6,908
Views
0
CrossRef citations to date
0
Altmetric
Review

Cardiac Mri in Cardiomyopathies

, , & ORCID Icon
Pages 51-65 | Received 21 Dec 2020, Accepted 22 Mar 2021, Published online: 22 Apr 2021

References

  • McKenna WJ , MaronBJ, ThieneG. Classification, epidemiology, and global burden of cardiomyopathies. Circ. Res., 121(7), 722–730 (2017).
  • Trachtenberg BH , HareJM. Inflammatory cardiomyopathic syndromes. Circ. Res., 121(7), 803–818 (2017).
  • Schultheiss HP , FairweatherD, CaforioALPet al. Dilated cardiomyopathy. Nat. Rev. Dis. Primers, 5(1), 32 (2019).
  • McNamara DM , StarlingRC, CooperLTet al. Clinical and demographic predictors of outcomes in recent onset dilated cardiomyopathy: results of the IMAC (Intervention in Myocarditis and Acute Cardiomyopathy)-2 study. J. Am. Coll. Cardiol., 58(11), 1112–1118 (2011).
  • Halliday BP , ClelandJGF, GoldbergerJJ, PrasadSK. Personalizing risk stratification for sudden death in dilated cardiomyopathy: the past, present, and future. Circulation, 136(2), 215–231 (2017).
  • Hensley N , DietrichJ, NyhanD, MitterN, YeeMS, BradyM. Hypertrophic cardiomyopathy: a review. Anesth. Analg., 120(3), 554–569 (2015).
  • Masarone D , KaskiJP, PacileoGet al. Epidemiology and clinical aspects of genetic cardiomyopathies. Heart Fail. Clin., 14(2), 119–128 (2018).
  • Maron BJ , OmmenSR, SemsarianC, SpiritoP, OlivottoI, MaronMS. Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. J. Am. Coll. Cardiol., 64(1), 83–99 (2014).
  • Fourey D , CareM, SiminovitchKAet al. Prevalence and clinical implication of double mutations in hypertrophic cardiomyopathy: revisiting the gene-dose effect. Circ. Cardiovasc. Genet., 10(2), 1685 (2017).
  • Maron BJ . Clinical course and management of hypertrophic cardiomyopathy. N. Engl. J. Med., 379(7), 655–668 (2018).
  • Kanagala P , ChengASH, SinghAet al. Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in heart failure with preserved ejection fraction - implications for clinical trials. J. Cardiovasc. Magn. Reson., 20(1), 4 (2018).
  • Brenes JC , DoltraA, PratS. Cardiac magnetic resonance imaging in the evaluation of patients with hypertrophic cardiomyopathy. Glob. Cardiol. Sci. Pract., 2018(3), 22 (2018).
  • Hundley WG , BluemkeDA, FinnJPet al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J. Am. Coll. Cardiol., 55(23), 2614–2662 (2010).
  • Connolly SJ , HallstromAP, CappatoRet al. Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs Implantable Defibrillator study. Cardiac Arrest Study Hamburg. Canadian Implantable Defibrillator Study. Eur. Heart J., 21(24), 2071–2078 (2000).
  • Desai AS , FangJC, MaiselWH, BaughmanKL. Implantable defibrillators for the prevention of mortality in patients with nonischemic cardiomyopathy: a meta-analysis of randomized controlled trials. JAMA, 292(23), 2874–2879 (2004).
  • Stavrakis S , AsadZ, ReynoldsD. Implantable cardioverter defibrillators for primary prevention of mortality in patients with nonischemic cardiomyopathy: a meta-analysis of randomized controlled trials. J. Cardiovasc. Electrophysiol., 28(6), 659–665 (2017).
  • Al-Khatib SM , StevensonWG, AckermanMJet al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm, 15(10), e190–e252 (2018).
  • Bellenger NG , BurgessMI, RaySGet al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur. Heart J., 21(16), 1387–1396 (2000).
  • McMurray JJ , AdamopoulosS, AnkerSDet al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail., 14(8), 803–869 (2012).
  • Champ-Rigot L , GayP, SeitaFet al. Clinical outcomes after primary prevention defibrillator implantation are better predicted when the left ventricular ejection fraction is assessed by cardiovascular magnetic resonance. J. Cardiovasc. Magn Reson., 22(1), 48 (2020).
  • Nazarian S , BluemkeDA, LardoACet al. Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation, 112(18), 2821–2825 (2005).
  • de Haan S , de BoerK, CommandeurJ, BeekAM, van RossumAC, AllaartCP. Assessment of left ventricular ejection fraction in patients eligible for ICD therapy: discrepancy between cardiac magnetic resonance imaging and 2D echocardiography. Neth. Heart J., 22(10), 449–455 (2014).
  • Rayatzadeh H , PatelSJ, HauserTHet al. Volumetric left ventricular ejection fraction is superior to 2-dimensional echocardiography for risk stratification of patients for primary prevention implantable cardioverter-defibrillator implantation. Am. J. Cardiol., 111(8), 1175–1179 (2013).
  • Rijnierse MT , vander Lingen AL, WeilandMTet al. Clinical impact of cardiac magnetic resonance imaging versus echocardiography-guided patient selection for primary prevention implantable cardioverter defibrillator therapy. Am. J. Cardiol., 116(3), 406–412 (2015).
  • Gao P , YeeR, GulaLet al. Prediction of arrhythmic events in ischemic and dilated cardiomyopathy patients referred for implantable cardiac defibrillator: evaluation of multiple scar quantification measures for late gadolinium enhancement magnetic resonance imaging. Circ. Cardiovasc. Imaging, 5(4), 448–456 (2012).
  • Gutman SJ , CostelloBT, PapapostolouSet al. Reduction in mortality from implantable cardioverter-defibrillators in nonischemic cardiomyopathy patients is dependent on the presence of left ventricular scar. Eur. Heart J., 40(6), 542–550 (2019).
  • Kim RJ , FienoDS, ParrishTBet al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation, 100(19), 1992–2002 (1999).
  • Halliday BP , GulatiA, AliAet al. Association between midwall late gadolinium enhancement and sudden cardiac death in patients with dilated cardiomyopathy and mild and moderate left ventricular systolic dysfunction. Circulation, 135(22), 2106–2115 (2017).
  • Gulati A , JabbourA, IsmailTFet al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA, 309(9), 896–908 (2013).
  • Halliday BP , BaksiAJ, GulatiAet al. Outcome in dilated cardiomyopathy related to the extent, location, and pattern of late gadolinium enhancement. JACC Cardiovasc. Imaging, 12(8 Pt 2), 1645–1655 (2019).
  • Disertori M , RigoniM, PaceNet al. Myocardial fibrosis assessment by LGE Is a powerful predictor of ventricular tachyarrhythmias in ischemic and nonischemic lv dysfunction: a meta-analysis. JACC Cardiovasc. Imaging, 9(9), 1046–1055 (2016).
  • Mahrholdt H , WagnerA, DeluigiCCet al. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation, 114(15), 1581–1590 (2006).
  • Hasselberg NE , HalandTF, SaberniakJet al. Lamin A/C cardiomyopathy: young onset, high penetrance, and frequent need for heart transplantation. Eur. Heart J., 39(10), 853–860 (2018).
  • Ehara S , MatsumotoK, KitadaR, NishimuraS, ShimadaK, YoshiyamaM. Clinical significance of discrepant mid-wall late gadolinium enhancement in patients with nonischemic dilated cardiomyopathy. Heart Vessels, 33(12), 1482–1489 (2018).
  • Kehr E , SonoM, ChughSS, Jerosch-HeroldM. Gadolinium-enhanced magnetic resonance imaging for detection and quantification of fibrosis in human myocardium in vitro. Int. J. Cardiovasc. Imaging, 24(1), 61–68 (2008).
  • Coelho-Filho OR , MongeonFP, MitchellRet al. Role of transcytolemmal water-exchange in magnetic resonance measurements of diffuse myocardial fibrosis in hypertensive heart disease. Circ. Cardiovasc. Imaging, 6(1), 134–141 (2013).
  • Wong TC , PiehlerK, MeierCGet al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation, 126(10), 1206–1216 (2012).
  • Taylor AJ , SalernoM, DharmakumarR, Jerosch-HeroldM. T1 mapping: basic techniques and clinical applications. JACC Cardiovasc. Imaging, 9(1), 67–81 (2016).
  • Vita T , GraniC, AbbasiSAet al. Comparing CMR mapping methods and myocardial patterns toward heart failure outcomes in nonischemic dilated cardiomyopathy. JACC Cardiovasc. Imaging, 12(8 Pt 2), 1659–1669 (2019).
  • Oloriz T , SilberbauerJ, MaccabelliGet al. Catheter ablation of ventricular arrhythmia in nonischemic cardiomyopathy: anteroseptal versus inferolateral scar sub-types. Circ. Arrhythm. Electrophysiol., 7(3), 414–423 (2014).
  • Zilinski JL , ContursiME, IsaacsSKet al. Myocardial adaptations to recreational marathon training among middle-aged men. Circ. Cardiovasc. Imaging, 8(2), e002487 (2015).
  • Galderisi M , CardimN, D’AndreaAet al. The multi-modality cardiac imaging approach to the Athlete’s heart: an expert consensus of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging, 16(4), 353 (2015).
  • Mordi I , CarrickD, BezerraH, TzemosN. T1 and T2 mapping for early diagnosis of dilated nonischemic cardiomyopathy in middle-aged patients and differentiation from normal physiological adaptation. Eur. Heart J. Cardiovasc. Imaging, 17(7), 797–803 (2016).
  • Huber AT , RazakamanantsoaL, LamyJet al. Multiparametric differentiation of idiopathic dilated cardiomyopathy with and without congestive heart failure by means of cardiac and hepatic T1-weighted MRI mapping. AJR Am. J. Roentgenol., 215(1), 79–86 (2020).
  • Jenkins C , MoirS, ChanJ, RakhitD, HaluskaB, MarwickTH. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur. Heart J., 30(1), 98–106 (2009).
  • To AC , DhillonA, DesaiMY. Cardiac magnetic resonance in hypertrophic cardiomyopathy. JACC Cardiovasc. Imaging, 4(10), 1123–1137 (2011).
  • Puntmann VO , JahnkeC, GebkerRet al. Usefulness of magnetic resonance imaging to distinguish hypertensive and hypertrophic cardiomyopathy. Am. J. Cardiol., 106(7), 1016–1022 (2010).
  • Lang RM , BierigM, DevereuxRBet al. Recommendations for chamber quantification. Eur. J. Echocardiogr., 7(2), 79–108 (2006).
  • Maron MS , MaronBJ, HarriganCet al. Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J. Am. Coll. Cardiol., 54(3), 220–228 (2009).
  • Bruder O , WagnerA, JensenCJet al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol., 56(11), 875–887 (2010).
  • O’Hanlon R , GrassoA, RoughtonMet al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol., 56(11), 867–874 (2010).
  • Ismail TF , JabbourA, GulatiAet al. Role of late gadolinium enhancement cardiovascular magnetic resonance in the risk stratification of hypertrophic cardiomyopathy. Heart, 100(23), 1851–1858 (2014).
  • Chan RH , MaronBJ, OlivottoIet al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation, 130(6), 484–495 (2014).
  • Nordin S , DancyL, MoonJC, SadoDM. Clinical applications of multiparametric CMR in left ventricular hypertrophy. Int. J. Cardiovasc. Imaging, 34(4), 577–585 (2018).
  • Weng Z , YaoJ, ChanRHet al. Prognostic value of LGE-CMR in HCM: a meta-analysis. JACC Cardiovasc. Imaging, 9(12), 1392–1402 (2016).
  • Freitas P , FerreiraAM, Arteaga-FernandezEet al. The amount of late gadolinium enhancement outperforms current guideline-recommended criteria in the identification of patients with hypertrophic cardiomyopathy at risk of sudden cardiac death. J. Cardiovasc. Magn. Reson., 21(1), 50 (2019).
  • van Heerebeek L , PaulusWJ. Understanding heart failure with preserved ejection fraction: where are we today?Neth. Heart J., 24(4), 227–236 (2016).
  • Paulus WJ , TschopeC. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol., 62(4), 263–271 (2013).
  • Puntmann VO , PekerE, ChandrashekharY, NagelE. T1 mapping in characterizing myocardial disease: a comprehensive review. Circ. Res., 119(2), 277–299 (2016).
  • Rommel KP , LuckeC, LurzP. Diagnostic and prognostic value of CMR T1-mapping in patients with heart failure and preserved ejection fraction. Rev. Esp. Cardiol. (Engl. Ed.), 70(10), 848–855 (2017).
  • Su MY , LinLY, TsengYHet al. CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovasc. Imaging, 7(10), 991–997 (2014).
  • Duca F , KammerlanderAA, Zotter-TufaroCet al. Interstitial fibrosis, functional status, and outcomes in heart failure with preserved ejection fraction: insights from a prospective cardiac magnetic resonance imaging study. Circ. Cardiovasc. Imaging, 9(12), (2016).
  • Rommel KP , von RoederM, LatuscynskiKet al. Extracellular volume fraction for characterization of patients with heart failure and preserved ejection fraction. J. Am. Coll. Cardiol., 67(15), 1815–1825 (2016).
  • Hen Y , TakaraA, IguchiNet al. High signal intensity on T2-weighted cardiovascular magnetic resonance imaging predicts life-threatening arrhythmic events in hypertrophic cardiomyopathy patients. Circ J, 82(4), 1062–1069 (2018).
  • Gommans DHF , CramerGE, BakkerJet al. High T2-weighted signal intensity for risk prediction of sudden cardiac death in hypertrophic cardiomyopathy. Int. J. Cardiovasc. Imaging, 34(1), 113–120 (2018).
  • Amano Y , AitaK, YamadaF, KitamuraM, KumitaS. Distribution and clinical significance of high signal intensity of the myocardium on T2-weighted images in 2 phenotypes of hypertrophic cardiomyopathy. J. Comput. Assist. Tomogr., 39(6), 951–955 (2015).
  • Aletras AH , TilakGS, NatanzonAet al. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation, 113(15), 1865–1870 (2006).
  • Yin L , XuHY, ZhengSSet al. 3.0 T magnetic resonance myocardial perfusion imaging for semi-quantitative evaluation of coronary microvascular dysfunction in hypertrophic cardiomyopathy. Int. J. Cardiovasc. Imaging, 33(12), 1949–1959 (2017).
  • Chen S , HuangL, ZhangQ, WangJ, ChenY. T2-weighted cardiac magnetic resonance image and myocardial biomarker in hypertrophic cardiomyopathy. Medicine (Baltimore), 99(23), e20134 (2020).