2,686
Views
0
CrossRef citations to date
0
Altmetric
Device Evaluation

Advances in Cardiac Resynchronization and Implantable cardioverter/defibrillator Therapy: Medtronic Cobalt and Crome

, ORCID Icon & ORCID Icon
Pages 609-618 | Received 21 Jul 2020, Accepted 18 Jan 2021, Published online: 26 Feb 2021

References

  • Ponikowski P , VoorsAA, AnkerSDet al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J., 37(27), 2129–2200 (2016).
  • Epstein AE , DiMarcoJP, EllenbogenKAet al. ACC/AHA/HRS 2008 Guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol., 51(21), e1–e62 (2008).
  • Baldasseroni S , GentileA, GoriniMet al. Intraventricular conduction defects in patients with congestive heart failure: left but not right bundle branch block is an independent predictor of prognosis. A report from the Italian Network on Congestive Heart Failure (IN-CHF database). Ital. Heart J., 4(9), 607–613 (2003).
  • Khan NK , GoodeKM, ClelandJGFet al. Prevalence of ECG abnormalities in an international survey of patients with suspected or confirmed heart failure at death or discharge. Eur. J. Heart Fail., 9(5), 491–501 (2007).
  • Brignole M , AuricchioA, Baron-EsquiviasGet al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur. Heart J., 34(29), 2281–2329 (2013).
  • Wild DM , FisherJD, KimSG, FerrickKJ, GrossJN, PalmaEC. Pacemakers and implantable cardioverter defibrillators: device longevity is more important than smaller size: the patient’s viewpoint. Pacing Clin. Electrophysiol., 27(11), 1526–1529 (2004).
  • Paton MF , LandolinaM, BilluartJ-R, FieldD, SibleyJ, WitteK. Projected longevities of cardiac implantable defibrillators: a retrospective analysis over the period 2007–17 and the impact of technological factors in determining longevity. Europace, 22(1), 149–155 (2020).
  • Kini V , SoufiMK, DeoRet al. Appropriateness of primary prevention implantable cardioverter-defibrillators at the time of generator replacement: are indications still met? J. Am. Coll. Cardiol., 63(22), 2388–2394 (2014).
  • Boriani G , BraunschweigF, DeharoJC, LeyvaF, LubińskiA, LazzaroC. Impact of extending device longevity on the long-term costs of implantable cardioverter-defibrillator therapy: a modelling study with a 15-year time horizon. Europace, 15(10), 1453–1462 (2013).
  • Boriani G , MerinoJ, WrightDJ, GadlerF, SchaerB, LandolinaM. Battery longevity of implantable cardioverter-defibrillators and cardiac resynchronization therapy defibrillators: technical, clinical and economic aspects. An expert review paper from EHRA. Europace, 20(12), 1882–1897 (2018).
  • Evans JM , ClevesA, MorganH, MillarL, Carolan-ReesG. ENDURALIFE-powered cardiac resynchronisation therapy defibrillator devices for treating heart failure: a NICE Medical Technology Guidance. Appl. Health Econ. Health Policy, 16(2), 177–186 (2018).
  • Schmidt B , MilitchT. Cobalt and Crome portfolio: increased battery capacity and system efficiencies. Medtronic Data File (2020).
  • Lau EW . Technologies for prolonging cardiac implantable electronic device longevity. Pacing Clin. Electrophysiol., 40(1), 75–96 (2017).
  • Schoels W , SteinhausD, JohnsonWBet al. Optimizing implantable cardioverter-defibrillator treatment of rapid ventricular tachycardia: antitachycardia pacing therapy during charging. Heart Rhythm., 4(7), 879–885 (2007).
  • Lau EW . Longevity decoded: insights from power consumption analyses into device construction and their clinical implications. Pacing Clin. Electrophysiol., 42(4), 407–422 (2019).
  • Chung ES , GoldMR, CurtisAB, AdamsonPB, EggingtonS, TsintzosSI. Economic benefits of increasing battery longevity of cardiac resynchronization therapy defibrillator devices. Heart Rhythm., 12(5), S312 (2015).
  • Dickstein K , NormandC, AuricchioAet al. CRT Survey II: a European Society of Cardiology survey of cardiac resynchronisation therapy in 11 088 patients-who is doing what to whom and how?. Eur. J. Heart Fail., 20(6), 1039–1051 (2018).
  • Hauser RG . The growing mismatch between patient longevity and the service life of implantable cardioverter-defibrillators. J. Am. Coll. Cardiol., 45(12), 2022–2025 (2005).
  • Poole JE , JohnsonGW, HellkampASet al. Prognostic importance of defibrillator shocks in patients with heart failure. N. Engl. J. Med., 359(10), 1009–1017 (2008).
  • Sweeney MO , SherfeseeL, DeGrootPJ, WathenMS, WilkoffBL. Differences in effects of electrical therapy type for ventricular arrhythmias on mortality in implantable cardioverter-defibrillator patients. Heart Rhythm., 7(3), 353–360 (2010).
  • Mirowski M . The automatic implantable cardioverter-defibrillator: an overview. J. Am. Coll. Cardiol., 6(2), 461–466 (1985).
  • Fisher JD , MehraR, FurmanS. Termination of ventricular tachycardia with bursts of rapid ventricular pacing. Am. J. Cardiol., 41(1), 94–102 (1978).
  • Leitch JW , GillisAM, WyseDGet al. Reduction in defibrillator shocks with an implantable device combining antitachycardia pacing and shock therapy. J. Am. Coll. Cardiol., 18(1), 145–151 (1991).
  • Kowey PR . The calamity of cardioversion of conscious patients. Am. J. Cardiol., 61(13), 1106–1107 (1988).
  • Auricchio A , HudnallJH, SchlossEJet al. Inappropriate shocks in single-chamber and subcutaneous implantable cardioverter-defibrillators: a systematic review and meta-analysis. Europace, 19(12), 1973–1980 (2017).
  • Auricchio A , SchlossEJ, KuritaTet al. Low inappropriate shock rates in patients with single- and dual/triple-chamber implantable cardioverter-defibrillators using a novel suite of detection algorithms: painFree SST trial primary results. Heart Rhythm., 12(5), 926–936 (2015).
  • AVID Investigators . A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. The Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators. N. Engl. J. Med., 337(22), 1576–1583 (1997).
  • Moss AJ , ZarebaW, HallWJet al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med., 346(12), 877–883 (2002).
  • Yee R , FisherJD, Birgersdotter-GreenUet al. Initial clinical experience with a new automated antitachycardia pacing algorithm: feasibility and safety in an ambulatory patient cohort. Circ. Arrhythm. Electrophysiol., 10(9), e004823 (2017).
  • Swerdlow CD , RussoAM, DegrootPJ. The dilemma of ICD implant testing. Pacing Clin. Electrophysiol., 30(5), 675–700 (2007).
  • Healey JS , HohnloserSH, GliksonMet al. Cardioverter defibrillator implantation without induction of ventricular fibrillation: a single-blind, non-inferiority, randomised controlled trial (SIMPLE). Lancet Lond. Engl., 385(9970), 785–791 (2015).
  • Bänsch D , BonnemeierH, BrandtJet al. Intra-operative defibrillation testing and clinical shock efficacy in patients with implantable cardioverter-defibrillators: the NORDIC ICD randomized clinical trial. Eur. Heart J., 36(37), 2500–2507 (2015).
  • Enomoto Y , NoroM, MoroiM, NakamuraM, SugiK. Impact of the relationship between the defibrillation threshold (DFT) and clinical outcomes in recipients of modern era implantable cardioverter defibrillator (ICD). Int. Heart. J., 58(6), 874–879 (2017).
  • Wilkoff BL , FauchierL, StilesMKet al. 2015 HRS/EHRA/APHRS/SOLAECE expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing. Europace, 18(2), 159–183 (2016).
  • Stiles MK , FauchierL, MorilloCAet al. 2019 HRS/EHRA/APHRS/LAHRS focused update to 2015 expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing. EP Eur., 21(9), 1442–1443 (2019).
  • Cubbon RM , WitteKKA. Cardiac resynchronisation therapy for chronic heart failure and conduction delay. BMJ, 338, b1265 (2009).
  • Mullens W , VergaT, GrimmRA, StarlingRC, WilkoffBL, TangWHW. Persistent hemodynamic benefits of cardiac resynchronization therapy with disease progression in advanced heart failure. J. Am. Coll. Cardiol., 53(7), 600–607 (2009).
  • Chung ES , LeonAR, TavazziLet al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation, 117(20), 2608–2616 (2008).
  • Linde C , AbrahamWT, GoldMRet al. Predictors of short-term clinical response to cardiac resynchronization therapy: predictors of CRT clinical response. Eur. J. Heart Fail., 19(8), 1056–1063 (2017).
  • Auricchio A , PrinzenFW. Non-responders to cardiac resynchronization therapy: the magnitude of the problem and the issues. Circ. J., 75(3), 521–527 (2011).
  • Gold MR , RickardJ, DaubertJ-C, ZimmermanP, LindeCM. Redefining response to CRT: insights from the REVERSE trial. EHRA Essentials (2020). https://preview.tinyurl.com/ybhbs83z
  • Bertini M , DelgadoV, BaxJJ, Vande Veire NRL. Why, how and when do we need to optimize the setting of cardiac resynchronization therapy?Europace, 11(Suppl. 5), v46–v57 (2009).
  • Lee KL , BurnesJE, MullenTJ, HettrickDA, TseH-F, LauC-P. Avoidance of right ventricular pacing in cardiac resynchronization therapy improves right ventricular hemodynamics in heart failure patients. J. Cardiovasc. Electrophysiol., 18(5), 497–504 (2007).
  • Martin DO , LemkeB, BirnieDet al. Investigation of a novel algorithm for synchronized left-ventricular pacing and ambulatory optimization of cardiac resynchronization therapy: results of the adaptive CRT trial. Heart Rhythm., 9(11), 1807–1814 (2012).
  • Birnie D , LemkeB, AonumaKet al. Clinical outcomes with synchronized left ventricular pacing: analysis of the adaptive CRT trial. Heart Rhythm., 10(9), 1368–1374 (2013).
  • Starling RC , KrumH, BrilSet al. Impact of a novel adaptive optimization algorithm on 30-day readmissions: evidence from the adaptive CRT trial. JACC Heart Fail., 3(7), 565–572 (2015).
  • Birnie D , HudnallH, LemkeBet al. Continuous optimization of cardiac resynchronization therapy reduces atrial fibrillation in heart failure patients: results of the adaptive cardiac resynchronization therapy trial. Heart Rhythm., 14(12), 1820–1825 (2017).
  • Singh JP , AbrahamWT, ChungESet al. Clinical response with adaptive CRT algorithm compared with CRT with echocardiography-optimized atrioventricular delay: a retrospective analysis of multicentre trials. Europace, 15(11), 1622–1628 (2013).
  • Hsu JC , BirnieD, StadlerRW, CerkvenikJ, FeldGK, Birgersdotter-GreenU. Adaptive cardiac resynchronization therapy is associated with decreased risk of incident atrial fibrillation compared to standard biventricular pacing: a real-world analysis of 37,450 patients followed by remote monitoring. Heart Rhythm., 16(7), 983–989 (2019).
  • Singh JP , ChaY, LunatiMet al. Real-world behavior of CRT pacing using the AdaptivCRT algorithm on patient outcomes: effect on mortality and atrial fibrillation incidence. J. Cardiovasc. Electrophysiol. (2020). https://onlinelibrary.wiley.com/doi/abs/10.1111/jce.14376
  • Filippatos G , BirnieD, GoldMRet al. Rationale and design of the AdaptResponse trial: a prospective randomized study of cardiac resynchronization therapy with preferential adaptive left ventricular-only pacing: rationale and design of the AdaptResponse trial. Eur. J. Heart Fail., 19(7), 950–957 (2017).
  • Hayes DL , BoehmerJP, DayJDet al. Cardiac resynchronization therapy and the relationship of percent biventricular pacing to symptoms and survival. Heart Rhythm., 8(9), 1469–1475 (2011).
  • Koplan BA , KaplanAJ, WeinerS, JonesPW, SethM, ChristmanSA. Heart failure decompensation and all-cause mortality in relation to percent biventricular pacing in patients with heart failure. J. Am. Coll. Cardiol., 53(4), 355–360 (2009).
  • Ruwald A-C , KutyifaV, RuwaldMHet al. The association between biventricular pacing and cardiac resynchronization therapy-defibrillator efficacy when compared with implantable cardioverter defibrillator on outcomes and reverse remodelling. Eur. Heart J., 36(7), 440–448 (2015).
  • Hernández-Madrid A , FacchinD, KlepferRNet al. Device pacing diagnostics overestimate effective cardiac resynchronization therapy pacing results of the hOLter for Efficacy analysis of CRT (OLÉ CRT) study. Heart Rhythm., 14(4), 541–547 (2017).
  • Kamath GS , CotigaD, KoneruJNet al. The utility of 12-lead Holter monitoring in patients with permanent atrial fibrillation for the identification of nonresponders after cardiac resynchronization therapy. J. Am. Coll. Cardiol., 53(12), 1050–1055 (2009).
  • Ghosh S , StadlerRW, MittalS. Automated detection of effective left-ventricular pacing: going beyond percentage pacing counters. Europace, 17(10), 1555–1562 (2015).
  • Plummer CJ , FrankCM, BáriZet al. A novel algorithm increases the delivery of effective cardiac resynchronization therapy during atrial fibrillation: the CRTee randomized crossover trial. Heart Rhythm., 15(3), 369–375 (2018).
  • Daubert J-C , SaxonL, AdamsonPBet al. 2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management. Europace, 14(9), 1236–1286 (2012).
  • Gold MR , SinghJP, EllenbogenKAet al. Interventricular electrical delay is predictive of response to cardiac resynchronization therapy. JACC Clin. Electrophysiol., 2(4), 438–447 (2016).
  • Singh JP , FanD, HeistEKet al. Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm., 3(11), 1285–1292 (2006).
  • Gold MR , Birgersdotter-GreenU, SinghJPet al. The relationship between ventricular electrical delay and left ventricular remodelling with cardiac resynchronization therapy. Eur. Heart J., 32(20), 2516–2524 (2011).
  • Tomassoni G , BakerJ, CorbisieroRet al. Postoperative performance of the Quartet ® left ventricular heart lead. J. Cardiovasc. Electrophysiol., 24(4), 449–456 (2013).
  • Crossley GH , BiffiM, JohnsonBet al. Performance of a novel left ventricular lead with short bipolar spacing for cardiac resynchronization therapy: primary results of the Attain Performa Quadripolar Left Ventricular Lead Study. Heart Rhythm., 12(4), 751–758 (2015).
  • Frederix I , CaianiEG, DendalePet al. ESC e-Cardiology Working Group Position Paper: overcoming challenges in digital health implementation in cardiovascular medicine. Eur. J. Prev. Cardiol., 26(11), 1166–1177 (2019).
  • Gorodeski EZ , GoyalP, CoxZLet al. Virtual visits for care of patients with heart failure in the era of COVID-19: a statement from the Heart Failure Society of America. J. Card. Fail. (2020). https://linkinghub.elsevier.com/retrieve/pii/S1071916420303675
  • Crossley GH , BoyleA, VitenseH, ChangY, MeadRH. The CONNECT (Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision) trial: the value of wireless remote monitoring with automatic clinician alerts. J. Am. Coll. Cardiol., 57(10), 1181–1189 (2011).
  • Flodgren G , RachasA, FarmerAJ, InzitariM, ShepperdS. Interactive telemedicine: effects on professional practice and health care outcomes. In: Cochrane Database of Systematic Reviews.The Cochrane Collaboration ( Ed.). John Wiley & Sons, Ltd, Chichester, UK (2015). https://doi.org/10.1002/14651858.CD002098.pub2
  • Geller JC , LewalterT, BruunNEet al. Implant-based multi-parameter telemonitoring of patients with heart failure and a defibrillator with vs. without cardiac resynchronization therapy option: a subanalysis of the IN-TIME trial. Clin. Res. Cardiol., 108(10), 1117–1127 (2019).
  • Guédon-Moreau L , KouakamC, KlugDet al. Decreased delivery of inappropriate shocks achieved by remote monitoring of ICD: a substudy of the ECOST trial. J. Cardiovasc. Electrophysiol., 25(7), 763–770 (2014).
  • Ricci RP , MorichelliL, SantiniM. Home monitoring remote control of pacemaker and implantable cardioverter defibrillator patients in clinical practice: impact on medical management and health-care resource utilization. Europace, 10(2), 164–170 (2008).
  • Cowie MR , SarkarS, KoehlerJet al. Development and validation of an integrated diagnostic algorithm derived from parameters monitored in implantable devices for identifying patients at risk for heart failure hospitalization in an ambulatory setting. Eur. Heart J., 34(31), 2472–2480 (2013).
  • Burri H , da CostaA, QuesadaAet al. Risk stratification of cardiovascular and heart failure hospitalizations using integrated device diagnostics in patients with a cardiac resynchronization therapy defibrillator. EP Eur., 20(5), e69–e77 (2018).
  • Virani SA , SharmaV, McCannM, KoehlerJ, TsangB, ZierothS. Prospective evaluation of integrated device diagnostics for heart failure management: results of the TRIAGE-HF study: integrated device diagnostics for heart failure management. ESC Heart Fail., 5(5), 809–817 (2018).
  • Ahmed FZ , TaylorJK, GreenCet al. Triage-HF Plus: a novel device-based remote monitoring pathway to identify worsening heart failure. ESC Heart Fail., 7(1), 108–117 (2020).
  • Tarakji KG , VivesCA, PatelAS, FaganDH, SimsJ, VarmaN. Success of pacemaker remote monitoring using app-based technology: does patient age matter?Pacing Clin. Electrophysiol., 41(10), 1329–1335 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.