284
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Inhibitors of Protein Methyltransferases as Chemical Tools

Pages 1327-1338 | Received 04 Jun 2015, Accepted 21 Aug 2015, Published online: 08 Dec 2015

References

  • Luo M . Current chemical biology approaches to interrogate protein methyltransferases . ACS Chem. Biol.7 ( 3 ), 443 – 463 ( 2012 ).
  • Yang Y , BedfordMT . Protein arginine methyltransferases and cancer . Nat. Rev. Cancer13 ( 1 ), 37 – 50 ( 2013 ).
  • Shimazu T , BarjauJ , SohtomeY , SodeokaM , ShinkaiY . Selenium-based S-adenosylmethionine analog reveals the mammalian seven-beta-strand methyltransferase METTL10 to be an EF1A1 lysine methyltransferase . PLoS ONE9 ( 8 ), e105394 ( 2014 ).
  • Kernstock S , DavydovaE , JakobssonMet al. Lysine methylation of VCP by a member of a novel human protein methyltransferase family . Nat. Commun.3 , 1038 ( 2012 ).
  • Jakobsson ME , MoenA , BoussetLet al. Identification and characterization of a novel human methyltransferase modulating Hsp70 protein function through lysine methylation . J. Biol. Chem.288 ( 39 ), 27752 – 27763 ( 2013 ).
  • Min J , FengQ , LiZ , ZhangY , XuRM . Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase . Cell112 ( 5 ), 711 – 723 ( 2003 ).
  • Huang J , HsuYH , MoCet al. METTL21C is a potential pleiotropic gene for osteoporosis and sarcopenia acting through the modulation of the NF-κB signaling pathway . J. Bone Miner. Res.29 ( 7 ), 1531 – 1540 ( 2014 ).
  • Magen S , MagnaniR , HazizaSet al. Human calmodulin methyltransferase: expression, activity on calmodulin, and Hsp90 dependence . PLoS ONE7 ( 12 ), e52425 ( 2012 ).
  • Wang R , LuoM . A journey toward bioorthogonal profiling of protein methylation inside living cells . Curr. Opin. Chem. Biol.17 ( 5 ), 729 – 737 ( 2013 ).
  • Liu Y , LiuK , QinS , XuC , MinJ . Epigenetic targets and drug discovery: part 1: histone methylation . Pharmacol. Ther.143 ( 3 ), 275 – 294 ( 2014 ).
  • Kaniskan HU , KonzeKD , JinJ . Selective inhibitors of protein methyltransferases . J. Med. Chem.58 ( 4 ), 1596 – 1629 ( 2014 ).
  • Kaniskan HU , JinJ . Chemical probes of histone lysine methyltransferases . ACS Chem. Biol.10 ( 1 ), 40 – 50 ( 2014 ).
  • Wagner EJ , CarpenterPB . Understanding the language of Lys36 methylation at histone H3 . Nat. Rev. Mol. Cell Biol.13 ( 2 ), 115 – 126 ( 2012 ).
  • Frye SV . The art of the chemical probe . Nat. Chem. Biol.6 ( 3 ), 159 – 161 ( 2010 ).
  • Kubicek S , O’SullivanRJ , AugustEMet al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase . Mol. Cell25 ( 3 ), 473 – 481 ( 2007 ).
  • Liu F , ChenX , Allali-HassaniAet al. Protein lysine methyltransferase G9a inhibitors: design, synthesis, and structure activity relationships of 2,4-diamino-7-aminoalkoxy-quinazolines . J. Med. Chem.53 ( 15 ), 5844 – 5857 ( 2010 ).
  • Liu F , Barsyte-LovejoyD , Allali-HassaniAet al. Optimization of cellular activity of G9a inhibitors 7-aminoalkoxy-quinazolines . J. Med. Chem.54 ( 17 ), 6139 – 6150 ( 2011 ).
  • Vedadi M , Barsyte-LovejoyD , LiuFet al. A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells . Nat. Chem. Biol.7 ( 9 ), 648 – 648 ( 2011 ).
  • Liu F , Barsyte-LovejoyD , LiFet al. Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP . J. Med. Chem.56 ( 21 ), 8931 – 8942 ( 2013 ).
  • Knutson Sk , WigleTj , WarholicNmet al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells . Nat. Chem. Biol.8 ( 11 ), 890 – 896 ( 2012 ).
  • Verma Sk , TianX , LafranceLVet al. Identification of potent, selective, cell-active inhibitors of the histone lysine methyltransferase EZH2 . ACS Med. Chem. Lett.3 ( 12 ), 1091 – 1096 ( 2012 ).
  • Mccabe Mt , OttHm , GanjiGet al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations . Nature492 ( 7427 ), 108 – 112 ( 2012 ).
  • Knutson SK , WarholicNM , WigleTJet al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2 . Proc. Natl Acad. Sci. USA110 ( 19 ), 7922 – 7927 ( 2013 ).
  • Bradley WD , AroraS , BusbyJet al. EZH2 inhibitor efficacy in non-Hodgkin’s lymphoma does not require suppression of H3K27 monomethylation . Chem. Biol.21 ( 11 ), 1463 – 1475 ( 2014 ).
  • Konze KD , MaA , LiFet al. An orally bioavailable chemical probe of the lysine methyltransferases EZH2 and EZH1 . ACS Chem. Biol.8 ( 6 ), 1324 – 1334 ( 2013 ).
  • Nasveschuk CG , GagnonA , Garapaty-RaoSet al. Discovery and optimization of tetramethylpiperidinyl benzamides as inhibitors of EZH2 . ACS Med. Chem. Lett.5 ( 4 ), 378 – 383 ( 2014 ).
  • Zhang P , de GooijerMC , BuilLC , BeijnenJH , LiG , van TellingenO . ABCB1 and ABCG2 restrict the brain penetration of a panel of novel EZH2-Inhibitors . Int. J. Cancer doi:10.1002/ijc.29566 ( 2015 ) ( Epub ahead of print ).
  • de Almeida SF , GrossoAR , KochFet al. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36 . Nat. Struct. Mol. Biol.18 ( 9 ), 977 – 983 ( 2011 ).
  • Edmunds JW , MahadevanLC , ClaytonAL . Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation . EMBO J.27 ( 2 ), 406 – 420 ( 2008 ).
  • Zheng W , IbanezG , WuHet al. Sinefungin derivatives as inhibitors and structure probes of protein lysine methyltransferase SETD2 . J. Am. Chem. Soc.134 ( 43 ), 18004 – 18014 ( 2012 ).
  • Lin Q , JiangFY , SchultzPG , GrayNS . Design of allele-specific protein methyltransferase inhibitors . J. Am. Chem. Soc.123 ( 47 ), 11608 – 11613 ( 2001 ).
  • Zhu X , HeF , ZengHet al. Identification of functional cooperative mutations of SETD2 in human acute leukemia . Nat. Genet.46 ( 3 ), 287 – 293 ( 2014 ).
  • Li F , MaoG , TongDet al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha . Cell153 ( 3 ), 590 – 600 ( 2013 ).
  • Modugno M . New resistance mechanisms for small molecule kinase inhibitors of Abl kinase . Drug Discov. Today Technol.11 , 5 – 10 ( 2014 ).
  • Gupta R , HillA , SawyerAW , PillayD . Emergence of drug resistance in HIV type 1-infected patients after receipt of first-line highly active antiretroviral therapy: a systematic review of clinical trials . Clin. Infect. Dis.47 ( 5 ), 712 – 722 ( 2008 ).
  • Patel A , DharmarajanV , VoughtVE , CosgroveMS . On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex . J. Biol. Chem.284 ( 36 ), 24242 – 24256 ( 2009 ).
  • Margueron R , JustinN , OhnoKet al. Role of the polycomb protein EED in the propagation of repressive histone marks . Nature461 ( 7265 ), 762 – 767 ( 2009 ).
  • Yu W , ChoryEJ , WernimontAKet al. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors . Nat. Commun.3 , 1288 ( 2012 ).
  • Daigle SR , OlhavaEJ , TherkelsenCAet al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor . Cancer Cell20 ( 1 ), 53 – 65 ( 2011 ).
  • Basavapathruni A , JinL , DaigleSRet al. Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L . Chem. Biol. Drug. Des.80 ( 6 ), 971 – 980 ( 2012 ).
  • Lee GM , CraikCS . Trapping moving targets with small molecules . Science324 ( 5924 ), 213 – 215 ( 2009 ).
  • Barsyte-Lovejoy D , LiF , OudhoffMJet al. (R)-PFI-2 is a potent and selective inhibitor of SETD7 methyltransferase activity in cells . Proc. Natl Acad. Sci. USA111 ( 35 ), 12853 – 12858 ( 2014 ).
  • Nguyen H , Allali-HassaniA , AntonysamySet al. LLY-507, a cell-active, potent, and selective inhibitor of protein-lysine methyltransferase SMYD2 . J. Biol. Chem.290 ( 22 ), 13641 – 13653 ( 2015 ).
  • Chan-Penebre E , KuplastKG , MajerCRet al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models . Nat. Chem. Biol.11 ( 6 ), 432 – 437 ( 2015 ).
  • Ferguson AD , LarsenNA , HowardTet al. Structural basis of substrate methylation and inhibition of SMYD2 . Structure19 ( 9 ), 1262 – 1273 ( 2011 ).
  • Kaniskan HU , SzewczykMM , YuZet al. A potent, selective and cell-active allosteric inhibitor of protein arginine methyltransferase 3 (PRMT3) . Angew. Chem. Int. Ed. Engl.54 ( 17 ), 5166 – 5170 ( 2015 ).
  • Cao F , TownsendEC , KaratasHet al. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia . Mol. Cell53 ( 2 ), 247 – 261 ( 2014 ).
  • Grembecka J , HeS , ShiAet al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia . Nat. Chem. Biol.8 ( 3 ), 277 – 284 ( 2012 ).
  • Borkin D , HeS , MiaoHet al. Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo . Cancer Cell27 ( 4 ), 589 – 602 ( 2015 ).
  • Grebien F , VedadiM , GetlikMet al. Pharmacological targeting of the Wdr5-MLL interaction in C/EBPalpha N-terminal leukemia . Nat. Chem. Biol.11 ( 8 ), 571 – 578 ( 2015 ).
  • Kim W , BirdGh , NeffTet al. Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer . Nat. Chem. Biol.9 ( 10 ), 643 – 650 ( 2013 ).
  • Caudill MA , WangJC , MelnykSet al. Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine beta-synthase heterozygous mice . J. Nutr.131 ( 11 ), 2811 – 2818 ( 2001 ).
  • Van Aller GS , PappalardiMB , OttHMet al. Long residence time inhibition of EZH2 in activated polycomb repressive complex 2 . ACS Chem. Biol.9 ( 3 ), 622 – 629 ( 2013 ).
  • Deshpande AJ , DeshpandeA , SinhaAuet al. AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes . Cancer Cell26 ( 6 ), 896 – 908 ( 2014 ).
  • Konze KD , PattendenSG , LiuFet al. A chemical tool for in vitro and in vivo precipitation of lysine methyltransferase G9a . ChemMedChem9 ( 3 ), 549 – 553 ( 2014 ).
  • Prescher JA , BertozziCR . Chemistry in living systems . Nat. Chem. Biol.1 ( 1 ), 13 – 21 ( 2005 ).
  • Savitski MM , ReinhardFB , FrankenHet al. Tracking cancer drugs in living cells by thermal profiling of the proteome . Science346 ( 6205 ), 1255784 ( 2014 ).
  • Jafari R , AlmqvistH , AxelssonHet al. The cellular thermal shift assay for evaluating drug target interactions in cells . Nat. Protoc.9 ( 9 ), 2100 – 2122 ( 2014 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.