32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Local Hemodynamic Analysis of the C-Pulse Device By 3D fluid-structure Interaction Simulation

, ORCID Icon &
Pages 297-308 | Received 19 Feb 2019, Accepted 17 Feb 2020, Published online: 31 Mar 2020

References

  • Migliavacca F , BalossinoR, PennatiGet al. Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J. Biomech., 39(6), 1010–1020 (2006).
  • Rahmani S , OveysiM, HeidariA, Navidbakhsh M, AlizadehM. Numerical modeling of a prototype cardiac assist device by implementing fluid-structure interaction. Artery Res., 22, 24–35 (2018).
  • Drešar P , RuttenMCM, GregoričIDet al. A numerical simulation of HeartAssist5 blood pump using an advanced turbulence model. ASAIO J., 64(5), 673–679 (2018).
  • Nammakie E , Niroomand-OscuiiH, KoochakiMet al. Computational fluid dynamics-based study of possibility of generating pulsatile blood flow via a continuous-flow VAD. Med. Biol. Eng. Comput., 55(1), 167–178 (2017).
  • Koochaki M , Niroomand-OscuiiH. A new design and computational fluid dynamics study of an implantable axial blood pump. Australas. Phys. Eng. Sci. Med., 36(4), 417–422 (2013).
  • Yazdanpanh-Ardakani K , Niroomand-OscuiiH. New approach in modeling peristaltic transport of non-newtonian fluid. J. Mech. Med. Biol., 13(4), 1350052 (2013).
  • Randles A , FrakesDH, LeopoldJA. Computational fluid dynamics and additive manufacturing to diagnose and treat cardiovascular disease. Trends Biotechnol., 35(11), 1049–1061 (2017).
  • Pakravan HA , SaidiMS, FiroozabadiB. The importance of fluid-structure interaction simulation for determining the mechanical stimuli of endothelial cells and atheroprone regions in a coronary bifurcation. Sci. Iran., 23(1), 228–238 (2016).
  • WHO . World Health Statistics 2012.WHO Press, France (2012).
  • Jeevanandam V , JayakarD, AndersonASet al. Circulatory assistance with a permanent implantable IABP: initial human experience. Circulation, 106(1 Suppl.12), I183–188 (2002).
  • Kapelios CJ , TerrovitisJ V, SiskasPet al. Counterpulsation: a concept with a remarkable past, an established present and a challenging future. Int. J. Cardiol., 172(2), 318–325 (2014).
  • Bregman D , NicholsAB, WeissMBet al. Percutaneous intraaortic balloon insertion. Am. J. Cardiol., 46(2), 261–264 (1980).
  • White JM , RuygrokPN. Intra-aortic balloon counterpulsation in contemporary practice - where are we?. Heart Lung Circ., 24(4), 335–341 (2015).
  • Cochran RP , StarkeyTD, PanosALet al. Ambulatory intraaortic balloon pump use as bridge to heart transplant. Ann. Thorac. Surg., 74(3), 746–751 (2002).
  • Capoccia M , BowlesCT, PepperJRet al. Evidence of clinical efficacy of counterpulsation therapy methods. Heart Fail. Rev., 20(3), 323–335 (2015).
  • Slaughter MS , SobieskiM, GridharanK. Counterpulsation devices for myocardial support. In: Cardiothoracic Surgary Review.FrancoKenneth L, ThouraniVH. ( Eds), Lippincott Williams & Wilkins,KY, USA (2011).
  • Datt B , TengC, HutchisonLet al. Intra-aortic balloon counterpulsation therapy and its role in optimizing outcomes in cardiac surgery. In: Special Topics in Cardiac Surgery.InTech, Southlake Regional Health Centre, Canada, 43–72 (2012).
  • Sales VL , McCarthyPM. Understanding the C-Pulse device and its potential to treat heart failure. Curr. Heart Fail. Rep., 7(1), 27–34 (2010).
  • Gjesdal O , GudeE, AroraSet al. Intra-aortic balloon counterpulsation as a bridge to heart transplantation does not impair long-term survival. Eur. J. Heart Fail., 11(7), 709–714 (2009).
  • Nanas JN , LolasCT, CharitosCEet al. A valveless high stroke volume counterpulsation device restores hemodynamics in patients with congestive heart failure and intractable cardiogenic shock awaiting heart transplantation. J. Thorac. Cardiovasc. Surg., 111(1), 55–61 (1996).
  • Koenig SC , LitwakKN, GiridharanGAet al. Acute hemodynamic efficacy of a 32-ml subcutaneous counterpulsation device in a calf model of diminished cardiac function. ASAIO J., 54(6), 578–584 (2008).
  • Mitnovetski S , AlmeidaAA, BarrAet al. Extra-aortic implantable counterpulsation pump in chronic heart failure. Ann. Thorac. Surg., 85(6), 2122–2125 (2008).
  • Abraham WT , AggarwalS, PrabhuSDet al. Ambulatory extra-aortic counterpulsation in patients with moderate to severe chronic heart failure. JACC Heart Fail., 2(5), 526–533 (2014).
  • Hayward CS , PetersWS, MerryAFet al. Chronic extra-aortic balloon counterpulsation: first-in-human pilot study in end-stage heart failure. J. Hear. Lung Transplant., 29(12), 1427–1432 (2010).
  • Giridharan GA , LedererC, BertheAet al. Flow dynamics of a novel counterpulsation device characterized by CFD and PIV modeling. Med. Eng. Phys., 33(10), 1193–1202 (2011).
  • Inc. AR . Theory and Modeling Guide Volume I:ADINA Solids & StructuresInc, MA, USA (2005).
  • R&D I . ADINA Theory and Modeling Guide Volume III:ADINA R & D, Inc., MA, USA, III (2006).
  • M White F . Viscous fluid flow (3rd Edition).McGraw-Hill Education, India (2005).
  • Demiray H . A note on the elasticity of soft biological tissues. J. Biomech., 5(3), 309–311 (1972).
  • García-Herrera CM , CelentanoDJ. Modelling and numerical simulation of the human aortic arch under in vivo conditions. Biomech. Model. Mechanobiol., 12(6), 1143–1154 (2013).
  • Bathe KJ . Finite element procedures (2nd Edition).USA (2014).
  • Attaran SH , Niroomand-oscuiiH, GhalichiF. A novel, simple 3D/2D outflow boundary model for blood flow simulations in compliant arteries. Comput. Fluids, 174, 229–240 (2018).
  • Adina R&D Inc . Theory and Modeling Guide Volume IIIADINA CFD & FSI. Inc., MA, USA (2012).
  • Caro CG , PedleyTJ, SchroterRCet al. The mechanics of the circulation. In: The Mechanics of the Circulation (2nd Edition).Cambridge University Press, Cambridge, UK, xiii–xvi (2014).
  • Nichols WW , O’RourkeM, VlachopoulosCet al. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles 6th (Edition).CRC Press, United kingdom (2011).
  • Morley D , LitwakK, FerberPet al. Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data. J. Thorac. Cardiovasc. Surg., 133(1), 21–28.e4 (2007).
  • Payne CJ , WamalaI, Bautista-SalinasDet al. Soft robotic ventricular assist device with septal bracing for therapy of heart failure. Sci. Robot., 2(12), eaan6736 (2017).
  • Solanki P . Aortic counterpulsation: C-Pulse and other devices for cardiac support. J. Cardiovasc. Transl. Res., 7(3), 292–300 (2014).
  • Van Varik BJ , RennenbergRJMW, ReutelingspergerCPet al. Mechanisms of arterial remodeling: lessons from genetic diseases. Front. Genet., 3, 1–10 (2012).
  • Bäck M , GasserTC, MichelJ-Bet al. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc. Res., 99(2), 232–241 (2013).
  • García-Herrera CM , AtienzaJM, RojoFJet al. Mechanical behaviour and rupture of normal and pathological human ascending aortic wall. Med. Biol. Eng. Comput., 50(6), 559–566 (2012).
  • Venkatasubramaniam A , FaganM, MehtaTet al. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg., 28(2), 168–176 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.