209
Views
0
CrossRef citations to date
0
Altmetric
Review

Implementing genotype-guided Antithrombotic Therapy

, &
Pages 409-424 | Published online: 12 May 2010

Bibliography

  • Ansell J , HirshJ, PollerL, BusseyH, JacobsonA, HylekE: The pharmacology and management of the vitamin K antagonists: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy.Chest, 126(3 Suppl.), 204S–233S (2004).
  • Anonymous : 2008 Top 200 generic drugs by total prescriptions. Drug Topics (2009).
  • McWilliam A , LutterR, and Nardinelli C: Health care savings from personalized medicine using genetic testing: the case of warfarin. AEI-Brookings Joint Center Working Paper 06–23 (2006).
  • Higashi MK , VeenstraDL, KondoLMet al.: Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy.JAMA, 287(13), 1690–1698 (2002).
  • Takeuchi F , McGinnisR, BourgeoisSet al.: A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose.PLoS Genet., 5(3), E1000433 (2009).
  • Cooper GM , JohnsonJA, LangaeeTYet al.: A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose.Blood, 112(4), 1022–1027 (2008).
  • Kamali F , PirmohamedM: The future prospects of pharmacogenetics in oral anticoagulation therapy.Br. J. Clin. Pharmacol., 61(6), 746–751 (2006).
  • Linder MW , LooneyS, AdamsJEet al. III: Warfarin dose adjustments basedon CYP2C9 genetic polymorphisms. J. Thromb. Thrombolysis., 14(3), 227–232 (2002).
  • Rettie AE , WienkersLC, GonzalezFJ, TragerWF, KorzekwaKR: Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9.Pharmacogenetics, 4(1), 39–42 (1994).
  • Scordo MG , PengoV, SpinaE, DahlML, GusellaM, PadriniR: Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance.Clin. Pharmacol. Ther., 72(6), 702–710 (2002).
  • Voora D , EbyC, LinderMWet al.: Prospective dosing of warfarin based on cytochrome P-450 2C9 genotype.Thromb. Haemost., 93(4), 700–705 (2005).
  • Ruaño G , ThompsonPD, VillagraDet al.: High carrier prevalence of combinatorial CYP2C9 and VKORC1 genotypes affecting warfarin dosing.Person. Med., 5(3), 225–232 (2008).
  • Aynacioglu AS , SachseCet al., Bozkurt A: Low frequency of defective allelesof cytochrome P450 enzymes 2C19 and 2D6 in the Turkish population. Clin. Pharmacol. Ther., 66(2), 185–192 (1999).
  • Kazui M , NishiyaY, IshizukaTet al.: Identification of the human cytochromeP450 enzymes involved in the twooxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite.Drug Metab. Dispos., 38(1), 92–99 (2010).
  • Gaikovitch EA , CascorbiI, MrozikiewiczPMet al.: Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population.Eur. J. Clin. Pharmacol., 59(4), 303–312 (2003).
  • Bozina N , GranicP, LalicZ, TramisakI, LovricM, Stavljenic-RukavinaA: Genetic polymorphisms of cytochromes P450: CYP2C9, CYP2C19, and CYP2D6 in Croatian population.Croat. Med. J., 44(4), 425–428 (2003).
  • Dorado P , BereczR, NorbertoMJ, YasarU, DahlML, LerenaA: CYP2C9 genotypes and diclofenac metabolism in Spanish healthy volunteers.Eur. J. Clin. Pharmacol., 59(3), 221–225 (2003).
  • Halling J , PetersenMS, DamkierPet al.: Polymorphism of CYP2D6, CYP2C19, CYP2C9 and CYP2C8 in the Faroese population.Eur. J. Clin. Pharmacol., 61(7), 491–497 (2005).
  • Wu AH , WangP, SmithAet al.: Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations.Pharmacogenomics, 9(2), 169–178 (2008).
  • Sullivan-Klose TH , GhanayemBI, BellDAet al.: The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism.Pharmacogenetics, 6(4), 341–349 (1996).
  • Stubbins MJ , HarriesLW, SmithG, TarbitMH, WolfCR: Genetic analysis of the human cytochrome P450 CYP2C9 locus.Pharmacogenetics, 6(5), 429–439 (1996).
  • Yasar U : Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population.Biochem. Biophys. Res. Commun. (254), 628–631 (1999).
  • Yang JQ , MorinS, VerstuyftCet al.: Frequency of cytochrome P450 2C9 allelic variants in the Chinese and French populations.Fundam. Clin. Pharmacol., 17(3), 373–376 (2003).
  • Jose R , ChandrasekaranA, SamSSet al.: CYP2C9 and CYP2C19 genetic polymorphisms: frequencies in the south Indian population.Fundam. Clin. Pharmacol., 19(1), 101–105 (2005).
  • Hong X , ZhangS, MaoGet al.: CYP2C9*3 allelic variant is associated with metabolism of irbesartan in Chinese population.Eur. J. Clin. Pharmacol., 61(9), 627–634 (2005).
  • Yu BN , LuoCH, WangDet al.: CYP2C9 allele variants in Chinese hypertension patients and healthy controls.Clin. Chim. Acta, 348(1–2), 57–61 (2004).
  • Kimura M , IeiriI, MamiyaK, UraeA, HiguchiS: Genetic polymorphism of cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese population.Ther. Drug Monit., 20(3), 243–247 (1998).
  • Lee SS , KimKM, Thi-LeH, YeaSS, ChaIJ, ShinJG: Genetic polymorphism of CYP2C9 in a Vietnamese Kinh population.Ther. Drug Monit., 27(2), 208–210 (2005).
  • Scott SA , JaremkoM, LubitzSA, KornreichR, HalperinJL, DesnickRJ: CYP2C9*8 is prevalent among African–Americans: implications for pharmacogenetic dosing.Pharmacogenomics, 10(8), 1243–1255 (2009).
  • Hamdy SI , HiratsukaM, NaraharaKet al.: Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population.Br. J. Clin. Pharmacol., 53(6), 596–603 (2002).
  • Yasar U , AklilluE, CanaparoRet al.: Analysis of CYP2C9*5 in Caucasian, Oriental and black-African populations.Eur. J. Clin. Pharmacol., 58(8), 555–558 (2002).
  • Rosemary J , AdithanC: The pharmacogenetics of CYP2C9 and CYP2C19: ethnic variation and clinical significance.Curr. Clin. Pharmacol., 2(1), 93–109 (2007).
  • Dreisbach AW , JapaS, SigelAet al.: The Prevalence of CYP2C8, 2C9, 2J2, and soluble epoxide hydrolase polymorphisms in African–Americans with hypertension.Am. J. Hypertens., 18(10), 1276–1281 (2005).
  • Scordo MG , AklilluE, YasarU, DahlML, SpinaE, Ingelman-SundbergM: Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population.Br. J. Clin. Pharmacol., 52(4), 447–450 (2001).
  • Gaedigk A , CasleyWL, TyndaleRF, SellersEM, Jurima-RometM, LeederJS: Cytochrome P4502C9 (CYP2C9) allele frequencies in Canadian Native Indian and Inuit populations.Can. J. Physiol. Pharmacol., 79(10), 841–847 (2001).
  • Bravo-Villalta HV , YamamotoK, NakamuraK, BayaA, OkadaY, HoriuchiR: Genetic polymorphism of CYP2C9 and CYP2C19 in a Bolivian population: an investigative and comparative study.Eur. J. Clin. Pharmacol., 61(3), 179–184 (2005).
  • Vianna-Jorge R , PeriniJA, RondinelliE, Suarez-KurtzG: CYP2C9 genotypes and the pharmacokinetics of tenoxicam in Brazilians.Clin. Pharmacol. Ther., 76(1), 18–26 (2004).
  • LLerena A : Lower frequency of CYP2C9*2 in Mexican–Americans compared with Spaniards.Pharmacogenomics (4), 403–406 (2004).
  • Duconge J : Prevalence of combinatorial CYP2C9 and VKORC1 genotypes in Puerto Ricans: implications for warfarin management in hispanics.Ethnicity Disease, 19(4), 390–395 (2009).
  • Reynolds KK , ValdesR Jr, Hartung BR, Linder MW: Individualizing warfarin therapy. Person. Med., 4(1), 11–31 (2007).
  • Zhu Y , ShennanM, ReynoldsKKet al.: estimation of warfarin maintenance dose based on VKORC1 (-1639 G>A) and CYP2C9 genotypes.Clin.Chem., 53(7), 1199–1205 (2007).
  • Sconce EA , KhanTI, WynneHAet al.: The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen.Blood, 106(7), 2329–2333 (2005).
  • Wu AHB : Use of genetic and non-genetic factors in warfarin dosing algorithms.Pharmacogenomics, 7(8), 851–861 (2007).
  • Mushiroda T , OhnishiY, SaitoSet al.: Association of VKORC1 and CYP2C9 polymorphisms with warfarin dose requirements in Japanese patients.J. Hum. Genet., 51(3), 249–253 (2006).
  • Wadelius M , SorlinK, WallermanOet al.: Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors.Pharmacogenomics J., 4(1), 40–48 (2004).
  • Wadelius M , ChenLY, DownesKet al.: Common VKORC1 and GGCX polymorphisms associated with warfarin dose.Pharmacogenomics J., 5(4), 262–270 (2005).
  • Wadelius M , ChenLY, ErikssonNet al.: Association of warfarin dose with genes involved in its action and metabolism.Hum. Genet., 121(1), 23–34 (2007).
  • Limdi NA , BeasleyTM, CrowleyMRet al.: VKORC1 polymorphisms, haplotypes and haplotype groups on warfarin dose among African–Americans and European–Americans.Pharmacogenomics, 9(10), 1445–1458 (2008).
  • Hillman MA , WilkeRA, CaldwellMDet al.: Relative impact of covariates in prescribing warfarin according to CYP2C9 genotype.Pharmacogenetics (14), 539–547 (2004).
  • Takahashi H , WilkinsonGR, NutescuEAet al.: Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African–Americans.Pharmacogenet. Genomics, 16(2), 101–110 (2006).
  • Schelleman H , ChenJ, ChenZet al.: Dosing algorithms to predict warfarin maintenance dose in Caucasians and African–Americans.Clin. Pharmacol. Ther., 84(3), 332–339 (2008).
  • Rost S , FreginA, IvaskeviciusVet al.: Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.Nature, 427(6974), 537–541 (2004).
  • Li T , ChangCY, JinDY, LinPJ, KhvorovaA, StaffordDW: Identification of the gene for vitamin K epoxide reductase.Nature, 427(6974), 541–544 (2004).
  • Suttie JW : The biochemical basis of warfarin therapy.Adv. Exp. Med. Biol., 214, 3–16 (1987).
  • Yuan HY , ChenJJ, LeeMTet al.: A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity.Hum. Mol. Genet., 14(13), 1745–1751 (2005).
  • Rieder MJ , ReinerAP, GageBFet al.: Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose.N. Engl. J. Med., 352(22), 2285–2293 (2005).
  • Benson DA , Karsch-MizrachiI, LipmanDJ, OstellJ, WheelerDL: GenBank.Nucleic Acids Res., 36(Database issue), D25–D30 (2008).
  • Tham LS , GohBC, NafzigerAet al.: A warfarin-dosing model in Asians that uses single-nucleotide polymorphism in vitamin K epoxide reductase complex and cytochrome P450 2C9.Clin. Pharmacol. Ther., 80, 346–355 (2006).
  • Caldwell MD , BergRL, ZhangKQet al.: Evaluation of genetic factors for warfarin dose prediction.Clin. Med. Res., 5(1), 8–16 (2007).
  • Thorn CF , KleinTE, AltmanRB: Pharm GKB: the pharmacogenetics and pharmacogenomics knowledge base.Methods Mol. Biol., 311, 179–191 (2005).
  • Cavallari LH , LangaeeTY, MomaryKMet al.: Genetic and clinical predictors of warfarin dose requirements in African–Americans.Clin. Pharmacol. Ther., 87(4), 459–464 (2010).
  • Pautas E , MoreauC, Gouin-ThibaultIet al.: Genetic factors (VKORC1, CYP2C9, EPHX1, and CYP4F2) are predictor variables for warfarin response in very elderly, frail inpatients.Clin. Pharmacol. Ther., 87(1), 57–64 (2010).
  • Nakai K , TsuboiJ, OkabayashiHet al.: Ethnic differences in the VKORC1 gene polymorphism and an association with warfarin dosage requirements in cardiovascular surgery patients.Pharmacogenomics, 8(7), 713–719 (2007).
  • Veenstra DL , YouJH, RiederMJet al.: Association of Vitamin K epoxide reductase complex 1 (VKORC1) variants with warfarin dose in a Hong Kong Chinese patient population.Pharmacogenet. Genomics, 15(10), 687–691 (2005).
  • Aquilante CL , LangaeeTY, LopezLMet al.: Influence of coagulation factor, vitamin K epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements.Clin. Pharmacol. Ther., 79, 291–302 (2006).
  • D‘Andrea G , D‘AmbrosioRLet al., Di Perna P : A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose–anticoagulant effect of warfarin. Blood, 105(2), 645–649 (2005).
  • Zhao F : Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose.Clin. Pharmacol. Ther. (76), 210–219 (2004).
  • Schelleman H , LimdiNA, KimmelSE: Ethnic differences in warfarin maintenance dose requirement and its relationship with genetics.Pharmacogenomics, 9(9), 1331–1346 (2008).
  • Hillman MA , WilkeRA, YaleSHet al.: A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data.Clin. Med. Res., 3(3), 137–145 (2005).
  • Anderson JL , HorneBD, StevensSMet al.: Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation.Circulation, 116(22), 2563–2570 (2007).
  • Caraco Y , BlotnickS, MuszkatM: CYP2C9 genotype-guided warfarin prescribing enhances the efficacy andsafety of anticoagulation: a prospective randomized controlled study.Clin. Pharmacol. Ther., 83(3), 460–470 (2008).
  • Caldwell MD , AwadT, JohnsonJAet al.: CYP4F2 genetic variant alters required warfarin dose.Blood, 111(8), 4106–4112 (2008).
  • Borgiani P , CiccacciC, ForteVet al.: CYP4F2 genetic variant (rs2108622) significantly contributes to warfarin dosing variability in the Italian population.Pharmacogenomics, 10(2), 261–266 (2009).
  • Morisseau C , HammockBD: Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles.Annu. Rev. Pharmacol. Toxicol., 45, 311–333 (2005).
  • Kaiser J : DNA sequencing. A plan to capture human diversity in 1000 genomes.Science, 319(5862), 395- (2008).
  • Kangelaris KN , BentS, NussbaumRL, GarciaDA, TiceJA: Genetic testing before anticoagulation? A systematic review of pharmacogenetic dosing of warfarin.J. Gen. Intern. Med., 24(5), 656–664 (2009).
  • Klein TE , AltmanRB, ErikssonNet al.: Estimation of the warfarin dose with clinical and pharmacogenetic data.N. Engl. J. Med., 360(8), 753–764 (2009).
  • Fanikos J , Grasso-CorrentiN, ShahR, KucherN, GoldhaberSZ: Major bleeding complications in a specialized anticoagulation service.Am. J. Cardiol., 96(4), 595–598 (2005).
  • Landefeld CS , GoldmanL: Major bleeding in outpatients treated with warfarin: incidence and prediction by factors known at the start of outpatient therapy.Am. J. Med., 87(2), 144–152 (1989).
  • Leigh JP , WhiteRH: An economic model of adverse events and costs for oral anticoagulants used for atrial fibrillation.Curr. Med. Res. Opin., 23(9), 2071–2081 (2007).
  • Eckman MH , RosandJ, GreenbergSM, GageBF: Cost–effectiveness of using pharmacogenetic information in warfarin dosing for patients with nonvalvular atrial fibrillation.Ann. Intern. Med., 150(2), 73–83 (2009).
  • Gage BF , YanY, MilliganPEet al.: Clinical classification schemes for predicting hemorrhage: results from the National Registry of Atrial Fibrillation (NRAF).Am. Heart J., 151(3), 713–719 (2006).
  • Frelinger AL et al. III, Furman MI, Linden MD : Residual arachidonic acid-induced platelet activation via an adenosine diphosphate-dependent but cyclooxygenase-1- and cyclooxygenase-2-independent pathway: a 700-patient study of aspirin resistance. Circulation, 113(25), 2888–2896 (2006).
  • O‘Donnell CJ , LarsonMG, FengDet al.: Genetic and environmental contributions to platelet aggregation: the Framingham heart study.Circulation, 103(25), 3051–3056 (2001).
  • Savi P , PereilloJM, UzabiagaMFet al.: Identification and biological activity of the active metabolite of clopidogrel.Thromb. Haemost., 84(5), 891–896 (2000).
  • Mega JL , CloseSL, WiviottSDet al.: Cytochrome p-450 polymorphisms and response to clopidogrel.N. Engl. J. Med., 360(4), 354–362 (2009).
  • Pereillo JM , MaftouhM, AndrieuAet al.: Structure and stereochemistry of the active metabolite of clopidogrel.Drug Metab. Dispos., 30(11), 1288–1295 (2002).
  • Giusti B , GoriAM, MarcucciRet al.: Cytochrome P450 2C19 loss-of-function polymorphism, but not CYP3A4 IVS10 + 12G/A and P2Y12 T744C polymorphisms, is associated with response variability to dual antiplatelet treatment in high-risk vascular patients.Pharmacogenet. Genomics, 17(12), 1057–1064 (2007).
  • Kim KA , ParkPW, HongSJ, ParkJY: The effect of CYP2C19 polymorphismon the pharmacokinetics and pharmacodynamics of clopidogrel: a possible mechanism for clopidogrel resistance.Clin. Pharmacol. Ther., 84(2), 236–242 (2008).
  • Hulot JS , BuraA, VillardEet al.: Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects.Blood, 108(7), 2244–2247 (2006).
  • Angiolillo DJ , Fernandez-OrtizA, BernardoEet al.: Contribution of gene sequence variations of the hepatic cytochrome P450 3A4 enzyme to variability in individual responsiveness to clopidogrel.Arterioscler. Thromb. Vasc. Biol., 26(8), 1895–1900 (2006).
  • Geisler T , SchaeffelerE, DipponJet al.: CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation.Pharmacogenomics, 9(9), 1251–1259 (2008).
  • Zanger UM , TurpeinenM, KleinK, SchwabM: Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation.Anal. Bioanal. Chem., 392(6), 1093–1108 (2008).
  • Ruaño G , MakowskiG, WindemuthAet al.: High carrier prevalence of deficient and null alleles of CYP2 genes in a major USA hospital: implications for personalized drug safety.Person. Med., 3(2), 131–137 (2006).
  • Sim SC , RisingerC, DahlMLet al.: A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants.Clin. Pharmacol. Ther., 79(1), 103–113 (2006).
  • Ragia G , ArvanitidisKI, TavridouA, ManolopoulosVG: Need for reassessment of reported CYP2C19 allele frequencies in various populations in view of CYP2C19*17 discovery: the case of Greece.Pharmacogenomics, 10(1), 43–49 (2009).
  • Allabi AC , GalaJL, DesagerJP, HeusterspreuteM, HorsmansY: Genetic polymorphisms of CYP2C9 and CYP2C19 in the Beninese and Belgian populations.Br. J. Clin. Pharmacol., 56(6), 653–657 (2003).
  • Tamminga WJ , WemerJ, OosterhuisB, de Zeeuw RA, de Leij LF, Jonkman JH:The prevalence of CYP2D6 and CYP2C19 genotypes in a population of healthy Dutch volunteers. Eur. J. Clin. Pharmacol., 57(10), 717–722 (2001).
  • Scordo MG , CaputiAP, D‘ArrigoC, FavaG, SpinaE: Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population.Pharmacol. Res., 50(2), 195–200 (2004).
  • Goldstein JA , IshizakiT, ChibaKet al.: Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations.Pharmacogenetics, 7(1), 59–64 (1997).
  • Sviri S , ShpizenS, LeitersdorfE, LevyM, CaracoY: Phenotypic–genotypic analysis of CYP2C19 in the Jewish Israeli population.Clin. Pharmacol. Ther., 65(3), 275–282 (1999).
  • Roh HK , DahlML, TybringG, YamadaH, ChaYN, BertilssonL: CYP2C19 genotype and phenotype determined by omeprazole in a Korean population.Pharmacogenetics, 6(6), 547–551 (1996).
  • Scott SA , EdelmannL, KornreichR, ErazoM, DesnickRJ: CYP2C9, CYP2C19 and CYP2D6 allele frequencies in the Ashkenazi Jewish population.Pharmacogenomics, 8(7), 721–730 (2007).
  • Ozawa S , SoyamaA, SaekiMet al.: Ethnic differences in genetic polymorphisms of CYP2D6, CYP2C19, CYP3As and MDR1/ABCB1.Drug Metab. Pharmacokinet., 19(2), 83–95 (2004).
  • Zand N , TajikN, HoormandM, MoghaddamAS, MilanianI: Allele frequency of CYP2C19 gene polymorphisms in a healthy Iranian population.Iranian J. Pharmacol. Therap.s, 4(2), 124–127 (2005).
  • Adithan C , GerardN, VasuS, RosemaryJ, ShashindranCH, KrishnamoorthyR: Allele and genotype frequency of CYP2C19 in a Tamilian population.Br. J. Clin. Pharmacol., 56(3), 331–333 (2003).
  • Lamba JK , DhimanRK, KohliKK: Genetic polymorphism of the hepatic cytochrome P450 2C19 in north Indian subjects.Clin. Pharmacol. Ther., 63(4), 422–427 (1998).
  • He N , YanFX, HuangSLet al.: CYP2C19 genotype and S-mephenytoin 4‘-hydroxylation phenotype in a Chinese Dai population.Eur. J. Clin. Pharmacol., 58(1), 15–18 (2002).
  • Tassaneeyakul W , TawaleeA, TassaneeyakulWet al.: Analysis of the CYP2C19 polymorphism in a North-eastern Thai population.Pharmacogenetics, 12(3), 221–225 (2002).
  • Xiao ZS , GoldsteinJA, XieHGet al.: Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele.J. Pharmacol. Exp. Ther., 281(1), 604–609 (1997).
  • Sugimoto K , UnoT, YamazakiH, TateishiT: Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population.Br. J. Clin. Pharmacol., 65(3), 437–439 (2008).
  • Xie HG , KimRB, SteinCM, WilkinsonGR, WoodAJ: Genetic polymorphism of (S)-mephenytoin 4´-hydroxylation in populations of African descent.Br. J. Clin. Pharmacol., 48(3), 402–408 (1999).
  • Herrlin K , MasseleAY, JandeMet al.: Bantu Tanzanians have a decreased capacity to metabolize omeprazole and mephenytoin in relation to their CYP2C19 genotype.Clin. Pharmacol. Ther., 64(4), 391–401 (1998).
  • Bathum L , SkjelboE, MutabingwaTK, MadsenH, HorderM, BrosenK: Phenotypes and genotypes for CYP2D6 and CYP2C19 in a black Tanzanian population.Br. J. Clin. Pharmacol., 48(3), 395–401 (1999).
  • Persson I , AklilluE, RodriguesF, BertilssonL, Ingelman-SundbergM: S-mephenytoin hydroxylation phenotype and CYP2C19 genotype among Ethiopians.Pharmacogenetics, 6(6), 521–526 (1996).
  • Nowak MP , SellersEM, TyndaleRF: Canadian Native Indians exhibit unique CYP2A6 and CYP2C19 mutant allele frequencies.Clin. Pharmacol. Ther., 64(4), 378–383 (1998).
  • Kaneko A , LumJK, YaviongLet al.: High and variable frequencies of CYP2C19 mutations: medical consequences of poor drug metabolism in Vanuatu and other Pacific islands.Pharmacogenetics, 9(5), 581–590 (1999).
  • Duconge J , CadillaCL, RentaJYet al.: Prevalence of CYP2C19 gene polymorphisms in the Puerto Rican population: a preliminary report.P.R. Health Sci. J., 27(4), 357–358 (2008).
  • Linden R , ZiulkoskiAL, TonelloP, WingertM, SoutoAA: Relation between CYP2C19 phenotype and genotype in a group of Brazilian volunteers.Brazilian J. Pharmaceut. Sci., 45(3), 461–467 (2009).
  • Luo HR , PolandRE, LinKM, WanYJ: Genetic polymorphism of cytochrome P450 2C19 in Mexican Americans: a cross-ethnic comparative study.Clin. Pharmacol. Ther., 80(1), 33–40 (2006).
  • Trenk D , HochholzerW, FrommMFet al.: Cytochrome P450 2C19 681G>A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents.J. Am. Coll. Cardiol., 51(20), 1925–1934 (2008).
  • Shuldiner AR , O‘connellJR, BlidenKPet al.: Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy.JAMA, 302(8), 849–857 (2009).
  • Collet JP , HulotJS, PenaAet al.: Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study.Lancet, 373(9660), 309–317 (2009).
  • Simon T , VerstuyftC, Mary-KrauseMet al.: Genetic determinants of response to clopidogrel and cardiovascular events.N. Engl. J. Med., 360(4), 363–375 (2009).
  • Frere C , CuissetT, MorangePEet al.: Effect of cytochrome p450 polymorphisms on platelet reactivity after treatment with clopidogrel in acute coronary syndrome.Am. J. Cardiol., 101(8), 1088–1093 (2008).
  • Gilard M , ArnaudB, CornilyJCet al.: Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: the randomized, double-blind OCLA (Omeprazole CLopidogrel Aspirin) study.J. Am. Coll. Cardiol., 51(3), 256–260 (2008).
  • Siller-Matula JM , SpielAO, LangIM, KreinerG, ChristG, JilmaB: Effects of pantoprazole and esomeprazole on platelet inhibition by clopidogrel.Am. Heart J., 157(1), 148–145 (2009).
  • Juurlink DN , GomesT, KoDTet al.: A population-based study of the drug interaction between proton pump inhibitors and clopidogrel.CMAJ, 180(7), 713–718 (2009).
  • Bhatt DL , CryerB, ContantCet al.; and COGENT Investigators. COGENT: A prospective, randomized, placebo-controlled trial of omeprazole in patients receiving aspirin and clopidogrel. Presented at: 21st Transcatheter Cardiovascular Therapeutics (TCT) Scientific Symposium. San Francisco, CA, USA, 21–26 September 2009.
  • Wiviott SD , BraunwaldE, McCabeCHet al.: Intensive oral antiplatelet therapyfor reduction of ischaemic events including stent thrombosis in patients with acute coronary syndromes treated with percutaneous coronary intervention and stenting in the TRITON-TIMI 38 trial: a subanalysis of a randomised trial.Lancet, 371(9621), 1353–1363 (2008).
  • Storey RF : Clopidogrel in acute coronary syndrome: to genotype or not?Lancet, 373(9660), 276–278 (2009).
  • Price MJ : Bedside evaluation of thienopyridine antiplatelet therapy.Circulation, 119(19), 2625–2632 (2009).
  • Bouman H , ParlakEet al., van Werkum J : Which platelet function test is suitable to monitor clopidogrel responsiveness? A pharmacokinetic analysis on the active metabolite of clopidogrel. J. Thromb. Haemost., 8(3), 482–488 (2010).
  • Patti G , NuscaA, MangiacapraF, GattoL, D‘AmbrosioA, Di Sciascio G: Point-of-care measurement of clopidogrel responsiveness predicts clinical outcome in patients undergoing percutaneous coronary intervention results of the ARMYDA-PRO (Antiplatelet therapy for Reduction of Myocardial Damage during Angioplasty-Platelet Reactivity Predicts Outcome) study. J. Am. Coll. Cardiol., 52(14), 1128–1133 (2008).
  • Price MJ , EndemannS, GollapudiRRet al.: Prognostic significance of post-clopidogrel platelet reactivity assessed by a point-of-care assay on thrombotic events after drug-eluting stent implantation.Eur. Heart J., 29(8), 992–1000 (2008).
  • Marcucci R , GoriAM, PanicciaRet al.: Cardiovascular death and nonfatal myocardial infarction in acute coronary syndrome patients receiving coronary stenting are predicted by residual platelet reactivity to ADP detected by a point-of-care assay: a 12-month follow-up.Circulation, 119(2), 237–242 (2009).
  • Bliden KP , DichiaraJ, LawalLet al.: The association of cigarette smoking with enhanced platelet inhibition by clopidogrel.J. Am. Coll. Cardiol., 52(7), 531–533 (2008).
  • Gilard M , ArnaudB, CornilyJCet al.: Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: the randomized, double-blind OCLA (Omeprazole CLopidogrel Aspirin) study.J. Am. Coll. Cardiol., 51(3), 256–260 (2008).
  • Trenk D , HochholzerW, FrommMFet al.: Cytochrome P450 2C19 681G>A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents.J. Am. Coll. Cardiol., 51(20), 1925–1934 (2008).
  • Brandt JT , PayneCD, WiviottSDet al.: A comparison of prasugrel and clopidogrel loading doses on platelet function: magnitude of platelet inhibition is related to active metabolite formation.Am. Heart J., 153(1), 66–16 (2007).
  • Wiviott SD , TrenkDet al., Frelinger AL: Prasugrel compared with high loading- and maintenance-dose clopidogrel in patients with planned percutaneous coronary intervention:the Prasugrel in Comparison to Clopidogrel for Inhibition of Platelet Activation and Aggregation-Thrombolysisin Myocardial Infarction 44 trial. Circulation, 116(25), 2923–2932 (2007).
  • Montalescot G , WiviottSD, BraunwaldEet al.: Prasugrel compared with clopidogrel in patients undergoing percutaneous coronary intervention for ST-elevation myocardial infarction (TRITON-TIMI 38): double-blind, randomised controlled trial.Lancet, 373(9665), 723–731 (2009).
  • Mega JL , CloseSL, WiviottSDet al.: Cytochrome P450 genetic polymorphismsand the response to prasugrel: relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes.Circulation, 119(19), 2553–2560 (2009).
  • Wiviott SD , BraunwaldE, McCabeCHet al.: Prasugrel versus clopidogrel in patients with acute coronary syndromes.N. Engl. J. Med., 357(20), 2001–2015 (2007).
  • Wiviott SD , BraunwaldE, AngiolilloDJet al.: Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel – thrombolysis in myocardial infarction 38.Circulation, 118(16), 1626–1636 (2008).
  • Ferreira IA , MockingAIet al., Feijge MA: Platelet inhibition by insulin is absent in Type 2 diabetes mellitus. Arterioscler. Thromb. Vasc. Biol., 26(2), 417–422 (2006).
  • Bristol-Myers Squibb Pharma Company. Coumadin® label. 7 August, 2007 revision (2007).
  • Linkins LA , ChoiPT, DouketisJD: Clinical impact of bleeding in patients taking oral anticoagulant therapy for venous thromboembolism: a meta-analysis.Ann. Intern. Med., 139(11), 893–900 (2003).
  • King JT Jr, Tsevat J, Lave JR, Roberts MS: Willingness to pay for a quality-adjusted life year: implications for societal health care resource allocation. Med. Decis. Making, 25(6), 667–677 (2005).
  • You JH , TsuiKK, WongRS, ChengG: Potential clinical and economic outcomesof CYP2C9 and VKORC1 genotype-guided dosing in patients starting warfarin therapy.Clin. Pharmacol. Ther., 86(5), 540–547 (2009).
  • Gage BF , YanY, MilliganPEet al.: Clinical classification schemes for predicting hemorrhage: results from the National Registry of Atrial Fibrillation (NRAF).Am. Heart J., 151(3), 713–719 (2006).
  • van Schie RMF , WadeliusM, KamaliFet al.: Genotype-guided dosing of coumarin derivatives: the European pharmacogenetics of anticoagulant therapy (EU-PACT) trial design.Pharmacogenomics, 10(10), 1687–1695 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.