300
Views
0
CrossRef citations to date
0
Altmetric
Review

From Molecular Mechanisms of Cardiac Development to Genetic Substrate of Congenital Heart Diseases

, , , , , & show all
Pages 373-393 | Published online: 12 May 2010

Bibliography

  • Mitchell SC , KoronesSB, BerendesHW: Congenital heart disease in 56109 births incidence and natural history.Circulation, 43, 323–332 (1971).
  • Hoffman JIE : Incidence, mortality and natural history. In: Pediatric Cardiology. Anderson RH, Baker EJ, Macartney FJ et al. (Eds). Churchill Livingstone, London, UK 111–139 (2002).
  • Schultheiss TM , BurchJB, LassarAB: A role for bone morphogenetic proteins in the induction of cardiac myogenesis.Genes Dev., 11, 451–462 (1997).
  • Winnier G , BlessingM, LaboskyPA, HoganBL: Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse.Genes Dev., 9, 2105–2116 (1995).
  • Zhang H , BradleyA: Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development.Development, 122, 2977–2986 (1996).
  • Monzen K , ShiojimaI, HiroiY, KudohS, OkaT, TakimotoE: Bone morphogenetic proteins induce cardiomyocyte differentiation through the mitogen activated protein kinase kinase kinase TAK1 and cardiac transcription factors Csx/Nkx-2.5 and GATA-4.Mol. Cell. Biol., 19, 7096–7105 (1999).
  • Lee KH , EvansS, RuanTY, LassarAB: SMAD-mediated modulation of YY1 activity regulates the BMP response and cardiac specific expression of a GATA4/5/6-dependent chick Nkx2.5 enhancer.Development, 131, 4709–4723 (2004).
  • Kasahara H , UshevaA, UeyamaT, AokiH, HorikoshiN, IzumoS:. Characterization of homo- and heterodimerization of cardiac Csx/Nkx2.5 homeoprotein. J. Biol. Chem., 276, 4570–4580 (2001).
  • Kasahara H , IzumoS: Identification of the in vivo casein kinase II phosphorylation site within the homeodomain of the cardiac tissue specifying homeobox gene product Csx/Nkx2.5.Mol. Cell. Biol., 19, 526– 536 (1999).
  • Akazawa H , KomuroI: Cardiac transcription factor Csx/Nkx2.5: its role in cardiac development and disease.Pharmacol. Ther., 107, 252–268 (2005).
  • McAnally CJ , RichardsonJA, OlsonEN: Cardiac-specific activity of an Nkx-2.5 enhancer requires an evolutionarily conserved smad binding site.Dev. Biol., 244, 257–266 (2002).
  • Wu X , GoldenK, BodmerR: Heart development in Drosophila requires the segment polarity gene wingless.Dev. Biol., 169, 619–628 (1995).
  • Park M , WuX, GoldenK, AxelrodJD, BodmerR: The wingless signaling pathway is directly involved in Drosophila heart development.Dev. Biol., 177, 104–116 (1996).
  • Schneider VA , MercolaM: Wnt antagonism initiates cardiogenesis in Xenopus laevis.Genes Dev., 15, 304–315 (2001).
  • Pandur P , LascheM, EisenbergLM, KuhlM: Wnt-11 activation of a noncanonical Wnt signalling pathway is required for cardiogenesis.Nature, 418, 636–641 (2002).
  • Alfieri CM , CheekJ, ChakrabortyS, YutzeyKE: Wnt signaling in heart valve development and osteogenic gene induction.Dev. Biol., 338, 127–135 (2010).
  • Gisselbrecht S , SkeathJB, DoeCQ, MichelsonAM: Heartless encodes a fibroblast growth factor receptor (DFR1/DFGF-R2) involved in the directional migration of early mesodermal cells in the Drosophila embryo.Genes Dev., 10, 3003–3017 (1996).
  • Amaya E , MusciTJ, KirschnerMW: Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos.Cell, 66, 257–270 (1991).
  • Azpiazu N , FraschM: Tinman and bagpipe – two homeobox genes that determine cell fates in the dorsal mesoderm of Drosophila.Genes Dev., 7, 1325–1340 (1993).
  • Baker R , SchubigerG: Ectoderm induces muscle specific gene expression in Drosophila embryos.Development, 121, 1387–1398 (1995).
  • Reifers F , WalshEC, LegerS, StainierDY, BrandM: Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar).Development, 127, 225–235 (2000).
  • Alsan BH , SchultheissTM: Regulation of avian cardiogenesis by FGF8 signaling.Development, 129, 1935–1943 (2002).
  • Meyers EN , MartinGR: Differences in left–right axis pathways in mouse and chick: function of FGF8 and SHH.Science, 285, 403–406 (1999).
  • Naito AT , TominagaA, OyamadaM, OyamadaY, ShiraishiI, MonzenK:Early stage-specific inhibitions of cardiomyocyte differentiation and expression of Csx/Nkx-2.5 and GATA-4 by phosphatidylinositol 3-kinase inhibitor LY294002. Exp. Cell Res., 291, 56–69 (2003).
  • Kim Y , NirenbergM: Drosophila NK-homeobox genes.Proc. Natl Acad. Sci. USA, 86, 7716–7720 (1989).
  • Komuro I , IzumoS: Csx: a murine homeobox-containing gene specifically expressed in the developing heart.Proc. Natl Acad. Sci. USA, 90, 8145–8149 (1993).
  • Lints TJ , ParsonsLM, HartleyL, LyonsI, HarveyRP: Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants.Development, 119, 419–431 (1993).
  • Harvey RP : NK2 homeobox genes and heart development.Dev. Biol., 178, 203–216 (1996).
  • McElhinney DB , GeigerE, BlinderJ, BensonDW, GoldmuntzE: NKX2.5 mutations in patients with congenital heart disease.J. Am. Coll. Cardiol., 42, 1650–1655 (2003).
  • Ellitt D , SollowayM, WiseNet al.: A tyrosine-rich domain within homeodomain transcription factor Nkx2.5 is an essential element in the early cardiac transcriptional regulatory machinery.Development, 133, 1311–1322 (2006).
  • Kasahara H , BartunkovaS, SchinkeM, TanakaM, IzumoS: Cardiac and extracardiac expression of Csx/Nkx2.5 homeodomain protein.Circ. Res., 82, 936–946 (1998).
  • Stanley EG , BibenC, ElefantA, BarnettL, KoentgenF, RobbL: Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a 3´UTR-ires-Cre allele of the homeobox gene Nkx2–5.Int. J. Dev. Biol., 46, 431–439 (2002).
  • Thomas PS , KasaharaH, EdmonsonAM, IzumoS, Yacoub MH, Barton PJ: Elevated expression of Nkx-2.5 in developing myocardial conduction cells. Anat. Rec., 263, 307–313 (2001).
  • Lien CL , WuC, MercerB, WebbR, RichardsonJA, OlsonEN: Control of early cardiac-specific transcription of Nkx2–5 by a GATA-dependent enhancer.Development, 126, 75– 84 (1999).
  • Searcy RD , VincentEB, LiberatoreCM, YutzeyKE: A GATA-dependent Nkx-2.5 regulatory element activates early cardiac gene expression in transgenic mice.Development, 125, 4461–4470 (1998).
  • Reecy JM , LiX, YamadaM, DeMayoFJ, NewmanCS, HarveyRP: Identification of upstream regulatory regions in the heart-expressed homeobox gene Nkx2–5.Development, 126, 839–849 (1999).
  • Brown III CO, Chi X, Garcia-Gras E, Shirai M, Feng XH, Schwartz R J: The cardiac determination factor, Nkx2–5, is activated by mutual cofactors GATA-4 and Smad1/4 via a novel upstream enhancer. J. Biol. Chem., 279, 10659–10669 (2004).
  • Pashmforoush M , LuJT, ChenH: Nkx2–5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leds to progressive cardiomyopathy and complete heart block.Cell, 117, 373–386 (2004).
  • Prall OW : An Nkx2.5/Bmp/Smad1 negative feedback loop controls heart progenitor specification e proliferation.Cell, 128, 947–959 (2007).
  • Molkentin JD : The zinc finger-containing transcription factors GATA-4, -5 and -6. Ubiquitously expressed regulators of tissue-specific gene expression.J. Biol. Chem., 275, 38949–38952 (2000).
  • Molkentin JD , LinQ, DuncanSA, OlsonEN: Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis.Genes Dev., 11, 1061–1072 (1997).
  • Kuo CT , MorriseyEE, AnandappaRet al.: GATA4 transcription factor is required for ventral morphogenesis and heart tube formation.Genes Dev., 11, 1048–1060 (1997).
  • Reiter JF , AlexanderJ, RodawayAet al.: Gata5 is required for the development of the heart and endoderm in zebrafish.Genes Dev., 13, 2983–2995 (1999).
  • Morrisey EE , TangZ, SigristKet al.: GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo.Genes Dev., 12, 3579–3590 (1998).
  • Koutsourakis M , LangeveldA, PatientR, BeddingtonR, GrosveldF: The transcription factor GATA6 is essential for early extraembryonic development.Development, 126, 723–732 (1999).
  • Gajewski K , FossettN, MolkentinJD, SchulzRA: The zinc finger proteins Pannier and GATA4 function as cardiogenic factors in Drosophila.Development, 126, 5679–5688 (1999).
  • Searcy RD , VincentEB, LiberatoreCM, YutzeyKE: A GATA-dependent Nkx-2.5 regulatory element activates early cardiac gene expression in transgenic mice.Development, 125, 4461–4470 (1998).
  • Lien CL , WuC, MercerB, WebbR, RichardsonJA, OlsonEN: Control of early cardiac-specific transcription of Nkx2–5 by a GATA-dependent enhancer.Development, 126, 75–84 (1999).
  • Davis DL , WesselsA, BurchJB: An Nkx-dependent enhancer regulates GATA-6 gene expression during early stages of heart development.Dev. Biol., 217, 310–322 (2000).
  • Molkentin JD , AntosC, MercerB, TaigenT, MianoJM, OlsonEN: Direct activation of a GATA6 cardiac enhancer by Nkx2.5: evidence for a reinforcing regulatory network of Nkx2.5 and GATA transcription factors in the developing heart.Dev. Biol., 217, 301–309 (2000).
  • Garg V , KathiriyaIS, BarnesRet al.: GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5.Nature, 424, 443–447 (2003).
  • Okubo A , MiyoshiO, BabaKet al.: A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family.J. Med. Genet., 41, E97 (2004).
  • Rajagopal SK , MaQ, OblerDet al.: Spectrum of heart disease associated with murine and human GATA4 mutation.J. Mol. Cell. Cardiol., 43, 677–685 (2007).
  • Gajewski K , KimY, LeeYM, OlsonEN, SchulzRA: D-mef2 is a target for Tinman activation during Drosophila heart development.EMBO J., 16, 515–522 (1997).
  • Dodou E , VerziMP, AndersonJP, Xu S-M, Black BL: Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development, 131, 3931–3942 (2004).
  • Nguyen HT , BodmerR, AbmayrSM, McDermottJC, SpoerelNA: D-mef2:a Drosophila mesoderm-specific MADS box-containing gene with a biphasic expression profile during embryogenesis.Proc. Natl Acad. Sci. USA, 91, 7520–7524 (1994).
  • Lilly B , GalewskyS, FirulliAB, SchulzRA, OlsonEN: D-MEF2: a MADS box transcription factor expressed in differentiating mesoderm and muscle cell lineages during Drosophila embryogenesis.Proc. Natl Acad. Sci. USA, 91, 5662–5666 (1994).
  • Lilly B , ZhaoB, RanganayakuluG, PatersonBM, SchulzRA, OlsonEN: Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila.Science, 267, 688–693 (1995).
  • Lin Q , SchwarzJ, BucanaC, OlsonEN: Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C.Science, 276, 1404–1407 (1997).
  • Naya FJ , BlackBL, WuHet al.: Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor.Nat. Med., 8, 1303–1309 (2002).
  • Moleketin JD , FirulliAB, BlackBLet al.: MEF2B is a potent transactivator expressed in early myogenic lineages.Mol. Cell. Biol., 16, 3814–3824 (1996).
  • Belaguli NS , SepulvedaJL, NigamV, CharronF, NemerM, SchwartzRJ: Cardiac tissue enriched factors serum response factor and GATA-4 are mutual co-regulators.Mol. Cell. Biol., 20, 7550–7558 (2000).
  • Wang D , ChangPS, WangZet al.: Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor.Cell, 105, 851–862 (2001).
  • Shin C , LiuZ, PassierRet al.: Modulation of cardiac growth and development by HOP, an unusual homeodomain protein.Cell, 110, 725–735 (2002).
  • Chen F , KookH, MilewskiRet al.: Hop is an unusual homeobox gene that modulates cardiac development.Cell, 110, 713–723 (2002).
  • Parlakian A , TuilD, HamardGet al.: Targeted inactivation of serum response factor in the developing heart results in myocardial defects and embryonic lethality.Mol. Cell. Biol., 24, 5281–5289 (2004).
  • Arsenian S , WeinholdB, OelgeschlagerM, RutherU, NordheimA: SRF is essential for mesoderm formation during mouse embryogenesis.EMBO J., 17, 6289–6299 (1998).
  • Weinhold B , ShrattG, ArsenianSet al.: SRF-/- ES cells display non-cell-autonomous impairment in mesodermal differentiation.EMBO J., 19, 5845–5844 (2000).
  • Firulli AB : A handful of questions: the molecular biology of the heart and neural crest derivatives (HAND)-subclass of basic helix-loop-helix transcription factors.Gene, 312, 27–40 (2003).
  • Srivastava D , ThomasT, LinQ, KirbyML, BrownD, OlsonEN: Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND.Nat. Genet., 16, 154–160 (1997).
  • Firulli AB , McFaddenDG, LinQ, SrivastavaD, OlsonEN: Heart and extra embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1.Nat. Genet., 18, 266–270 (1998).
  • Riley P , Anson-CartwrightL, CrossJC: The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis.Nat. Genet., 18, 271–275 (1998).
  • Yamagishi H , YamagishiC, NakagawaO, HarveyRP, OlsonEN, SrivastavaD: The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation.Dev. Biol., 239, 190–203 (2001).
  • Dai YS , CserjesiP, MarkhamBE, MolkentinJD: The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism.J. Biol. Chem., 277, 24390–24398 (2002).
  • Thattaliyath BD , FirulliBA, FirulliAB: The basic-helix-loop-helix transcription factor HAND2 directly regulates transcription of the atrial naturetic peptide gene.J. Mol. Cell. Cardiol., 34, 1335–1344 (2002).
  • Papaioannou VE , SilverLM: The T-box gene family.Bioessays, 20, 9–19 (1998).
  • Bruneau BG , LoganM, DavisNet al.: Chamber-specific cardiac expression of Tbx5 and heart defects in Holt–Oram syndrome.Dev. Biol., 211, 100–108 (1999).
  • Bruneau BG , NemerG, SchmittJPet al.: A murine model of Holt–Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease.Cell, 106, 709–721 (2001).
  • Hiroi Y , KudohS, MonzenKet al.: Tbx5 associates with Nkx2–5 and synergistically promotes cardiomyocyte differentiation.Nat. Genet., 28, 276–280 (2001).
  • Plageman TF Jr, Yutzey KE: Differential expression and function of Tbx5 and Tbx20 in cardiac development. J. Biol. Chem., 279, 19026–19034 (2004).
  • Sinh MK , ChristoffelsVM, DiasJMet al.: Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2.Development, 132, 2697–2707 (2005).
  • Yamagagishi H , MaedaJ, UchidaKet al.: Molecular embryology for an understanding of congenital heart disease.Anat. Sci. Int., 84(3), 88–94 (2009).
  • Aruga J : The role of Zic genes in neural development.Mol. Cell. Neurosci., 26, 205–221 (2004).
  • Carrel T , PurandarSM, HarrisonWet al.: The X-linked mouse mutation Bent tail is associated with a deletion of the Zic3 locus.Hum. Mol. Genet., 9, 1937–1942 (2000).
  • Purandare SM , WareSM, KwanKMet al.: A complex syndrome of left–right axis, central nervous system and axial skeleton defects in Zic3 mutant mice.Development, 129, 2293–2302 (2002).
  • Aruga J : The role of Zic genes in neural development.Mol. Cell. Neurosci., 26, 205–221 (2004).
  • Carrel T , PurandarSM, HarrisonWet al.: The X-linked mouse mutation Bent tail is associated with a deletion of the Zic3 locus.Hum. Mol. Genet., 9, 1937–1942 (2000).
  • Purandare SM , WareSM, KwanKMet al.: A complex syndrome of left–right axis, central nervous system and axial skeleton defects in Zic3 mutant mice.Development, 129, 2293–2302 (2002).
  • Sweetman D , MunsterbergA: The vertebrate spalt genes in development and disease.Dev. Biol., 293, 285–293 (2006).
  • Koshiba-Takeuchi K , TakeuchiJK, ArrudaEPet al.: Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart.Nat. Genet., 38, 175–183 (2006).
  • Sakaki-Yumoto M , KobayashiC, SatoAet al.: The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in ano–rectal, heart, brain and kidney development.Development, 133, 3005–3013 (2006).
  • Leung MK , JonesT, MichelsCL, LivingstonDM, BhattacharyaS: Molecular cloning and chromosomal localization of the human CITED2 gene encoding p35srj/Mrg1.Genomics, 61, 307–313 (1999).
  • Zhao F , LufkinT, GelbBD: Expression of Tfap2d, the gene encoding the transcription factor Ap-2 d, during mouse embryogenesis.Gene Exp. Patterns, 3, 213–217 (2003).
  • Bamforth S , BragancaJ, SchneiderJEet al.: Cited2 controls left–right patterning and heart development through a Nodal-Pitx2c pathway.Nat. Genet., 36, 1189–1195 (2004).
  • Bamforth SD : Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator.Nat. Genet., 29, 469–474 (2001).
  • Weninger WJ , FloroKL, BennettMBet al.: Cited2 is required both for heart morphogenesis and establishment of the left–right axis in mouse development.Development, 132, 1337–1348 (2005).
  • Meyers EN , MartinGR: Difference in left–right axis pathways in mouse and chick: function of FGF8 and SHH.Science, 285, 403–406 (1999).
  • Schlange T , ArnoldHH, BrandT: Bmp2 is a positive regulator of nodal signaling during left–right axis formation in the chicken embryo.Development, 129, 3421–3429 (2002).
  • Kumar A , NovoselovV, CelesteAJ, WolfmannNM, DijkeP, KuehnMR: Nodal signaling uses activin and transforming growth factor-β receptor-regulated Smads.J. Biol. Chem., 276, 656–661 (2001).
  • Kitamura K , MiuraH, Miyagawa-TomitaSet al.: Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra and peri-ocular mesoderm and right pulmonary isomerism.Development, 126, 5749–5758 (1999).
  • Nowotschin S , LiaoJ, GagePJ, EpsteinJA, CampioneM, MorrowBE: Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field.Development, 133, 1565–1573 (2006).
  • Svensson EC , TuftsRL, PolkCE, LeidenJM: Molecular cloning of ZFPM2/FOG2:a modulator of transcription factor GATA4 in cardiomyocytes.Proc. Natl Acad. Sci. USA, 96, 956–961 (1999).
  • Svensson EC , HugginsGS, LinHet al.: A syndrome of tricuspid atresia in mice with a targeted mutation of the gene encoding ZFPM2/FOG2.Nat. Genet., 25, 353–356 (2000).
  • Tevosian SG , DeconinckAE, TanakaMet al.: ZFPM2/FOG2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium.Cell, 101, 729–739 (2000).
  • Tanizawa Y , RiggsAC, Dagogo-JackSet al.: Isolation of the human LIM/homeodomain gene islet-1 and identification of a simple sequence repeat polymorphism.Diabetes, 43(7), 935–941 (1994).
  • Pfaff SL , MendelsohnM, StewartCL, EdlundT, JessellTM: Requirement for LIM Homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation.Cell, 84, 309–320 (1996).
  • Cai CL , LiangX, ShiYet al.: Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart.Dev. Cell, 5, 877–889 (2003).
  • Karlsson O , ThorS, NorbergT, OhlssonH, EdlundT: Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo- and a Cys–His domain.Nature, 344, 879–882 (1990).
  • Clark EB : Mechanisms in the pathogenesis of congenital heart disease. In: The Genetics of Cardiovascular Disease. Pierpont ME, Moller J (Eds). Martinus-Nijoff, Boston, MA, USA 3–11 (1986).
  • Clark EB : Pathogenetic mechanisms of congenital cardiovascular malformations revisited.Semin. Perinatol., 20, 465–472 (1996).
  • Rosenberg HS , OppenheimerEH, EsterlyJR: Congenital rubella syndrome: the late effects and their relation to early lesions.Perspect. Pediatr. Pathol., 6, 183–202 (1981).
  • Kumar SD , DheenST, TaySS: Maternal diabetes induces congenital heart defect in mice by altering the expression of genes involved in cardiovascular development.Cardiovasc. Diabetol., 6, 34 (2007).
  • Tikkanen J , HeinonenOP: Risk factors for cardiovascular malformations in Finland.Eur. J. Epidemiol., 6, 348–356 (1990).
  • Mazzanti L , CacciariE: Congenital heart disease in patients with Turner‘s syndrome. Italian study group for Turner syndrome.Clin. Endocrinol., 54, 69–73 (2001).
  • Korenberg JR , BradleyC, DistecheCM: Down syndrome: molecular mapping of the congenital heart disease and duodenal stenosis.Am. J. Hum. Genet., 50, 294–302 (1992).
  • Perez E , SullivanKE: Chromosome 22q11.2 deletion syndrome: DiGeorge and velocardiofacial syndromes.Curr. Opin. Pediatr., 14, 678–683 (2002).
  • Yagi H , FurutaniY, HamadaH: Role of TBX1 in human del22q11.2 syndrome.Lancet, 362, 1366–1373 (2003).
  • Lowery MC , MorrisCA, EwartA: Strong correlation of elastin deletions, detected by FISH, with Williams syndrome: evaluation of 235 patients.Am. J. Hum. Genet., 57, 49–53 (1995).
  • Tartaglia M , MehlerEL, GoldbergR: Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome.Nat. Genet., 29, 465–468 (2001).
  • Basson CT , CowleyGS, SolomonSD: The clinical and genetic spectrum of the Holt–Oram syndrome (heart-hand syndrome).N. Engl. J. Med., 330, 885–891 (1994).
  • McElhinney DB , KrantzJD, BasonL: Analysis of cardiovascular phenotype and genotype–phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome.Nat. Genet., 16, 235–242 (1997).
  • Satoda M , PieropontMEM, DiazGA: Mutations in TFAP2B cause Charge syndrome, a familial form of patent ductus arteriosus.Nat. Genet., 25, 42–46 (2000).
  • Vissers LE , van Ravenswaaij CM, Admiraal R: Mutations in a new member of the chromodomain gene family cause Charge syndrome. Nat. Genet., 36, 955–957 (2004).
  • Ruiz-Perez VL , IdeSE, StromTM: Mutations in a new gene for the Ellis–van Creveld syndrome and Weyers acrodental dysostosis.Nat. Genet., 24, 283–286 (2000).
  • Sanlaville D , GenevieveD, BernardinCet al.: Failure to detect an 8p22–8p23.1 duplication in patients with Kabuki (Niikawa–Kuroki) syndrome.Eur. J. Hum. Genet., 13, 690–693 (2005).
  • Engelen JJ , MoogU, EversJL: Duplicationof chromosome region 8p23.1-p23.3: a benign variant?Am. J. Med. Genet., 91, 18–21 (2000).
  • Nora JJ : Multifactorial inheritance hypothesis for the etiology of congenital heart diseases. The genetic–environmental interaction.Circulation, 38, 604–617 (1968).
  • Jing-bin H , Ying-longL, Pei-WuS, Xiao-dongL, MingD, Xiang-MingF: Molecolar mechanisms of congenital heart disease.Cardiovasc. Pathol. DOI:10.1016/j.carpath.2009.06.008 (2009) (Epub ahead of print).
  • Bruneau G : The developmental genetics of congenital heart disease.Nature, 451, 943–948 (2008).
  • Bajolle F , ZaffranS, BonnetD: Genetics and embryological mechanisms of congenital heart diseases.Arch. Cardiovasc. Dis., 102, 59–63 (2009).
  • Pierpont ME , CraigT, BassonDet al.: Genetic basis for congenital heart defects: current knowledge.Circulation, 115, 3015–3038 (2007).
  • Bernier FP , SpaegensR: The geneticist‘s role in adult congenital heart disease.Cardiol. Clin., 24, 557–569 (2006).
  • Benson WD : The genetics of congenital heart disease: a point in the revolution.Cardiol. Clin., 20, 385–394 (2002).
  • Hartman JLT , GarvikB, Hartwell L: Principles for the buffe ring of genetics variation. Science, 291, 1001–1004 (2001).
  • Bentham J , BhattacharyaS: Genetic mechanisms controlling cardiovascular development.Ann. NY Acad. Sci., 1123, 10–19 (2008).
  • Van Beynemun IM , KapustaL, den Heijer M: Maternal MTHFR 677C>T is a risk factor for congenital heart defects: effect modification by periconceptional folate supplementation. Eur. Heart J., 27, 981–987 (2006).
  • Garg V , KathiriyaIS, BarnesRet al.: GATA4 mutations cause humancongenital heart defects and reveal an interaction with TBX5.Nature, 424, 443–447 (2003).
  • Lee Y , ShioiT, KasaharaH: The cardiac tissue-restricted homeobox protein Csx/Nkx2.5 physically associates with the zinc finger protein GATA4 and cooperatively activates atrial natriuretic factor gene expression.Mol. Cell. Biol., 18, 3120–3129 (1998).
  • Sepulveda JL , BelaguliN, NigamV, ChenCY, NemerM, SchwartzRJ: GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression.Mol. Cell. Biol., 18, 3405–3415 (1998).
  • Ching YH , GhoshTK, CrossSJet al.: Mutation in myosin heavy chain 6 causes atrial septal defect.Nat. Genet., 37(4), 423–428 (2005).
  • Garg V , KathiriyaIS, BarnesRet al.: GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5.Nature, 424, 443–447 (2003).
  • Matsson H , EasonJ, BookwalterCSet al.: α-cardiac actin mutations produce atrial septal defects.Hum. Mol. Genet., 17, 256–265 (2008).
  • Schott JJ , BensonDW, BassonCTet al.: Congenital heart disease caused by mutations in the transcription factor NKX2–5.Science, 281, 108–111 (1998).
  • Shiojima I , KomuroI, InazawaJet al.:Assignment of cardiac homeobox gene CSX to human chromosome 5q34. Genomics, 27, 204–206 (1995).
  • Elliott DA , KirkEP, YeohTet al.: Cardiac homeobox gene NKX2–5 mutations and congenital heart disease: associations with atrial septal defect and hypoplastic left heart syndrome.J. Am. Coll. Cardiol., 41, 2072–2076 (2003).
  • McElhinney DB , GeigerE, BlinderJ, BensonDW, GoldmuntzE: NKX2.5 mutations in patients with congenital heart disease.J. Am. Coll. Cardiol., 42, 1650–1655 (2003).
  • Posh M , PerrotA, SchmittKet al.: Mutations in GATA4, NKX2.5, CRELD1 and BMP4 are infrequently found in patients with congenital cardiac septal defects.Am J. Med. Genet.A, 146, 251–253 (2008).
  • Geiger E , BensonDW: NKX2.5 mutations in patients with tetralogy of Fallot.Circulation, 104, 2565–2568 (2001).
  • Zhang W , LiX, MaZet al.: GATA4 and NKX2.5 gene analysis in Chinese Uygur patients with congenital heart defect.Chin. Med. J., 122, 416–419 (2009).
  • Reamon-Buettner SM , BorlacJ: Somatic NKX2.5 mutations as a novel mechanism of disease in complex congenital heart disease.J. Med. Genet., 41, 684–690 (2004).
  • Draus JM , HauckMA, GoetschM, AustinEH, Tomita-MitchellA, MitchellME: Investigation of somatic NKX2.5 mutations in congenital heart disease.J. Med. Genet., 46, 115–122 (2009).
  • Hosoda T , KomuroI, ShiojimaIet al.: Familial atrial septal defect and atrioventricular conduction disturbance associated with a point mutation in the cardiac homeobox gene CSX/NKX2–5 in a Japanese patient.Jpn Circ. J., 63, 425–426 (2009).
  • Kasahara H , LeeB, SchottJJet al.: Loss of function and inhibitory effects of human CSX/NKX2.5 homeoprotein mutations associated with congenital heart disease.J. Clin. Invest., 106, 299–308 (2000).
  • Zhu W , ShiojimaI, HiroiYet al.: Functional analyses of three Csx/Nkx-2.5 mutations that cause human congenital heart disease.J. Biol. Chem., 275, 35291–35296 (2000).
  • Monzen K , ZhuW, KasaiHet al.: Dual effects of the homeobox transcription factor Csx/Nkx2–5 on cardiomyocytes.Biochem. Biophys. Res. Commun., 298, 493–500 (2002).
  • Pauli RM , Scheib-WixtedS, CripeL, IzumoS, SekhonGS: Ventricular non-compaction and distal chromosome 5q deletion.Am. J. Med. Genet., 85, 419–423 (1999).
  • Garg V , KathiriyaIS, BarnesRet al.: GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5.Nature, 424, 443–447 (2003).
  • Rajagopal SK , MaQ, OblerDet al.: Spectrum of heart disease associated with murine and human GATA4 mutation.J. Mol. Cell. Cardiol., 43, 677–685 (2007).
  • Hirayam-Yamada K , KamisagoM, AkimotoKet al.: Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect.Am. J. Med. Genet. A, 135, 47–52 (2005).
  • Sarkozy A , ContiE, NeriCet al.: Spectrum of atrial septal defects associated with mutations of NKX2.5 and GATA4 transcription factors.J. Med. Genet., 42, E16 (2005).
  • Sarkozy A , EspositoG, ContiEet al.: CRELD1 and GATA4 gene analysis in patients with nonsyndromic atrioventricular canal defects.Am J. Med. Genet., 139(3), 236–238 (2005).
  • Nemer G , FadlalahF, UstaJet al.: A novel mutation in the GATA4 gene in patients with tetralogy of Fallot.Hum. Mutat., 27, 293–294 (2006).
  • Zhang L , TumerZ, JacobsenJR, AndersenPS, TommerupN, LarsenLA: Screening of 99 Danish patients with congenital heart disease for GATA4 mutations.Genet. Test., 10, 277–280 (2006).
  • Schluterman MK , KrysiakAE, KathiriyaISet al.: Screening and biochemical analysis of GATA4 sequence variations identified in patients with congenital heart disease.Am. J. Med. Genet. A, 143A, 817–823 (2007).
  • Tomita-Mitchell A , MaslenCL, MorrisCD, GargV, GoldmuntzE: GATA4 sequence variants in patients with congenital heart disease.J. Med. Genet., 44, 779–783 (2007).
  • Zhang W , LiX, ShenA, JiaoW, GuanW, LiZ: GATA4 mutations in 486 Chinese patients with congenital heart disease.Eur. J. Med. Genet., 51, 527–535 (2008).
  • Sarkozy A , EspositoG, ContiEet al.: CRELD1 and GATA4 gene analysis in patients with nonsyndromic atrioventricular canal defects.Am. J. Med. Genet., 139(3), 236–238 (2005).
  • Reamon-Buettner SM , ChoSH, BorlakJ: Mutations in the 3´-untranslated region of GATA4 as molecular hotspots for congenital heart disease (CHD).Med. Genet., 8, 38 (2007).
  • Kodoa K , NishizawaT, FurutanibMet al.: GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin–plexin signaling.Proc. Natl Acad. Sci. USA, 106, 33 (2009).
  • Casey B , DevotoM, JonesK, BallabioA: Mapping a gene for familial situs abnormalities to human chromosome Xq24–q27.1.Nat. Genet.403–407 (2003).
  • Defects of Laterality and Looping. Ferencz C, Loffredo CA, Correa-Villasenor A,Wilson PD (Eds). Futura Publishing, Armonk, NY, USA (2007).
  • Gebbia M , FerreroGB, PiliaGet al.: X-linked situs abnormalities result from mutations in ZIC3.Nat. Genet., 17, 305–308 (1997).
  • Megarbane A , SalemN, StephanEet al.: Xlinked transposition of the great arteries and incomplete penetrance among males with a nonsense mutation in ZIC3.Eur. J. Hum. Genet., 8, 704–708 (2000).
  • Ferrero GB , GebbiaM, PiliaGet al.: A submicroscopic deletion in Xq26 associated with familial situs ambiguus.Am. J. Hum. Genet., 61, 395–401 (1997).
  • Ware SM , PengJ, ZhuLet al.: Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects.Am. J. Hum. Genet., 74, 93–105 (2004).
  • Chhin B , HatayamaM, BozonDet al.: Elucidation of penetrance variability of a zic3 mutation in a family with complex heart defects and functional analysis of zic3 mutations in the first zinc finger domain.Hum. Mutat., 28(6), 563–570 (2007).
  • Kohlhase J , ChitayatD, KotzotDet al.: SALL4 mutations in Okihiro syndrome (Duane-radial ray syndrome), acro–renal–ocular syndrome, and related disorders.Hum. Mutat., 26, 176–183 (2005).
  • Kohlhase J , HeinrichM, SchubertLet al.: Okihiro syndrome is caused by SALL4 mutations.Hum. Mol. Genet., 11, 2979–2987 (2002).
  • Kohlhase J , SchubertLet al., LiebersM : Mutations at the SALL4 locus on chromosome 20 result in a range of clinically overlapping phenotypes, including Okihiro syndrome, Holt–Oram syndrome, acro–renal–ocular syndrome, and patients previously reported to represent thalidomide embryopathy. J. Med. Genet., 40, 473–478 (2003).
  • Borozdin W , WrightMJ, HennekamRCMet al.: Novel mutations in the gene SALL4 provide further evidence for acro-renal-ocular and Okihiro syndromes being allelic entities, and extend the phenotypic spectrum.J. Med. Genet., 41, E102 (2004).
  • Wang B , LiL, XieXet al.: Genetic variation of SAL-Like 4 (SALL4 ) in ventricular septal defect.Int. J. Cardiol. doi:10.1016/j.ijcard.2009.05.067 (2009) (Epub ahead of print).
  • Sperling S , GrimmCH, DunkelIet al.: Identification and functional analysis of CITED2 mutations in patients with congenital heart defects.Hum. Mutat., 26(6), 575–582 (2005).
  • Reamon-Buettner SM , CiribilliY, IngaA, BorlakJ: A loss-of-function mutation in the binding domain of HAND1 predicts hypoplasia of the human hearts.Hum. Mol. Genet., 17, 1397–1405 (2008).
  • Reamon-Buettner SM , CiribilliY, TraversoI, KuhlsB, IngaA, BorlakJ: A functional genetic study identifies HAND1 mutations in septation defects of the human heart.Hum. Mol. Genet., 18, 3567–3578 (2009).
  • Khetyar M , SyrrisP, TinworthL, AbushabanL, CarterN: Novel TFPA2B mutation in nonsindromic patent ductus arteriosus.Genet. Test., 12, 457–459 (2008).
  • Muncke N , NieslerB, RoethRet al.: Mutational analysis of the PITX2 coding region revealed no common cause for transposition of the great arteries (dTGA).BMC Med. Genet., 6, 20 (2005).
  • Pizzuti A , SarkozyA, NewtonALet al.: Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot.Hum. Mutat., 22, 372–377 (2003).
  • Sarkozy A , ContiE, D‘AgostinoRet al.: ZFPM2/FOG2 and HEY2 genes analysis in nonsyndromic tricuspid atresia.Am. J. Med. Genet., 133, 68–70 (2005).
  • Gong W , GottliebS, CollinsJet al.: Mutation analysis of Tbx1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects.J. Med. Genet., 38, E45 (2001).
  • Cabuk F , KarabulutHG, TuncaliT, KarademirS, BozdayiM, TükünA: TBX1 gene mutation screening in patients with non-syndromic Fallot Tetralogy.Turk. J. Pediatr., 49(1), 61–68 (2007).
  • Rauch R , HofbeckM, ZweierCet al.: Comprehensive genotype–phenotype analysis in 230 patients with Tetralogy of Fallot.J. Med. Genet. DOI: jmg.2009.070391 (2009) (Epub ahead of print).
  • Buettner SM , BorlakJ: TBX5 mutations in non-Holt–Oram syndrome (HOS) malformed hearts.Hum. Mutat., 24(1), 104 (2004).
  • Xin N , QiuGR, GongLG, XuXY, SunKL: The mechanism of TBX5 abnormal expression in simple congenital heart disease.Yi Chuan., 31(4), 374–380 (2009).
  • Kirk EP , SundeM, CostaMWet al.: Mutations in cardiac T-Box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy.Am. J. Hum. Genet., 81, 280–291 (2007).
  • Liu C , ShenA, LiX, JiaoW, ZhangX, LiZ: T-box transcription factor TBX20 mutations in Chinese patients with congenital heart disease.Eur. J. Med. Genet., 51, 580–587 (2008).
  • Megarbane O , DietzR, StillerBet al.: A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects.J. Med. Genet. doi: 10.1136/jmg.2009.069997 (2009) (Epub ahead of print).
  • Shiojima I , KomuroI: Cardiac developmental biology: from flies to humans.Jpn. J. Physiol., 55, 245–254 (2005).
  • Mandel EM , CallisTE, Wang D-Z, Conlon FL: Transcriptional Mechanisms of Congenital Heart Disease, 2(1), Elsevier (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.