170
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Epigenomics in NSCLC: Real-Time Detection And Therapeutic Implications

, , , &
Pages 1151-1167 | Received 01 Sep 2015, Accepted 27 May 2016, Published online: 01 Aug 2016

References

  • Chan BA , HughesBG . Targeted therapy for non-small-cell lung cancer: current standards and the promise of the future . Transl. Lung Cancer Res.4 ( 1 ), 36 – 54 ( 2015 ).
  • Landi L , CappuzzoF . Management of NSCLC: focus on crizotinib . Expert Opin. Pharmacother.15 ( 17 ), 2587 – 2597 ( 2014 ).
  • Li T , KungHJ , MackPC , GandaraDR . Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies . J. Clin. Oncol.31 ( 8 ), 1039 – 1049 ( 2013 ).
  • Thomas A , LiuSV , SubramaniamDS , GiacconeG . Refining the treatment of NSCLC according to histological and molecular subtypes . Nat. Rev. Clin. Oncol.12 ( 9 ), 511 – 526 ( 2015 ).
  • Ponomaryova AA , RykovaEY , CherdyntsevaNVet al. Potentialities of aberrantly methylated circulating DNA for diagnostics and post-treatment follow-up of lung cancer patients . Lung Cancer81 ( 3 ), 397 – 403 ( 2013 ).
  • Hudecova I . Digital PCR analysis of circulating nucleic acids . Clin. Biochem.48 ( 15 ), 948 – 956 ( 2015 ).
  • Kebede AF , SchneiderR , DaujatS . Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest . FEBS J.282 ( 9 ), 1658 – 1674 ( 2015 ).
  • Portela A , EstellerM . Epigenetic modifications and human disease . Nat. Biotechnol.28 ( 10 ), 1057 – 1068 ( 2010 ).
  • Rose NR , KloseRJ . Understanding the relationship between DNA methylation and histone lysine methylation . Biochim. Biophys. Acta1839 ( 12 ), 1362 – 1372 ( 2014 ).
  • Swygert SG , PetersonCL . Chromatin dynamics: interplay between remodeling enzymes and histone modifications . Biochim. Biophys. Acta1839 ( 8 ), 728 – 736 ( 2014 ).
  • Maunakea AK , NagarajanRP , BilenkyMet al. Conserved role of intragenic DNA methylation in regulating alternative promoters . Nature466 ( 7303 ), 253 – 257 ( 2010 ).
  • Cohen I , PorebaE , KamieniarzK , SchneiderR . Histone modifiers in cancer: friends or foes?Genes Cancer2 ( 6 ), 631 – 647 ( 2011 ).
  • Tan M , LuoH , LeeSet al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification . Cell146 ( 6 ), 1016 – 1028 ( 2011 ).
  • Shi X , SunM , LiuH , YaoY , SongY . Long noncoding RNAs: a new frontier in the study of human diseases . Cancer Lett.339 ( 2 ), 159 – 166 ( 2013 ).
  • Reddy KL , FeinbergAP . Higher order chromatin organization in cancer . Semin. Cancer Biol.23 ( 2 ), 109 – 115 ( 2013 ).
  • Filion GJ , Van SteenselB . Reassessing the abundance of H3K9me2 chromatin domains in embryonic stem cells . Nat. Genet.42 ( 1 ), 4 ; author reply 5–6 ( 2010 ).
  • Rauch TA , ZhongX , WuXet al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer . Proc. Natl Acad. Sci. USA105 ( 1 ), 252 – 257 ( 2008 ).
  • Safar AM , SpencerH , SuX , CooneyCA , ShwaikiA , FanCY . Promoter hypermethylation for molecular nodal staging in non-small-cell lung cancer . Arch. Pathol. Lab. Med.131 ( 6 ), 936 – 941 ( 2007 ).
  • Nakata S , SugioK , UramotoHet al. The methylation status and protein expression of CDH1, p16 (INK4A), and fragile histidine triad in nonsmall cell lung carcinoma: epigenetic silencing, clinical features, and prognostic significance . Cancer106 ( 10 ), 2190 – 2199 ( 2006 ).
  • Suzuki M , ShigematsuH , IizasaTet al. Exclusive mutation in epidermal growth factor receptor gene, HER-2, and KRAS, and synchronous methylation of nonsmall cell lung cancer . Cancer106 ( 10 ), 2200 – 2207 ( 2006 ).
  • Ulivi P , ZoliW , CalistriDet al. p16INK4A and CDH13 hypermethylation in tumor and serum of non-small-cell lung cancer patients . J. Cell Physiol.206 ( 3 ), 611 – 615 ( 2006 ).
  • Buckingham L , Penfield FaberL , KimAet al. PTEN, RASSF1 and DAPK site-specific hypermethylation and outcome in surgically treated stage I and II nonsmall cell lung cancer patients . Int. J. Cancer126 ( 7 ), 1630 – 1639 ( 2010 ).
  • Kontic M , StojsicJ , JovanovicDet al. Aberrant promoter methylation of CDH13 and MGMT genes is associated with clinicopathologic characteristics of primary non-small-cell lung carcinoma . Clin. Lung Cancer13 ( 4 ), 297 – 303 ( 2012 ).
  • Xie XM , ZhangZY , YangLHet al. Aberrant hypermethylation and reduced expression of disabled-2 promote the development of lung cancers . Int. J. Oncol.43 ( 5 ), 1636 – 1642 ( 2013 ).
  • Haroun RA , ZakharyNI , MohamedMR , AbdelrahmanAM , KandilEI , ShalabyKA . Assessment of the prognostic value of methylation status and expression levels of FHIT, GSTP1 and p16 in non-small-cell lung cancer in Egyptian patients . Asian Pac. J. Cancer Prev.15 ( 10 ), 4281 – 4287 ( 2014 ).
  • Wu F , LuM , QuL , LiDQ , HuCH . DNA methylation of hMLH1 correlates with the clinical response to cisplatin after a surgical resection in non-small-cell lung cancer . Int. J. Clin. Exp. Pathol.8 ( 5 ), 5457 – 5463 ( 2015 ).
  • Zhang Y , WangR , SongHet al. Methylation of multiple genes as a candidate biomarker in non-small-cell lung cancer . Cancer Lett.303 ( 1 ), 21 – 28 ( 2011 ).
  • Lin Q , GengJ , MaKet al. RASSF1A, APC, ESR1, ABCB1 and HOXC9, but not p16INK4A, DAPK1, PTEN and MT1G genes were frequently methylated in the stage I non-small-cell lung cancer in China . J. Cancer Res. Clin. Oncol.135 ( 12 ), 1675 – 1684 ( 2009 ).
  • Lin RK , HsuHS , ChangJW , ChenCY , ChenJT , WangYC . Alteration of DNA methyltransferases contributes to 5′CpG methylation and poor prognosis in lung cancer . Lung Cancer55 ( 2 ), 205 – 213 ( 2007 ).
  • Gronbaek K , HotherC , JonesPA . Epigenetic changes in cancer . APMIS115 ( 10 ), 1039 – 1059 ( 2007 ).
  • Yoon JH , SmithLE , FengZ , TangM , LeeCS , PfeiferGP . Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo [a] pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers . Cancer Res.61 ( 19 ), 7110 – 7117 ( 2001 ).
  • Toyooka S , MaruyamaR , ToyookaKOet al. Smoke exposure, histologic type and geography-related differences in the methylation profiles of non-small-cell lung cancer . Int. J. Cancer103 ( 2 ), 153 – 160 ( 2003 ).
  • Sterlacci W , TzankovA , VeitsLet al. A comprehensive analysis of p16 expression, gene status, and promoter hypermethylation in surgically resected non-small-cell lung carcinomas . J. Thorac. Oncol.6 ( 10 ), 1649 – 1657 ( 2011 ).
  • Osada H , TakahashiT . Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer . Oncogene21 ( 48 ), 7421 – 7434 ( 2002 ).
  • Lin RK , HsiehYS , LinPet al. The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients . J. Clin. Invest.120 ( 2 ), 521 – 532 ( 2010 ).
  • Kroeze LI , Van Der ReijdenBA , JansenJH . 5-hydroxymethylcytosine: an epigenetic mark frequently deregulated in cancer . Biochim. Biophys. Acta1855 ( 2 ), 144 – 154 ( 2015 ).
  • Rawluszko-Wieczorek AA , SieraA , JagodzinskiPP . TET proteins in cancer: current ‘state of the art’ . Crit. Rev. Oncol. Hematol.96 ( 3 ), 425 – 436 ( 2015 ).
  • Seng TJ , CurreyN , CooperWAet al. DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small-cell lung carcinoma . Br. J. Cancer99 ( 2 ), 375 – 382 ( 2008 ).
  • An Q , LiuY , GaoYet al. Detection of p16 hypermethylation in circulating plasma DNA of non-small-cell lung cancer patients . Cancer Lett.188 ( 1–2 ), 109 – 114 ( 2002 ).
  • Lee SM , ParkJY , KimDS . Methylation of TMEFF2 gene in tissue and serum DNA from patients with non-small-cell lung cancer . Mol. Cells34 ( 2 ), 171 – 176 ( 2012 ).
  • Daskalos A , NikolaidisG , XinarianosGet al. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small-cell lung cancer . Int. J. Cancer124 ( 1 ), 81 – 87 ( 2009 ).
  • Daskalos A , LogothetiS , MarkopoulouSet al. Global DNA hypomethylation-induced DeltaNp73 transcriptional activation in non-small-cell lung cancer . Cancer Lett.300 ( 1 ), 79 – 86 ( 2011 ).
  • Radhakrishnan VM , JensenTJ , CuiH , FutscherBW , MartinezJD . Hypomethylation of the 14-3-3sigma promoter leads to increased expression in non-small-cell lung cancer . Genes Chromosomes Cancer52 ( 10 ), 830 – 836 ( 2011 ).
  • Sato T , SoejimaK , AraiEet al. Prognostic implication of PTPRH hypomethylation in non-small-cell lung cancer . Oncol. Rep.34 ( 3 ), 1137 – 1145 ( 2015 ).
  • Wang J , LeeJJ , WangLet al. Value of p16INK4a and RASSF1A promoter hypermethylation in prognosis of patients with resectable non-small-cell lung cancer . Clin. Cancer Res.10 ( 18 Pt 1 ), 6119 – 6125 ( 2004 ).
  • Bradly DP , GattusoP , PoolMet al. CDKN2A (p16) promoter hypermethylation influences the outcome in young lung cancer patients . Diagn. Mol. Pathol.21 ( 4 ), 207 – 213 ( 2012 ).
  • Lou-Qian Z , RongY , MingL , XinY , FengJ , LinX . The prognostic value of epigenetic silencing of p16 gene in NSCLC patients: a systematic review and meta-analysis . PLoS ONE8 ( 1 ), e54970 ( 2013 ).
  • Drilon A , SugitaH , SimaCSet al. A prospective study of tumor suppressor gene methylation as a prognostic biomarker in surgically resected stage I to IIIA non-small-cell lung cancers . J. Thorac. Oncol.9 ( 9 ), 1272 – 1277 ( 2014 ).
  • Brock MV , HookerCM , Ota-MachidaEet al. DNA methylation markers and early recurrence in stage I lung cancer . N. Engl. J. Med.358 ( 11 ), 1118 – 1128 ( 2008 ).
  • Saito K , KawakamiK , MatsumotoI , OdaM , WatanabeG , MinamotoT . Long interspersed nuclear element 1 hypomethylation is a marker of poor prognosis in stage IA non-small-cell lung cancer . Clin. Cancer Res.16 ( 8 ), 2418 – 2426 ( 2010 ).
  • Xiao-Jie L , Hui-YingX , QiX , JiangX , Shi-JieM . LINE-1 in cancer: multifaceted functions and potential clinical implications . Genet. Med.18 ( 5 ), 431 – 439 ( 2015 ).
  • Mazor T , PankovA , SongJS , CostelloJF . Intratumoral heterogeneity of the epigenome . Cancer Cell29 ( 4 ), 440 – 453 ( 2016 ).
  • Mund C , LykoF . Epigenetic cancer therapy: proof of concept and remaining challenges . Bioessays32 ( 11 ), 949 – 957 ( 2010 ).
  • Sasaki H , MoriyamaS , NakashimaYet al. Histone deacetylase 1 mRNA expression in lung cancer . Lung Cancer46 ( 2 ), 171 – 178 ( 2004 ).
  • Song JS , KimYS , KimDK , ParkSI , JangSJ . Global histone modification pattern associated with recurrence and disease-free survival in non-small-cell lung cancer patients . Pathol. Int.62 ( 3 ), 182 – 190 ( 2012 ).
  • Van Den Broeck A , BrambillaE , Moro-SibilotDet al. Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small-cell lung cancer . Clin. Cancer Res.14 ( 22 ), 7237 – 7245 ( 2008 ).
  • Nagathihalli NS , MassionPP , GonzalezAL , LuP , DattaPK . Smoking induces epithelial-to-mesenchymal transition in non-small-cell lung cancer through HDAC-mediated downregulation of E-cadherin . Mol. Cancer Ther.11 ( 11 ), 2362 – 2372 ( 2012 ).
  • Seligson DB , HorvathS , McbrianMAet al. Global levels of histone modifications predict prognosis in different cancers . Am. J. Pathol.174 ( 5 ), 1619 – 1628 ( 2009 ).
  • Crea F , PaolicchiE , MarquezVE , DanesiR . Polycomb genes and cancer: time for clinical application?Crit. Rev. Oncol. Hematol.83 ( 2 ), 184 – 193 ( 2012 ).
  • Xiong D , YeY , FuYet al. Bmi-1 expression modulates non-small-cell lung cancer progression . Cancer Biol. Ther.16 ( 5 ), 756 – 763 ( 2015 ).
  • Huang J , QiuY , ChenG , HuangL , HeJ . The relationship between Bmi-1 and the epithelial-mesenchymal transition in lung squamous cell carcinoma . Med. Oncol.29 ( 3 ), 1606 – 1613 ( 2012 ).
  • Hu J , LiuYL , PiaoSL , YangDD , YangYM , CaiL . Expression patterns of USP22 and potential targets BMI-1, PTEN, p-AKT in non-small-cell lung cancer . Lung Cancer77 ( 3 ), 593 – 599 ( 2012 ).
  • Zhou Y , WanC , LiuYet al. Polycomb group oncogene RING1 is over-expressed in non-small-cell lung cancer . Pathol. Oncol. Res.20 ( 3 ), 549 – 556 ( 2014 ).
  • Cao W , Ribeiro RdeO , LiuDet al. EZH2 promotes malignant behaviors via cell cycle dysregulation and its mRNA level associates with prognosis of patient with non-small-cell lung cancer . PLoS ONE7 ( 12 ), e52984 ( 2012 ).
  • Huqun , IshikawaR , ZhangJet al. Enhancer of zeste homolog 2 is a novel prognostic biomarker in nonsmall cell lung cancer . Cancer118 ( 6 ), 1599 – 1606 ( 2012 ).
  • Feng B , ZhangK , WangR , ChenL . Non-small-cell lung cancer and miRNAs: novel biomarkers and promising tools for treatment . Clin. Sci. (Lond.)128 ( 10 ), 619 – 634 ( 2015 ).
  • Li CH , ChenY . Targeting long noncoding RNAs in cancers: progress and prospects . Int. J. Biochem. Cell Biol.45 ( 8 ), 1895 – 1910 ( 2013 ).
  • Hajjari M , SalavatyA . HOTAIR: an oncogenic long noncoding RNA in different cancers . Cancer Biol. Med.12 ( 1 ), 1 – 9 ( 2015 ).
  • Nakagawa T , EndoH , YokoyamaMet al. Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small-cell lung cancer . Biochem. Biophys. Res. Commun.436 ( 2 ), 319 – 324 ( 2013 ).
  • Liu XH , LiuZL , SunM , LiuJ , WangZX , DeW . The long noncoding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small-cell lung cancer . BMC Cancer13 , 464 ( 2013 ).
  • Schmidt LH , SpiekerT , KoschmiederSet al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small-cell lung cancer and induces migration and tumor growth . J. Thorac. Oncol.6 ( 12 ), 1984 – 1992 ( 2011 ).
  • Gutschner T , HammerleM , EissmannMet al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells . Cancer Res.73 ( 3 ), 1180 – 1189 ( 2013 ).
  • Zhuang Y , WangX , NguyenHTet al. Induction of long intergenic noncoding RNA HOTAIR in lung cancer cells by type I collagen . J. Hematol. Oncol.6 , 35 ( 2013 ).
  • Berghmans T , AmeyeL , WillemsLet al. Identification of microRNA-based signatures for response and survival for non-small-cell lung cancer treated with cisplatin-vinorelbine. A ELCWP prospective study . Lung Cancer82 ( 2 ), 340 – 345 ( 2013 ).
  • Navarro A , DiazT , GallardoEet al. Prognostic implications of miR-16 expression levels in resected non-small-cell lung cancer . J. Surg. Oncol.103 ( 5 ), 411 – 415 ( 2011 ).
  • Eilertsen M , AndersenS , Al-SaadSet al. Positive prognostic impact of miR-210 in non-small-cell lung cancer . Lung Cancer83 ( 2 ), 272 – 278 ( 2014 ).
  • Stenvold H , DonnemT , AndersenS , Al-SaadS , BusundLT , BremnesRM . Stage and tissue-specific prognostic impact of miR-182 in NSCLC . BMC Cancer14 , 138 ( 2014 ).
  • Yang M , ShenH , QiuCet al. High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small-cell lung cancer . Eur. J. Cancer49 ( 3 ), 604 – 615 ( 2013 ).
  • Skrzypski M , CzapiewskiP , GorycaKet al. Prognostic value of microRNA expression in operable non-small-cell lung cancer patients . Br. J. Cancer110 ( 4 ), 991 – 1000 ( 2014 ).
  • Voortman J , GotoA , MendiboureJet al. MicroRNA expression and clinical outcomes in patients treated with adjuvant chemotherapy after complete resection of non-small-cell lung carcinoma . Cancer Res.70 ( 21 ), 8288 – 8298 ( 2010 ).
  • Markou A , SourvinouI , VorkasPA , YousefGM , LianidouE . Clinical evaluation of microRNA expression profiling in non small cell lung cancer . Lung Cancer81 ( 3 ), 388 – 396 ( 2013 ).
  • Boeri M , VerriC , ConteDet al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer . Proc. Natl Acad. Sci. USA108 ( 9 ), 3713 – 3718 ( 2011 ).
  • Shen H , ZhuF , LiuJet al. Alteration in Mir-21/PTEN expression modulates gefitinib resistance in non-small-cell lung cancer . PLoS ONE9 ( 7 ), e103305 ( 2014 ).
  • Wang F , LouJF , CaoYet al. miR-638 is a new biomarker for outcome prediction of non-small-cell lung cancer patients receiving chemotherapy . Exp. Mol. Med.47 , e162 ( 2015 ).
  • Li J , LiX , RenSet al. miR-200c overexpression is associated with better efficacy of EGFR-TKIs in non-small-cell lung cancer patients with EGFR wild-type . Oncotarget5 ( 17 ), 7902 – 7916 ( 2014 ).
  • Schmidt LH , GorlichD , SpiekerTet al. Prognostic impact of Bcl-2 depends on tumor histology and expression of MALAT-1 lncRNA in non-small-cell lung cancer . J. Thorac. Oncol.9 ( 9 ), 1294 – 1304 ( 2014 ).
  • Shen L , ChenL , WangY , JiangX , XiaH , ZhuangZ . Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer . J. Neurooncol.121 ( 1 ), 101 – 108 ( 2015 ).
  • Zhu L , LiuJ , MaS , ZhangS . Long noncoding RNA MALAT-1 can predict metastasis and a poor prognosis: a meta-analysis . Pathol. Oncol. Res.21 ( 4 ), 1259 – 1264 ( 2015 ).
  • Liu Z , SunM , LuKet al. The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregualtion of p21 (WAF1/CIP1) expression . PLoS ONE8 ( 10 ), e77293 ( 2013 ).
  • Bearzatto A , ConteD , FrattiniMet al. p16 (INK4A) hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small-cell lung cancer . Clin. Cancer Res.8 ( 12 ), 3782 – 3787 ( 2002 ).
  • Salazar F , MolinaMA , Sanchez-RoncoMet al. First-line therapy and methylation status of CHFR in serum influence outcome to chemotherapy versus EGFR tyrosine kinase inhibitors as second-line therapy in stage IV non-small-cell lung cancer patients . Lung Cancer72 ( 1 ), 84 – 91 ( 2011 ).
  • Li W , WangY , ZhangQet al. MicroRNA-486 as a biomarker for early diagnosis and recurrence of non-small-cell lung cancer . PLoS ONE10 ( 8 ), e0134220 ( 2015 ).
  • Gao W , LuX , LiuL , XuJ , FengD , ShuY . miRNA-21: a biomarker predictive for platinum-based adjuvant chemotherapy response in patients with non-small-cell lung cancer . Cancer Biol. Ther.13 ( 5 ), 330 – 340 ( 2012 ).
  • Sanfiorenzo C , IlieMI , BelaidAet al. Two panels of plasma microRNAs as non-invasive biomarkers for prediction of recurrence in resectable NSCLC . PLoS ONE8 ( 1 ), e54596 ( 2013 ).
  • Shen J , ToddNW , ZhangHet al. Plasma microRNAs as potential biomarkers for non-small-cell lung cancer . Lab. Invest.91 ( 4 ), 579 – 587 ( 2011 ).
  • Yu H , JiangL , SunCet al. Decreased circulating miR-375: A potential biomarker for patients with non-small-cell lung cancer . Gene534 ( 1 ), 60 – 65 ( 2014 ).
  • Wozniak MB , SceloG , MullerDC , MukeriaA , ZaridzeD , BrennanP . Circulating microRNAs as non-invasive biomarkers for early detection of non-small-cell lung cancer . PLoS ONE10 ( 5 ), e0125026 ( 2015 ).
  • Silva J , GarciaV , ZaballosAet al. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival . Eur. Respir. J.37 ( 3 ), 617 – 623 ( 2011 ).
  • Vinayanuwattikun C , WinayanuwattikunP , ChantranuwatP , MutiranguraA , SriuranpongV . The impact of non-tumor-derived circulating nucleic acids implicates the prognosis of non-small-cell lung cancer . J. Cancer Res. Clin. Oncol.139 ( 1 ), 67 – 76 ( 2013 ).
  • Choi YH . Induction of apoptosis by trichostatin A, a histone deacetylase inhibitor, is associated with inhibition of cyclooxygenase-2 activity in human non-small-cell lung cancer cells . Int. J. Oncol.27 ( 2 ), 473 – 479 ( 2005 ).
  • Imre G , GekelerV , LejaA , BeckersT , BoehmM . Histone deacetylase inhibitors suppress the inducibility of nuclear factor-kappaB by tumor necrosis factor-alpha receptor-1 down-regulation . Cancer Res.66 ( 10 ), 5409 – 5418 ( 2006 ).
  • Komatsu N , KawamataN , TakeuchiSet al. SAHA, a HDAC inhibitor, has profound anti-growth activity against non-small-cell lung cancer cells . Oncol. Rep.15 ( 1 ), 187 – 191 ( 2006 ).
  • Hassig CA , SymonsKT , GuoXet al. KD5170, a novel mercaptoketone-based histone deacetylase inhibitor that exhibits broad spectrum antitumor activity in vitro and in vivo . Mol. Cancer Ther.7 ( 5 ), 1054 – 1065 ( 2008 ).
  • Miyanaga A , GemmaA , NoroRet al. Antitumor activity of histone deacetylase inhibitors in non-small-cell lung cancer cells: development of a molecular predictive model . Mol. Cancer Ther.7 ( 7 ), 1923 – 1930 ( 2008 ).
  • Boivin AJ , MomparlerLF , HurtubiseA , MomparlerRL . Antineoplastic action of 5-aza-2′-deoxycytidine and phenylbutyrate on human lung carcinoma cells . Anticancer Drugs13 ( 8 ), 869 – 874 ( 2002 ).
  • Chang TH , SzaboE . Enhanced growth inhibition by combination differentiation therapy with ligands of peroxisome proliferator-activated receptor-gamma and inhibitors of histone deacetylase in adenocarcinoma of the lung . Clin. Cancer Res.8 ( 4 ), 1206 – 1212 ( 2002 ).
  • Schniewind B , HeintzK , KurdowRet al. Combination phenylbutyrate/gemcitabine therapy effectively inhibits in vitro and in vivo growth of NSCLC by intrinsic apoptotic pathways . J. Carcinog.5 , 25 ( 2006 ).
  • Hajji N , WallenborgK , VlachosP , NymanU , HermansonO , JosephB . Combinatorial action of the HDAC inhibitor trichostatin A and etoposide induces caspase-mediated AIF-dependent apoptotic cell death in non-small-cell lung carcinoma cells . Oncogene27 ( 22 ), 3134 – 3144 ( 2008 ).
  • Kakihana M , OhiraT , ChanDet al. Induction of E-cadherin in lung cancer and interaction with growth suppression by histone deacetylase inhibition . J. Thorac. Oncol.4 ( 12 ), 1455 – 1465 ( 2009 ).
  • Busser B , SanceyL , JosserandVet al. Amphiregulin promotes resistance to gefitinib in nonsmall cell lung cancer cells by regulating Ku70 acetylation . Mol. Ther.18 ( 3 ), 536 – 543 ( 2010 ).
  • Noro R , MiyanagaA , MinegishiYet al. Histone deacetylase inhibitor enhances sensitivity of non-small-cell lung cancer cells to 5-FU/S-1 via down-regulation of thymidylate synthase expression and up-regulation of p21 (waf1/cip1) expression . Cancer Sci.101 ( 6 ), 1424 – 1430 ( 2010 ).
  • Shirsath N , RathosM , ChaudhariU , SivaramakrishnanH , JoshiK . Potentiation of anticancer effect of valproic acid, an antiepileptic agent with histone deacetylase inhibitory activity, by the cyclin-dependent kinase inhibitor P276-00 in human non-small-cell lung cancer cell lines . Lung Cancer82 ( 2 ), 214 – 221 ( 2013 ).
  • Geng L , CuneoKC , FuA , TuT , AtadjaPW , HallahanDE . Histone deacetylase (HDAC) inhibitor LBH589 increases duration of gamma-H2AX foci and confines HDAC4 to the cytoplasm in irradiated non-small-cell lung cancer . Cancer Res.66 ( 23 ), 11298 – 11304 ( 2006 ).
  • Zhang F , ZhangT , TengZH , ZhangR , WangJB , MeiQB . Sensitization to gamma-irradiation-induced cell cycle arrest and apoptosis by the histone deacetylase inhibitor trichostatin A in non-small-cell lung cancer (NSCLC) cells . Cancer Biol. Ther.8 ( 9 ), 823 – 831 ( 2009 ).
  • Witta SE , GemmillRM , HirschFRet al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines . Cancer Res.66 ( 2 ), 944 – 950 ( 2006 ).
  • Ozaki K , KosugiM , BabaNet al. Blockade of the ERK or PI3K-Akt signaling pathway enhances the cytotoxicity of histone deacetylase inhibitors in tumor cells resistant to gefitinib or imatinib . Biochem. Biophys. Res. Commun.391 ( 4 ), 1610 – 1615 ( 2010 ).
  • Chen MC , ChenCH , WangJCet al. The HDAC inhibitor, MPT0E028, enhances erlotinib-induced cell death in EGFR-TKI-resistant NSCLC cells . Cell Death Dis.4 , e810 ( 2013 ).
  • Nakagawa T , TakeuchiS , YamadaTet al. EGFR-TKI resistance due to BIM polymorphism can be circumvented in combination with HDAC inhibition . Cancer Res.73 ( 8 ), 2428 – 2434 ( 2013 ).
  • Cai X , ZhaiHX , WangJet al. Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDc-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer . J. Med. Chem.53 ( 5 ), 2000 – 2009 ( 2010 ).
  • Tang YA , WenWL , ChangJWet al. A novel histone deacetylase inhibitor exhibits antitumor activity via apoptosis induction, F-actin disruption and gene acetylation in lung cancer . PLoS ONE5 ( 9 ), e12417 ( 2010 ).
  • Schneider BJ , KalemkerianGP , BradleyDet al. Phase I study of vorinostat (suberoylanilide hydroxamic acid, NSC 701852) in combination with docetaxel in patients with advanced and relapsed solid malignancies . Invest. New Drugs30 ( 1 ), 249 – 257 ( 2012 ).
  • Millward M , PriceT , TownsendAet al. Phase 1 clinical trial of the novel proteasome inhibitor marizomib with the histone deacetylase inhibitor vorinostat in patients with melanoma, pancreatic and lung cancer based on in vitro assessments of the combination . Invest. New Drugs30 ( 6 ), 2303 – 2317 ( 2012 ).
  • Jones DR , MoskalukCA , GillenwaterHHet al. Phase I trial of induction histone deacetylase and proteasome inhibition followed by surgery in non-small-cell lung cancer . J. Thorac. Oncol.7 ( 11 ), 1683 – 1690 ( 2012 ).
  • Schelman WR , TraynorAM , HolenKDet al. A Phase I study of vorinostat in combination with bortezomib in patients with advanced malignancies . Invest. New Drugs31 ( 6 ), 1539 – 1546 ( 2013 ).
  • Dasari A , GoreL , MessersmithWAet al. A Phase I study of sorafenib and vorinostat in patients with advanced solid tumors with expanded cohorts in renal cell carcinoma and non-small-cell lung cancer . Invest. New Drugs31 ( 1 ), 115 – 125 ( 2013 ).
  • Reguart N , RosellR , CardenalFet al. Phase I/II trial of vorinostat (SAHA) and erlotinib for non-small-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations after erlotinib progression . Lung Cancer84 ( 2 ), 161 – 167 ( 2014 ).
  • Han JY , LeeSH , LeeGKet al. Phase I/II study of gefitinib (Iressa® and vorinostat (IVORI) in previously treated patients with advanced non-small-cell lung cancer . Cancer Chemother. Pharmacol.75 ( 3 ), 475 – 483 ( 2015 ).
  • Vansteenkiste J , Van CutsemE , DumezHet al. Early Phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small-cell lung cancer . Invest. New Drugs26 ( 5 ), 483 – 488 ( 2008 ).
  • Traynor AM , DubeyS , EickhoffJCet al. Vorinostat (NSC# 701852) in patients with relapsed non-small-cell lung cancer: a Wisconsin Oncology Network Phase II study . J. Thorac. Oncol.4 ( 4 ), 522 – 526 ( 2009 ).
  • Ramalingam SS , MaitlandML , FrankelPet al. Carboplatin and Paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer . J. Clin. Oncol.28 ( 1 ), 56 – 62 ( 2010 ).
  • Hoang T , CampbellTC , ZhangCet al. Vorinostat and bortezomib as third-line therapy in patients with advanced non-small-cell lung cancer: a Wisconsin Oncology Network Phase II study . Invest. New Drugs32 ( 1 ), 195 – 199 ( 2014 ).
  • Jones SF , InfanteJR , ThompsonDSet al. A Phase I trial of oral administration of panobinostat in combination with paclitaxel and carboplatin in patients with solid tumors . Cancer Chemother. Pharmacol.70 ( 3 ), 471 – 475 ( 2012 ).
  • Gray JE , HauraE , ChiapporiAet al. A Phase I, pharmacokinetic, and pharmacodynamic study of panobinostat, an HDAC inhibitor, combined with erlotinib in patients with advanced aerodigestive tract tumors . Clin. Cancer Res.20 ( 6 ), 1644 – 1655 ( 2014 ).
  • Juergens RA , WrangleJ , VendettiFPet al. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small-cell lung cancer . Cancer Discov.1 ( 7 ), 598 – 607 ( 2011 ).
  • Witta SE , JotteRM , KonduriKet al. Randomized Phase II trial of erlotinib with and without entinostat in patients with advanced non-small-cell lung cancer who progressed on prior chemotherapy . J. Clin. Oncol.30 ( 18 ), 2248 – 2255 ( 2012 ).
  • Schrump DS , FischetteMR , NguyenDMet al. Clinical and molecular responses in lung cancer patients receiving romidepsin . Clin. Cancer Res.14 ( 1 ), 188 – 198 ( 2008 ).
  • Chu BF , KarpenkoMJ , LiuZet al. Phase I study of 5-aza-2′-deoxycytidine in combination with valproic acid in non-small-cell lung cancer . Cancer Chemother. Pharmacol.71 ( 1 ), 115 – 121 ( 2013 ).
  • Momparler RL , BouffardDY , MomparlerLF , DionneJ , BelangerK , AyoubJ . Pilot Phase I-II study on 5-aza-2′-deoxycytidine (Decitabine) in patients with metastatic lung cancer . Anticancer Drugs8 ( 4 ), 358 – 368 ( 1997 ).
  • Schwartsmann G , SchunemannH , GoriniCNet al. A Phase I trial of cisplatin plus decitabine, a new DNA-hypomethylating agent, in patients with advanced solid tumors and a follow-up early Phase II evaluation in patients with inoperable non-small-cell lung cancer . Invest. New Drugs18 ( 1 ), 83 – 91 ( 2000 ).
  • Clinical trials database. Clinical trial NCT00473889 ( 2015 ). https://clinicaltrials.gov/ct2/show/NCT00473889 .
  • Clinical trials database. Clinical trial NCT00423449 ( 2007 ). https://clinicaltrials.gov/ct2/show/NCT00423449 .
  • Clinical trials database. Clinical trial NCT00481078 ( 2007 ). https://clinicaltrials.gov/ct2/show/NCT00481078 .
  • Clinical trials database. Clinical trial NCT00251589 ( 2005 ). https://clinicaltrials.gov/ct2/show/NCT00251589 .
  • Clinical trials database. Clinical trial NCT00424775 ( 2007 ). https://clinicaltrials.gov/ct2/show/NCT00424775 .
  • Paradis FH , HalesBF . The effects of class-specific histone deacetylase inhibitors on the development of limbs during organogenesis . Toxicol. Sci.148 ( 1 ), 220 – 228 ( 2015 ).
  • Verma M , BanerjeeHN . Epigenetic inhibitors . In : Cancer Epigenetics. Risk Assessment, Ddiagnosis, Treatment and Prognosis . VermaM ( Ed. ). Springer , New York, USA , 469 – 485 ( 2015 ).
  • Takashina T , KinoshitaI , KikuchiJet al. Combined inhibition of EZH2 and HDACs as a potential epigenetic therapy for non-small-cell lung cancer cells . Cancer Sci. doi:10.1111/cas.12957 ( 2016 ) ( Epub ahead of print ).
  • Sourvinou IS , MarkouA , LianidouES . Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability . J. Mol. Diagn.15 ( 6 ), 827 – 834 ( 2013 ).
  • Wei J , GaoW , ZhuCJet al. Identification of plasma microRNA-21 as a biomarker for early detection and chemosensitivity of non-small-cell lung cancer . Chin. J. Cancer30 ( 6 ), 407 – 414 ( 2011 ).
  • Heegaard NH , SchetterAJ , WelshJA , YonedaM , BowmanED , HarrisCC . Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer . Int. J. Cancer130 ( 6 ), 1378 – 1386 ( 2012 ).
  • Zhao Q , CaoJ , WuYCet al. Circulating miRNAs is a potential marker for gefitinib sensitivity and correlation with EGFR mutational status in human lung cancers . Am. J. Cancer Res.5 ( 5 ), 1692 – 1705 ( 2015 ).
  • Xie Z , DaiJ , DaiLet al. Lysine succinylation and lysine malonylation in histones . Mol. Cell. Proteomics11 ( 5 ), 100 – 107 ( 2012 ).
  • Sabari BR , TangZ , HuangHet al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation . Mol. Cell58 ( 2 ), 203 – 215 ( 2015 ).
  • Tanvetyanon T , CreelanBC , ChiapporiAA . Current clinical application of genomic and proteomic profiling in non-small-cell lung cancer . Cancer Control21 ( 1 ), 32 – 39 ( 2014 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.