Oncogene18 ( 14 ), 2335 – 2341 ( 1999 ).
  • Dejeux E , RonnebergJA , SolvangHet al. DNA methylation profiling in doxorubicin treated primary locally advanced breast tumours identifies novel genes associated with survival and treatment response . Mol. Cancer9 , 68 ( 2010 ).
  • Lee JH , KangMJ , HanHYet al. Epigenetic alteration of PRKCDBP in colorectal cancers and its implication in tumor cell resistance to TNFα-induced apoptosis . Clin. Cancer Res.17 ( 24 ), 7551 – 7562 ( 2011 ).
  • Ramirez JL , RosellR , TaronMet al. 14-3-3sigma methylation in pretreatment serum circulating DNA of cisplatin-plus-gemcitabine-treated advanced non-small-cell lung cancer patients predicts survival: The Spanish Lung Cancer Group . J. Clin. Oncol.23 ( 36 ), 9105 – 9112 ( 2005 ).
  • Ebert MP , TanzerM , BalluffBet al. TFAP2E–DKK4 and chemoresistance in colorectal cancer . N. Engl. J. Med.366 ( 1 ), 44 – 53 ( 2012 ).
  • Chekhun VF , KulikGI , YurchenkoOVet al. Role of DNA hypomethylation in the development of the resistance to doxorubicin in human MCF-7 breast adenocarcinoma cells . Cancer Lett.231 ( 1 ), 87 – 93 ( 2006 ).
  • Soengas MS , CapodieciP , PolskyDet al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma . Nature409 ( 6817 ), 207 – 211 ( 2001 ).
  • Iorns E , TurnerNC , ElliottRet al. Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer . Cancer Cell13 ( 2 ), 91 – 104 ( 2008 ).
  • Ibanez De Caceres I , Cortes-SempereM , MoratillaCet al. IGFBP–3 hypermethylation-derived deficiency mediates cisplatin resistance in non-small-cell lung cancer . Oncogene29 ( 11 ), 1681 – 1690 ( 2010 ).
  • Faller WJ , RaffertyM , HegartySet al. Metallothionein 1E is methylated in malignant melanoma and increases sensitivity to cisplatin-induced apoptosis . Melanoma Res.20 ( 5 ), 392 – 400 ( 2010 ).
  • Ai L , KimWJ , DemircanBet al. The transglutaminase 2 gene (TGM2), a potential molecular marker for chemotherapeutic drug sensitivity, is epigenetically silenced in breast cancer . Carcinogenesis29 ( 3 ), 510 – 518 ( 2008 ).
  • Shen L , KondoY , AhmedSet al. Drug sensitivity prediction by CpG island methylation profile in the NCI-60 cancer cell line panel . Cancer Res.67 ( 23 ), 11335 – 11343 ( 2007 ).
  • Kim H , ParkJ , JungYet al. DNA methyltransferase 3-like affects promoter methylation of thymine DNA glycosylase independently of DNMT1 and DNMT3B in cancer cells . Int. J. Oncol.36 ( 6 ), 1563 – 1572 ( 2010 ).
  • Ahuja N , EaswaranH , BaylinSB . Harnessing the potential of epigenetic therapy to target solid tumors . J. Clin. Invest.124 ( 1 ), 56 – 63 ( 2014 ).
  • Sekeres MA , TiuRV , KomrokjiRet al. Phase 2 study of the lenalidomide and azacitidine combination in patients with higher-risk myelodysplastic syndromes . Blood120 ( 25 ), 4945 – 4951 ( 2012 ).
  • Aparicio A , WeberJS . Review of the clinical experience with 5-azacytidine and 5-aza-2′-deoxycytidine in solid tumors . Curr. Opin. Invest. Drugs3 ( 4 ), 627 – 633 ( 2002 ).
  • Tsai HC , LiH , Van NesteLet al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells . Cancer Cell21 ( 3 ), 430 – 446 ( 2012 ).
  • Marquez VE , BarchiJJJr , KelleyJAet al. Zebularine: a unique molecule for an epigenetically based strategy in cancer chemotherapy. The magic of its chemistry and biology . Nucleosides, Nucleotides Nucleic Acids24 ( 5–7 ), 305 – 318 ( 2005 ).
  • Cheng JC , WeisenbergerDJ , GonzalesFAet al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells . Mol. Cell. Biol.24 ( 3 ), 1270 – 1278 ( 2004 ).
  • Kuang Y , El-KhoueiryA , TavernaP , LjungmanM , NeamatiN . Guadecitabine (SGI–110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin . Mol. Oncol. doi:10.1016/j.molonc.2015.06.002 ( 2015 ) ( Epub ahead of print ).
  • Laille E , SavonaMR , ScottBL , BoydTE , DongQ , SkikneB . Pharmacokinetics of different formulations of oral azacitidine (CC-486) and the effect of food and modified gastric pH on pharmacokinetics in subjects with hematologic malignancies . J. Clin. Pharmacol.54 ( 6 ), 630 – 639 ( 2014 ).
  • Ren J , SinghBN , HuangQet al. DNA hypermethylation as a chemotherapy target . Cell. Signal.23 ( 7 ), 1082 – 1093 ( 2011 ).
  • Tsai HC , BaylinSB . Cancer epigenetics: linking basic biology to clinical medicine . Cell Res.21 ( 3 ), 502 – 517 ( 2011 ).
  • Bachman KE , RountreeMR , BaylinSB . DNMT3A and DNMT3B are transcriptional repressors that exhibit unique localization properties to heterochromatin . J. Biol. Chem.276 ( 34 ), 32282 – 32287 ( 2001 ).
  • Robertson KD , Ait-Si-AliS , YokochiT , WadePA , JonesPL , WolffeAP . DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters . Nat. Genet.25 ( 3 ), 338 – 342 ( 2000 ).
  • Zhou VW , GorenA , BernsteinBE . Charting histone modifications and the functional organization of mammalian genomes . Nat. Rev. Genet.12 ( 1 ), 7 – 18 ( 2011 ).
  • Visel A , BlowMJ , LiZet al. ChIP-seq accurately predicts tissue-specific activity of enhancers . Nature457 ( 7231 ), 854 – 858 ( 2009 ).
  • Kornblihtt AR , SchorIE , AlloM , BlencoweBJ . When chromatin meets splicing . Nat. Struct. Mol. Biol.16 ( 9 ), 902 – 903 ( 2009 ).
  • Luco RF , PanQ , TominagaK , BlencoweBJ , Pereira-SmithOM , MisteliT . Regulation of alternative splicing by histone modifications . Science327 ( 5968 ), 996 – 1000 ( 2010 ).
  • You JS , JonesPA . Cancer genetics and epigenetics: two sides of the same coin?Cancer Cell22 ( 1 ), 9 – 20 ( 2012 ).
  • Guo M , YanW . Epigenetics of gastric cancer . Methods Mol. Biol.1238 , 783 – 799 ( 2015 ).
  • Gigek CO , ChenES , CalcagnoDQ , WisnieskiF , BurbanoRR , SmithMA . Epigenetic mechanisms in gastric cancer . Epigenomics4 ( 3 ), 279 – 294 ( 2012 ).
  • Bolden JE , PeartMJ , JohnstoneRW . Anticancer activities of histone deacetylase inhibitors . Nat. Rev. Drug Discov.5 ( 9 ), 769 – 784 ( 2006 ).
  • Yan W , GuoM . Epigenetics of colorectal cancer . Methods Mol. Biol.1238 , 405 – 424 ( 2015 ).
  • Lee HZ , KwitkowskiVE , Del VallePLet al. FDA approval: belinostat for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma . Clin. Cancer Res.21 ( 12 ), 2666 – 2670 ( 2015 ).
  • De Souza C , ChatterjiBP . HDAC inhibitors as novel anti-cancer therapeutics . Recent Pat. Anticancer Drug Discov.10 ( 2 ), 145 – 162 ( 2015 ).
  • Kelly TK , De CarvalhoDD , JonesPA . Epigenetic modifications as therapeutic targets . Nat. Biotechnol.28 ( 10 ), 1069 – 1078 ( 2010 ).
  • Balasubramanian S , RamosJ , LuoW , SirisawadM , VernerE , BuggyJJ . A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI–34051 induces apoptosis in T-cell lymphomas . Leukemia22 ( 5 ), 1026 – 1034 ( 2008 ).
  • Daigle SR , OlhavaEJ , TherkelsenCAet al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor . Cancer Cell20 ( 1 ), 53 – 65 ( 2011 ).
  • Wee S , DhanakD , LiHet al. Targeting epigenetic regulators for cancer therapy . Ann. NY Acad. Sci.1309 , 30 – 36 ( 2014 ).
  • Tan J , YangX , ZhuangLet al. Pharmacologic disruption of Polycomb-repressive complex 2–mediated gene repression selectively induces apoptosis in cancer cells . Genes Dev.21 ( 9 ), 1050 – 1063 ( 2007 ).
  • EU Clinical Trials Register . www.clinicaltrialsregister.eu/ctr-search/trial/2013-002447-29/ES .
  • Investigation of GSK2879552 in Subjects With Relapsed/Refractory Small Cell Lung Carcinoma . https://clinicaltrials.gov/ct2/show/NCT02034123 .
  • Lucas X , GuntherS . Targeting the BET family for the treatment of leukemia . Epigenomics6 ( 2 ), 153 – 155 ( 2014 ).
  • Dawson MA , PrinjhaRK , DittmannAet al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia . Nature478 ( 7370 ), 529 – 533 ( 2011 ).
  • Delmore JE , IssaGC , LemieuxMEet al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc . Cell146 ( 6 ), 904 – 917 ( 2011 ).
  • Martin C , ZhangY . The diverse functions of histone lysine methylation . Nat. Rev. Mol. Cell Biol.6 ( 11 ), 838 – 849 ( 2005 ).
  • Tsukada Y , FangJ , Erdjument-BromageHet al. Histone demethylation by a family of JmjC domain-containing proteins . Nature439 ( 7078 ), 811 – 816 ( 2006 ).
  • Barski A , CuddapahS , CuiKet al. High-resolution profiling of histone methylations in the human genome . Cell129 ( 4 ), 823 – 837 ( 2007 ).
  • Hancock RL , DunneK , WalportLJ , FlashmanE , KawamuraA . Epigenetic regulation by histone demethylases in hypoxia . Epigenomics doi:10.2217/epi.15.24 ( 2015 ) ( Epub ahead of print ).
  • Lall S . Primers on chromatin . Nat. Struct. Mol. Biol.14 ( 11 ), 1110 – 1115 ( 2007 ).
  • Black JC , Van RechemC , WhetstineJR . Histone lysine methylation dynamics: establishment, regulation, and biological impact . Mol. Cell48 ( 4 ), 491 – 507 ( 2012 ).
  • Takawa M , MasudaK , KunizakiMet al. Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker . Cancer Sci.102 ( 7 ), 1298 – 1305 ( 2011 ).
  • Kondo Y . Targeting histone methyltransferase EZH2 as cancer treatment . J. Biochem.156 ( 5 ), 249 – 257 ( 2014 ).
  • Tan JZ , YanY , WangXX , JiangY , XuHE . EZH2: biology, disease, and structure-based drug discovery . Acta Pharmacol. Sin.35 ( 2 ), 161 – 174 ( 2014 ).
  • Simon JA , LangeCA . Roles of the EZH2 histone methyltransferase in cancer epigenetics . Mutat. Res.647 ( 1–2 ), 21 – 29 ( 2008 ).
  • Copeland RA , SolomonME , RichonVM . Protein methyltransferases as a target class for drug discovery . Nat. Rev. Drug Discov.8 ( 9 ), 724 – 732 ( 2009 ).
  • Knutson SK , WigleTJ , WarholicNMet al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells . Nat. Chem. Biol.8 ( 11 ), 890 – 896 ( 2012 ).
  • Mccabe MT , OttHM , GanjiGet al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations . Nature492 ( 7427 ), 108 – 112 ( 2012 ).
  • Knutson SK , KawanoS , MinoshimaYet al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma . Mol. Cancer Ther.13 ( 4 ), 842 – 854 ( 2014 ).
  • Deb G , SinghAK , GuptaS . EZH2: not EZHY (easy) to deal . Mol. Cancer Res.12 ( 5 ), 639 – 653 ( 2014 ).
  • Nguyen AT , ZhangY . The diverse functions of DOT1 and H3K79 methylation . Genes Dev.25 ( 13 ), 1345 – 1358 ( 2011 ).
  • Hess JL . MLL: a histone methyltransferase disrupted in leukemia . Trends Mol. Med.10 ( 10 ), 500 – 507 ( 2004 ).
  • Daigle SR , OlhavaEJ , TherkelsenCAet al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia . Blood122 ( 6 ), 1017 – 1025 ( 2013 ).
  • Bitoun E , OliverPL , DaviesKE . The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling . Hum. Mol. Genet.16 ( 1 ), 92 – 106 ( 2007 ).
  • Biswas D , MilneTA , BasrurVet al. Function of leukemogenic mixed lineage leukemia 1 (MLL) fusion proteins through distinct partner protein complexes . Proc. Natl Acad. Sci. USA108 ( 38 ), 15751 – 15756 ( 2011 ).
  • Mueller D , BachC , ZeisigDet al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification . Blood110 ( 13 ), 4445 – 4454 ( 2007 ).
  • Mueller D , Garcia-CuellarMP , BachC , BuhlS , MaethnerE , SlanyRK . Misguided transcriptional elongation causes mixed lineage leukemia . PLoS Biol.7 ( 11 ), e1000249 ( 2009 ).
  • Yokoyama A , LinM , NareshA , KitabayashiI , ClearyML . A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription . Cancer Cell17 ( 2 ), 198 – 212 ( 2010 ).
  • Park G , GongZ , ChenJ , KimJE . Characterization of the DOT1L network: implications of diverse roles for DOT1L . Protein J.29 ( 3 ), 213 – 223 ( 2010 ).
  • Zhang W , XiaX , ReisenauerMR , HemenwayCS , KoneBC . DOT1A–AF9 complex mediates histone H3 Lys–79 hypermethylation and repression of ENaCalpha in an aldosterone-sensitive manner . J. Biol. Chem.281 ( 26 ), 18059 – 18068 ( 2006 ).
  • Mohan M , HerzHM , TakahashiYHet al. Linking H3K79 trimethylation to Wnt signaling through a novel DOT1-containing complex (DotCom) . Genes Dev.24 ( 6 ), 574 – 589 ( 2010 ).
  • Nguyen AT , TaranovaO , HeJ , ZhangY . DOT1L, the H3K79 methyltransferase, is required for MLL–AF9-mediated leukemogenesis . Blood117 ( 25 ), 6912 – 6922 ( 2011 ).
  • Monroe SC , JoSY , SandersDSet al. MLL–AF9 and MLL–ENL alter the dynamic association of transcriptional regulators with genes critical for leukemia . Exp. Hematol.39 ( 1 ), 77 – 86e71 – 75 ( 2011 ).
  • Milne TA , MartinME , BrockHW , SlanyRK , HessJL . Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications . Cancer Res.65 ( 24 ), 11367 – 11374 ( 2005 ).
  • Kim W , KimR , ParkG , ParkJW , KimJE . Deficiency of H3K79 histone methyltransferase DOT-like protein (DOT1L) inhibits cell proliferation . J. Biol. Chem.287 ( 8 ), 5588 – 5599 ( 2012 ).
  • Zhang L , DengL , ChenFet al. Inhibition of histone H3K79 methylation selectively inhibits proliferation, self-renewal and metastatic potential of breast cancer . Oncotarget5 ( 21 ), 10665 – 10677 ( 2014 ).
  • Stein EM , TallmanMS . Mixed lineage rearranged leukaemia: pathogenesis and targeting DOT1L . Curr. Opin. Hematol.22 ( 2 ), 92 – 96 ( 2015 ).
  • Yu W , ChoryEJ , WernimontAKet al. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors . Nat. Commun.3 , 1288 ( 2012 ).
  • Basavapathruni A , JinL , DaigleSRet al. Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L . Chem. Biol. Drug Des.80 ( 6 ), 971 – 980 ( 2012 ).
  • Shi Y , LanF , MatsonCet al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 . Cell119 ( 7 ), 941 – 953 ( 2004 ).
  • You A , TongJK , GrozingerCM , SchreiberSL . CoREST is an integral component of the CoREST – human histone deacetylase complex . Proc. Natl Acad. Sci. USA98 ( 4 ), 1454 – 1458 ( 2001 ).
  • Hou H , YuH . Structural insights into histone lysine demethylation . Curr. Opin. Struct. Biol.20 ( 6 ), 739 – 748 ( 2010 ).
  • Wang Y , ZhangH , ChenYet al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer . Cell138 ( 4 ), 660 – 672 ( 2009 ).
  • Metzger E , WissmannM , YinNet al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription . Nature437 ( 7057 ), 436 – 439 ( 2005 ).
  • Kahl P , GullottiL , HeukampLCet al. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence . Cancer Res.66 ( 23 ), 11341 – 11347 ( 2006 ).
  • Hayami S , KellyJD , ChoHSet al. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers . Int. J. Cancer128 ( 3 ), 574 – 586 ( 2011 ).
  • Kauffman EC , RobinsonBD , DownesMJet al. Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and advanced human bladder cancer . Mol. Carcinog.50 ( 12 ), 931 – 944 ( 2011 ).
  • Schulte JH , LimS , SchrammAet al. Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy . Cancer Res.69 ( 5 ), 2065 – 2071 ( 2009 ).
  • Lee MG , WynderC , SchmidtDM , McCaffertyDG , ShiekhattarR . Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications . Chem. Biol.13 ( 6 ), 563 – 567 ( 2006 ).
  • Etani T , SuzukiT , NaikiTet al. NCL1, a highly selective lysine-specific demethylase 1 inhibitor, suppresses prostate cancer without adverse effect . Oncotarget6 ( 5 ), 2865 – 2878 ( 2015 ).
  • Klose RJ , KallinEM , ZhangY . JmjC-domain-containing proteins and histone demethylation . Nat. Rev. Genet.7 ( 9 ), 715 – 727 ( 2006 ).
  • Hojfeldt JW , AggerK , HelinK . Histone lysine demethylases as targets for anticancer therapy . Nat. Rev. Drug Discov.12 ( 12 ), 917 – 930 ( 2013 ).
  • Berry WL , JanknechtR . KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells . Cancer Res.73 ( 10 ), 2936 – 2942 ( 2013 ).
  • Cloos PA , ChristensenJ , AggerKet al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3 . Nature442 ( 7100 ), 307 – 311 ( 2006 ).
  • Ntziachristos P , TsirigosA , WelsteadGGet al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia . Nature514 ( 7523 ), 513 – 517 ( 2014 ).
  • Lohse B , NielsenAL , KristensenJBet al. Targeting histone lysine demethylases by truncating the histone 3 tail to obtain selective substrate-based inhibitors . Angew. Chem. Int. Ed. Engl.50 ( 39 ), 9100 – 9103 ( 2011 ).
  • Wang L , ChangJ , VargheseDet al. A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth . Nat. Commun.4 , 2035 ( 2013 ).
  • King ON , LiXS , SakuraiMet al. Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors . PLoS ONE5 ( 11 ), e15535 ( 2010 ).
  • Chang KH , KingON , TumberAet al. Inhibition of histone demethylases by 4-carboxy-2,2′-bipyridyl compounds . ChemMedChem6 ( 5 ), 759 – 764 ( 2011 ).
  • Schiller R , ScozzafavaG , TumberAet al. A cell-permeable ester derivative of the JmjC histone demethylase inhibitor IOX1 . ChemMedChem9 ( 3 ), 566 – 571 ( 2014 ).
  • Steller P . [Radiographic diagnosis of sliding hiatal hernias in children] . Bratisl. Lek. Listy54 ( 2 ), 224 – 229 ( 1970 ).
  • Filippakopoulos P , KnappS . Targeting bromodomains: epigenetic readers of lysine acetylation . Nat. Rev. Drug Discov.13 ( 5 ), 337 – 356 ( 2014 ).
  • Barbieri I , CannizzaroE , DawsonMA . Bromodomains as therapeutic targets in cancer . Brief. Funct. Genom.12 ( 3 ), 219 – 230 ( 2013 ).
  • Bayarsaihan D , ShinDG . Epigenetic drug therapy based on bromodomain inhibition . Epigenomics6 ( 5 ), 473 – 476 ( 2014 ).
  • Chaidos A , CaputoV , KaradimitrisA . Inhibition of bromodomain and extra-terminal proteins (BET) as a potential therapeutic approach in haematological malignancies: emerging preclinical and clinical evidence . Ther. Adv. Hematol.6 ( 3 ), 128 – 141 ( 2015 ).
  • Papavassiliou KA , PapavassiliouAG . Bromodomains: pockets with therapeutic potential . Trends Mol. Med.20 ( 9 ), 477 – 478 ( 2014 ).
  • Filippakopoulos P , QiJ , PicaudSet al. Selective inhibition of BET bromodomains . Nature468 ( 7327 ), 1067 – 1073 ( 2010 ).
  • Chung CW , CosteH , WhiteJHet al. Discovery and characterization of small molecule inhibitors of the BET family bromodomains . J. Med. Chem.54 ( 11 ), 3827 – 3838 ( 2011 ).
  • Zeng L , LiJ , MullerMet al. Selective small molecules blocking HIV-1 Tat and coactivator PCAF association . J. Am. Chem. Soc.127 ( 8 ), 2376 – 2377 ( 2005 ).
  • Braiteh F , SorianoAO , Garcia-ManeroGet al. Phase I study of epigenetic modulation with 5-azacytidine and valproic acid in patients with advanced cancers . Clin. Cancer Res.14 ( 19 ), 6296 – 6301 ( 2008 ).
  • Plumb JA , StrathdeeG , SluddenJ , KayeSB , BrownR . Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter . Cancer Res.60 ( 21 ), 6039 – 6044 ( 2000 ).
  • Juergens RA , WrangleJ , VendettiFPet al. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer . Cancer Discov.1 ( 7 ), 598 – 607 ( 2011 ).
  • Walter RB , MedeirosBC , GardnerKMet al. Gemtuzumab ozogamicin in combination with vorinostat and azacitidine in older patients with relapsed or refractory acute myeloid leukemia: a Phase I/II study . Haematologica99 ( 1 ), 54 – 59 ( 2014 ).
  • Singh MM , JohnsonB , VenkatarayanAet al. Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma . Neuro Oncol. doi:10.1093/neuonc/nov041 ( 2015 ) ( Epub ahead of print ).
  • Fillmore CM , XuC , DesaiPTet al. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors . Nature520 ( 7546 ), 239 – 242 ( 2015 ).
  • Klaus CR , IwanowiczD , JohnstonDet al. DOT1L inhibitor EPZ–5676 displays synergistic antiproliferative activity in combination with standard of care drugs and hypomethylating agents in MLL-rearranged leukemia cells . J. Pharmacol. Exp. Ther.350 ( 3 ), 646 – 656 ( 2014 ).
  • Garofalo M , LevaGD , CroceCM . MicroRNAs as anti-cancer therapy . Curr. Pharm. Des.20 ( 33 ), 5328 – 5335 ( 2014 ).
  • Ji Q , HaoX , MengYet al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres . BMC Cancer8 , 266 ( 2008 ).
  • Meng W , JiangL , LuLet al. Anti-miR-155 oligonucleotide enhances chemosensitivity of U251 cell to taxol by inducing apoptosis . Cell Biol. Int.36 ( 7 ), 653 – 659 ( 2012 ).
  • Garzon R , MarcucciG , CroceCM . Targeting microRNAs in cancer: rationale, strategies and challenges . Nat. Rev. Drug Discov.9 ( 10 ), 775 – 789 ( 2010 ).
  • Bader AG , BrownD , StoudemireJ , LammersP . Developing therapeutic microRNAs for cancer . Gene Ther.18 ( 12 ), 1121 – 1126 ( 2011 ).
  • Wu Y , CrawfordM , MaoYet al. Therapeutic delivery of microRNA–29b by cationic lipoplexes for lung cancer. Molecular therapy . Nucleic Acids2 , e84 ( 2013 ).
  • Weiler J , HunzikerJ , HallJ . Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease?Gene Ther.13 ( 6 ), 496 – 502 ( 2006 ).
  • Krichevsky AM , GabrielyG . miR-21: a small multi-faceted RNA . J. Cell. Mol. Med.13 ( 1 ), 39 – 53 ( 2009 ).
  • Ebert MS , NeilsonJR , SharpPA . MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells . Nat. Methods4 ( 9 ), 721 – 726 ( 2007 ).
  • Li C , FengY , CoukosG , ZhangL . Therapeutic microRNA strategies in human cancer . AAPS J.11 ( 4 ), 747 – 757 ( 2009 ).
  • Qi P , DuX . The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine . Mod. Pathol.26 ( 2 ), 155 – 165 ( 2013 ).
  • Faghihi MA , KocerhaJ , ModarresiFet al. RNAi screen indicates widespread biological function for human natural antisense transcripts . PLoS ONE doi:10.1371/journal.pone.0013177 ( 2010 ) ( Epub ahead of print ).
  • Modarresi F , FaghihiMA , Lopez-ToledanoMAet al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation . Nat. Biotechnol.30 ( 5 ), 453 – 459 ( 2012 ).
  • Bennett CF , SwayzeEE . RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform . Annu. Rev. Pharmacol. Toxicol.50 , 259 – 293 ( 2010 ).