87
Views
0
CrossRef citations to date
0
Altmetric
Review

Real-Time 3D Imaging in the Cardiac Catheterization Laboratory

&
Pages 463-471 | Published online: 07 Jul 2010

Bibliography

  • Topol EJ , NissenSE: Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease.Circulation92 , 2333–2342 (1995).
  • Herrington DM , SiebesM, SokolDKet al.: Variability in measures of coronary lumen dimensions using quantitative coronary angiography.J. Am. Coll. Cardiol.22(4) , 1068–1074 (1993).
  • Ozaki Y , ViolarisAG, KobayashiTet al.: Comparison of coronary luminal quantification obtained from intracoronary ultrasound and both geometric and videodensitometric quantitative angiography before and after balloon angioplasty and directional atherectomy.Circulation96(2) , 491–499 (1997).
  • Solzbach U , OserU, RombachMet al.: Optimum angiographic visualization of coronary segments using computer-aided 3D-reconstruction from biplane views.Comput. Biomed. Res.27(3) , 178–198 (1994).
  • Chen SY , MetzCE: Improved determination of biplane imaging geometry from two projection images and its application to three-dimensional reconstruction of coronary arterial trees.Med. Phys.24(5) , 633–654 (1997).
  • Wellnhofer E , WahleA, MugaraguIet al.: Validation of an accurate method for three-dimensional reconstruction and quantitative assessment of volumes, lengths and diameters of coronary vascular branches and segments from biplane angiographic projections.Int. J. Card. Imaging15(5) , 339–353 (1999).
  • Büchi M , HessOM, KirkeeideRLet al.: Validation of a new automatic system for biplane quantitative coronary arteriography.Int. J. Card. Imaging5(2–3) , 93–103 (1990).
  • Slager CJ , WentzelJJ, SchuurbiersJCet al.: True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation.Circulation102(5) , 511–516 (2000).
  • Cothren RM , ShekharR, TuzcuEMet al.: Three-dimensional reconstruction of the coronary artery wall by image fusion of intravascular ultrasound and bi-plane angiography.Int. J. Card. Imaging16(2) , 69–85 (2000).
  • Schuurbiers JC , LopezNG, LigthartJet al.: In vivo validation of CAAS QCA-3D coronary reconstruction using fusion of angiography and intravascular ultrasound (ANGUS).Catheter. Cardiovasc. Interv.73(5) , 620–626 (2009).
  • Giannoglou GD , ChatzizisisYS, SianosGet al.: In vivo validation of spatially correct three-dimensional reconstruction of human coronary arteries by integrating intravascular ultrasound and biplane angiography.Coron. Artery Dis.17(6) , 533–543 (2006).
  • Raman SV , MorfordR, NeffMet al.: Rotational x-ray coronary angiography.Catheter. Cardiovasc. Interv.63(2) , 201–207 (2004).
  • Garcia JA , AgostoniP, GreenNEet al.: Rotational vs. standard coronary angiography: an image content analysis.Catheter. Cardiovasc. Interv.73(6) , 753–761 (2009).
  • Blondel C , MalandainG, VaillantR, AyacheN: Reconstruction of coronary arteries from a single rotational x-ray projection sequence.IEEE Trans. Med. Imaging25(5) , 653–663 (2006).
  • Kuon E , NiederstPN, DahmJB: Usefulness of rotational spin for coronary angiography in patients with advanced renal insufficiency.Am. J. Cardiol.90(4) , 369–373 (2002).
  • Maddux JT , WinkO, MessengerJCet al.: Randomized study of the safety and clinical utility of rotational angiography versus standard angiography in the diagnosis of coronary artery disease.Catheter. Cardiovasc. Interv.62(2) , 167–174 (2004).
  • Akhtar M , VakhariaKT, MishellJet al.: Randomized study of the safety and clinical utility of rotational vs. standard coronary angiography using a flat-panel detector.Catheter. Cardiovasc. Interv.66(1) , 43–49 (2005).
  • Messenger JC , ChenSYJ, CarrollJDet al.: 3-D coronary reconstruction from routine single-plane coronary angiograms: clinical validation and quantitative analysis of the right coronary artery in 100 patients.Int. J. Card. Imaging16 , 413–427 (2000).
  • Rittger H , SchertelB, SchmidtMet al.: Three-dimensional reconstruction allows accurate quantification and length measurements of coronary artery stenoses.EuroIntervention5(1) , 127–132 (2009).
  • Dvir D , MaromH, GuettaVet al.: Three-dimensional coronary reconstruction from routine single-plane coronary angiograms: in vivo quantitative validation.Int. J. Cardiovasc. Intervent.7(3) , 141–145 (2005).
  • Tsuchida K , van der Giessen WJ, Patterson M et al.: In vivo validation of a novel three-dimensional quantitative coronary angiography system (CardiOp-B): comparison with a conventional two-dimensional system (CAAS II) and with special reference to optical coherence tomography. EuroIntervention3(1) , 100–108 (2007).
  • Meerkin D , MaromH, Cohen-BitonOet al.: Three-dimensional vessel analyses provide more accurate length estimations than the gold standard QCA.J. Interv. Cardiol.23(2) , 152–159 (2010).
  • Collingwood R , BermudezE, FischellTA: Comparison between three-dimensional angiographic reconstruction and intravascular ultrasound imaging for the measurement of cross-sectional luminal dimensions in intermediate coronary lesions.J. Interv. Cardiol.22(3) , 277–281 (2009).
  • Saad M , ToelgR, KhattabAet al.: Determination of haemodynamic significance of intermediate coronary lesions using three-dimensional coronary reconstruction.EuroIntervention5 , 573–579 (2009).
  • Ramcharitar S , DaemanJ, PattersonMet al.: First direct in vivo comparison of two commercially available three-dimensional quantitative coronary angiography systems.Catheter. Cardiovasc. Interv.71(1) , 44–50 (2008).
  • Rogers RK , MichaelsAD: Enhanced x-ray visualization of coronary stents: clinical aspects.Cardiol. Clin.27(3) , 467–475 (2009).
  • Eng MH , KleinAP, WinkOet al.: Enhanced stent visualization: a case series demonstrating practical applications during PCI.Int. J. Cardiol.141(1) , E8–E16 (2010).
  • Shinde RS , HardasS, GrantPKet al.: Stent fracture detected with a novel fluoroscopic stent visualization technique – StentBoost.Can. J. Cardiol.25(8) , 487 (2009).
  • Vuurmans T , PattersonMS, LaarmanGJ : StentBoost used to guide management of a critical ostial right coronary artery lesion. J. Invasive Cardiol.21(2) , E19–E21 (2009).
  • Schoonenberg G , FlorentR, LelongPet al.: Projection-based motion compensation and reconstruction of coronary segments and cardiac implantable devices using rotational x-ray angiography.Med. Image Anal.13(5) , 785–792 (2009).
  • Nerem RM , CornhillJF: Hemodynamics and atherogenesis.Atherosclerosis36 , 151–157 (1980).
  • Malek AM , AlperSL, IzumoS: Hemodynamic shear stress and its role in atherosclerosis.JAMA282 , 2035–2042 (1999).
  • Chatzizisis YS , CoskunAU, JonasM, EdelmanER, FeldmanCL, StonePH: Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior.J. Am. Coll. Cardiol.49(25) , 2379–2393 (2007).
  • Cunningham KS , GotliebAI: The role of shear stress in the pathogenesis of atherosclerosis.Lab. Invest.85(1) , 9–23 (2005).
  • Dvir D , LaviI, FuchsSet al.: Association between three-dimensional lesion geometry and indicators of plaque vulnerability according to IVUS-VH analysis and intracoronary MMP-9 gradients. Presented at: The European Society of Cardiology Annual Conference 2009. Barcelona, Spain, 29 August–2 September 2009.
  • Webb JG , PasupatiS, HumphriesKet al.: Percutaneous transarterial aortic valve replacement in selected high-risk patients with aortic stenosis.Circulation116 , 755–763 (2007).
  • Piazza N , de Jaegere P, Schultz C et al.: Anatomy of the aortic valvar complex and its implications for transcatheter implantation of the aortic valve. Circ. Cardiovasc. Interv.1(1) , 74–81 (2008).
  • Tops LF , DelgadoV, van der Kley F et al.: Percutaneous aortic valve therapy: clinical experience and the role of multi-modality imaging. Heart95(18) , 1538–1546 (2009).
  • Dvir D , KornowskiR: Percutaneous aortic valve implantation using novel imaging guidance.Catheter. Cardiovasc. Interv. DOI: 10.1002/ccd.22362 (2010) (In press).
  • Green NE , ChenSY, HansgenARet al.: Angiographic views used for percutaneous coronary interventions: a three-dimensional analysis of physician-determined vs. computer-generated views.Catheter. Cardiovasc. Interv.64(4) , 451–459 (2005).
  • Gradaus R , MathiesK, BreithardtKet al.: Clinical assessment of a new real time 3D quantitative coronary angiography system: evaluation in stented vessel segments.Catheter. Cardiovasc. Interv.68 , 44–49 (2006).
  • Gollapudi R , ValenciaR, LeeS: Utility of three-dimensional reconstruction of coronary angiography to guide percutaneous coronary intervention.Catheter. Cardiovasc. Interv.69 , 479–482 (2007).
  • Lefevre T , LouvardY, MoriceMCet al.: Stenting of bifurcation lesions: classification, treatments, and results.Catheter. Cardiovasc. Interv.49(3) , 274–283 (2000).
  • Yamashita T , NishidaT, AdamianMGet al.: Bifurcation lesions: two stents versus one stent – immediate and follow-up results.J. Am. Coll. Cardiol.35 , 1145–1151 (2000).
  • Schlundt C , FuchsF, AchenbachSet al.: Three-dimensional on-line reconstruction of coronary bifurcated lesions to optimize side-branch stenting.Catheter. Cardiovasc. Interv.68 , 249–253 (2006).
  • Dvir D , MaromH, AssaliA, KornowskiR: Bifurcation lesions in the coronary arteries: early experience with a novel 3-dimensional imaging and quantitative analysis before and after stenting.EuroIntervention3 , 95–99 (2007).
  • Dvir D , AssaliA, LevEIet al.: Bifurcation lesions in the coronary arteries: association between geometric changes after intervention and clinical results. Presented at: The European Society of Cardiology Annual Conference 2008. Munich, Germany, 30 August–3 Spetember 2008.
  • Dvir D , AssaliA, LevEIet al.: Percutaneous interventions in unprotected left main lesions: novel three-dimensional imaging and quantitative analysis before and after intervention.Cardiovasc. Revasc. Med. (2010) (In press).
  • Girasis C , SerruysPW, OnumaYet al.: 3-dimensional bifurcation angle analysis in patients with left main disease: a substudy of the SYNTAX trial (Synergy Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery).JACC Cardiovasc. Interv.3(1) , 41–48 (2010).
  • Stone GW , KandzariDE, MehranRet al.: Percutaneous recanalization of chronically occluded coronary arteries: a consensus document: part I.Circulation112 , 2364–2372 (2005).
  • Stone GW , KandzariDE, MehranRet al.: Percutaneous recanalization of chronically occluded coronary arteries: a consensus document: part II.Circulation112 , 2530–2537 (2005).
  • Anderson HV , ShawRE, BrindisRGet al.: A contemporary overview of percutaneous coronary interventions: the American College of Cardiology – National Cardiovascular Data Registry (ACC-NCDR).J. Am. Coll. Cardiol.39 , 1096–1103 (2002).
  • Safian RD , McCabeCH, SipperlyMEet al.: Initial success and long-term follow-up of percutaneous transluminal coronary angioplasty in chronic total occlusions versus conventional stenoses.Am. J. Cardiol.61 , 23G–28G (1988).
  • Tan KH , SulkeN, TaubNAet al.: Determinants of success of coronary angioplasty in patients with a chronic total occlusion: a multiple logistic regression model to improve selection of patients.Br. Heart J.70 , 126–131 (1993).
  • Olivari Z , RubartelliP, PiscioneFet al.: Immediate results and one-year clinical outcome after percutaneous coronary interventions in chronic total occlusions: data from a multicenter, prospective, observational study (TOAST-GISE).J. Am. Coll. Cardiol.41 , 1672–1678 (2003).
  • Dvir D , AssaliA, KornowskiR: Percutaneous coronary intervention for chronic total occlusion: novel 3-dimensional imaging and quantitative analysis.Catheter. Cardiovasc. Interv.71(6) , 784–789 (2008).
  • Katsuragawa M , FujiwaraH, MiyamaeMet al.: Histologic studies in percutaneous transluminal coronary angioplasty for chronic total occlusion: comparison of tapering and abrupt types of occlusion and short and long occluded segments.J. Am. Coll. Cardiol.21 , 604–611 (1993).
  • Stone PH , CoskunAU, YeghiazariansYet al.: Prediction of sites of coronary atherosclerosis progression: in vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior.Curr. Opin. Cardiol.18(6) , 458–470 (2003).
  • Wellnhofer E , GoubergritsL, KertzscherUet al.: Novel non-dimensional approach to comparison of wall shear stress distributions in coronary arteries of different groups of patients.Atherosclerosis202(2) , 483–490 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.