301
Views
2
CrossRef citations to date
0
Altmetric
Drug Evaluation

Evaluation of Dapagliflozin in the Treatment of Heart Failure

ORCID Icon
Pages 415-425 | Received 19 Aug 2020, Accepted 21 Sep 2020, Published online: 05 Oct 2020

References

  • Seferović PM , FragassoG, PetrieMet al. Sodium glucose co-transporter-2 inhibitors in heart failure: beyond glycaemic control. The position paper of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail.https://doi.org/10.1002/ejhf.1954 (2020) ( Epub ahead of print).
  • Ponikowski P , VoorsAA, AnkerSDet al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J., 37(27), 2129–2200 (2016).
  • Meng W , EllsworthBA, NirschlAAet al. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of Type 2 diabetes. J. Med. Chem., 51(5), 1145–1149 (2008).
  • Wright EM , LooDDF, HirayamaBA. Biology of human sodium glucose transporters. Physiol. Rev., 91(2), 733–794 (2011).
  • Kasahara M , MaedaM, HayashiS, MoriY, AbeT. A missense mutation in the Na(+)/glucose cotransporter gene SGLT1 in a patient with congenital glucose-galactose malabsorption: normal tracking but inactivation of the mutant protein. Biochim. Biophys. Acta, 7, 141–147 (2001).
  • Turk E , ZabelB, MundlosS, DyerJ, WrightEM. Glucose/galactose malabsorption caused by a defect in the Na +/glucose cotransporter. Nature, 350(6316), 354–356 (1991).
  • van den Heuvel L , KarinA, WillemsenM, MonnensL. Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum. Genet., 111(6), 544–547 (2002).
  • Santer R . Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J. Am. Soc. Nephrol., 14(11), 2873–2882 (2003).
  • Kim Y , BabuA. Clinical potential of sodium-glucose cotransporter 2 inhibitors in the management of Type 2 diabetes. DMSO, 5, 313 (2012).
  • DeFronzo RA , HompeschM, KasichayanulaSet al. Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with Type 2 diabetes. Diabetes Care, 36(10), 3169–3176 (2013).
  • Wiviott SD , RazI, BonacaMPet al. Dapagliflozin and cardiovascular outcomes in Type 2 diabetes. N. Engl. J. Med., 380(4), 347–357 (2019).
  • Furtado RHM , BonacaMP, RazIet al. Dapagliflozin and cardiovascular outcomes in patients with Type 2 diabetes mellitus and previous myocardial infarction: subanalysis from the DECLARE-TIMI 58 trial. Circulation, 139(22), 2516–2527 (2019).
  • McMurray JJV , SolomonSD, InzucchiSEet al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med., 381(21), 1995–2008 (2019).
  • Mullens W , DammanK, HarjolaV-Pet al. The use of diuretics in heart failure with congestion - a position statement from the Heart Failure Association of the European Society of Cardiology: diuretics in heart failure. Eur. J. Heart Fail., 21(2), 137–155 (2019).
  • Sotirakos S , WheenP, SpiersJ, ArmstrongR. New pharmacotherapy for heart failure with reduced ejection fraction. Expert Rev. Cardiovasc. Ther., 18(7), 405–414 (2020).
  • Ehrenkranz JRL , LewisNG, RonaldKahn C, RothJ. Phlorizin: a review. Diabetes Metab. Res. Rev., 21(1), 31–38 (2005).
  • Washburn WN . Development of the renal glucose reabsorption inhibitors: a new mechanism for the pharmacotherapy of diabetes mellitus Type 2. J. Med. Chem., 52(7), 1785–1794 (2009).
  • Hummel CS , LuC, LiuJet al. Structural selectivity of human SGLT inhibitors. Am. J. Physiol. Cell Physiol., 302(2), C373–C382 (2012).
  • Komoroski B , VachharajaniN, FengY, LiL, KornhauserD, PfisterM. Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with Type 2 diabetes mellitus. Clin. Pharmacol. Ther., 85(5), 513–519 (2009).
  • Lambers Heerspink HJ , de ZeeuwD, WieL, LeslieB, ListJ. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with Type 2 diabetes. Diabetes Obes. Metab., 15(9), 853–862 (2013).
  • Griffin M , RaoVS, Ivey-MirandaJet al. Empagliflozin in heart failure: diuretic and cardio-renal effects. Circulation(2020). https://doi.org/10.1161/CIRCULATIONAHA.120.045691
  • Yurista SR , SilljéHHW, Oberdorf-MaassSUet al. Sodium–glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur. J. Heart Fail., 21(7), 862–873 (2019).
  • Garg V , VermaS, ConnellyK. Mechanistic insights regarding the role of SGLT2 inhibitors and GLP1 agonist drugs on cardiovascular disease in diabetes. Prog. Cardiovasc. Dis., 62(4), 349–357 (2019).
  • Schwinger RH , BöhmM, KochAet al. The failing human heart is unable to use the Frank-Starling mechanism. Circ. Res., 74(5), 959–969 (1994).
  • Hwang I-C , ChoG-Y, YoonYEet al. Different effects of SGLT2 inhibitors according to the presence and types of heart failure in Type 2 diabetic patients. Cardiovasc. Diabetol., 19(1), 69 (2020).
  • Brown AJM , GandyS, McCrimmonR, HoustonJG, StruthersAD, LangCC. A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: the DAPA-LVH trial. Eur. Heart J. doi: https://doi.org/10.1093/eurheartj/ehaa419 (2020) ( Epub ahead of print).
  • Verma S , McMurrayJJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia, 61(10), 2108–2117 (2018).
  • Hallow KM , HelmlingerG, GreasleyPJ, McMurrayJJV, BoultonDW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes. Metab., 20(3), 479–487 (2018).
  • Santos-Gallego CG , Requena-IbanezJA, SanAntonio Ret al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J. Am. Coll. Cardiol., 73(15), 1931–1944 (2019).
  • Li C , ZhangJ, XueMet al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc. Diabetol., 18(1), 15 (2019).
  • Couselo-Seijas M , Agra-BermejoRM, FernándezALet al. High released lactate by epicardial fat from coronary artery disease patients is reduced by dapagliflozin treatment. Atherosclerosis, 292, 60–69 (2020).
  • Raj GM , WyawahareM. Dapagliflozin for heart failure – is it a class effect?Future Cardiol. doi: https://doi.org/10.2217/fca-2020-0087 (2020) ( Epub ahead of print).
  • Brown E , RajeevSP, CuthbertsonDJ, WildingJPH. A review of the mechanism of action, metabolic profile and haemodynamic effects of sodium-glucose co-transporter-2 inhibitors. Diabetes Obes. Metab., 21(S2), 9–18 (2019).
  • Zymliński R , BiegusJ, SokolskiMet al. Increased blood lactate is prevalent and identifies poor prognosis in patients with acute heart failure without overt peripheral hypoperfusion: lactates in acute heart failure. Eur. J. Heart Fail., 20(6), 1011–1018 (2018).
  • Packer M , CaliffRM, KonstamMAet al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation, 106(8), 920–926 (2002).
  • Uthman L , BaartscheerA, BleijlevensBet al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia, 61(3), 722–726 (2018).
  • Iborra-Egea O , Santiago-VacasE, YuristaSRet al. Unraveling the molecular mechanism of action of empagliflozin in heart failure with reduced ejection fraction with or without diabetes. JACC, 4(7), 831–840 (2019).
  • Boulton DW , KasichayanulaS, KeungCFAet al. Simultaneous oral therapeutic and intravenous 14 C-microdoses to determine the absolute oral bioavailability of saxagliptin and dapagliflozin: absolute oral bioavailability of saxagliptin and dapagliflozin. Br. J. Clin. Pharmacol., 75(3), 763–768 (2013).
  • Obermeier M , YaoM, KhannaAet al. In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans. Drug Metab. Dispos., 38(3), 405–414 (2010).
  • Kasichayanula S , LiuX, LaCretaF, GriffenSC, BoultonDW. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin. Pharmacokinet., 53(1), 17–27 (2014).
  • Kasichayanula S , LiuX, ZhangW, PfisterM, LaCretaFP, BoultonDW. Influence of hepatic impairment on the pharmacokinetics and safety profile of dapagliflozin: an open-label, parallel-group, single-dose study. Clin. Ther., 33(11), 1798–1808 (2011).
  • Kasichayanula S , LiuX, PeBenito Met al. The influence of kidney function on dapagliflozin exposure, metabolism and pharmacodynamics in healthy subjects and in patients with Type 2 diabetes mellitus: dapagliflozin treatment in renal impairment. Br. J. Clin. Pharmacol., 76(3), 432–444 (2013).
  • Januzzi JL , PrescottMF, ButlerJet al. Association of change in N-terminal pro–B-type natriuretic peptide following initiation of sacubitril-valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction. JAMA, 322(11), 1085 (2019).
  • Kato ET , SilvermanMG, MosenzonOet al. Effect of dapagliflozin on heart failure and mortality in Type 2 diabetes mellitus. Circulation, 139(22), 2528–2536 (2019).
  • Zinman B , WannerC, LachinJMet al. Empagliflozin, cardiovascular outcomes and mortality in Type 2 diabetes. N. Engl. J. Med., 373(22), 2117–2128 (2015).
  • Nassif ME , WindsorSL, TangFet al. Dapagliflozin effects on biomarkers, symptoms and functional status in patients with heart failure with reduced ejection fraction: the DEFINE-HF trial. Circulation, 140(18), 1463–1476 (2019).
  • Carbone S , DixonDL. The CANVAS Program: implications of canagliflozin on reducing cardiovascular risk in patients with Type 2 diabetes mellitus. Cardiovasc. Diabetol., 18(1), 64 (2019).
  • Perkovic V , JardineMJ, NealBet al. Canagliflozin and renal outcomes in Type 2 diabetes and nephropathy. N. Engl. J. Med., 380(24), 2295–2306 (2019).
  • Neal B , PerkovicV, MahaffeyKWet al. Canagliflozin and cardiovascular and renal events in Type 2 diabetes. N. Engl. J. Med., 377(7), 644–657 (2017).
  • Rådholm K , FigtreeG, PerkovicVet al. Canagliflozin and heart failure in Type 2 diabetes mellitus: results from the CANVAS Program. Circulation, 138(5), 458–468 (2018).
  • Zelniker TA , WiviottSD, RazIet al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in Type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet, 393(10166), 31–39 (2019).
  • O'Riordan M . EMPEROR-reduced: empagliflozin cuts hospitalizations, CV mortality in HFrEF. https://www.tctmd.com/news/emperor-reduced-empagliflozin-cuts-hospitalizations-cv-mortality-hfref
  • Zhang N , FengB, MaX, SunK, XuG, ZhouY. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovasc. Diabetol., 18(1), 107 (2019).
  • Jackson AM , DewanP, AnandISet al. Dapagliflozin and diuretic use in patients with heart failure and reduced ejection fraction in DAPA-HF. Circulation (2020). https://doi.org/10.1161/CIRCULATIONAHA.120.047077
  • Hsia DS , GroveO, CefaluWT. An update on SGLT2 inhibitors for the treatment of diabetes mellitus. 24(1), 73 (2018).
  • Rosenstock J , FerranniniE. Euglycemic diabetic ketoacidosis: a predictable, detectable and preventable safety concern with SGLT2 inhibitors. Diabetes Care, 38(9), 1638–1642 (2015).
  • Monami M , NardiniC, MannucciE. Efficacy and safety of sodium glucose co-transport-2 inhibitors in Type 2 diabetes: a meta-analysis of randomized clinical trials: SGLT-2 inhibitors in Type 2 diabetes. Diabetes Obes. Metab., 16(5), 457–466 (2014).
  • Drugs.com . Forxiga [Internet]. https://www.drugs.com/international/forxiga.html
  • U.S. Food and Drug Administration . Highlights of prescribing information [Internet]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/202293s021lbl.pdf
  • U.S. Food and Drug Administration . FDA approves new treatment for a type of heart failure [Internet]. (2020). https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-type-heart-failure

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.