92
Views
0
CrossRef citations to date
0
Altmetric
Review

Nuclear Perfusion Imaging for Functional Evaluation of Patients With Known Or Suspected Coronary Artery Disease: the Future is Now

, , &
Pages 603-622 | Published online: 07 Aug 2012

References

  • Gould KL , JohnsonNP. Coronary artery disease: percent stenosis in CAD – a flaw in current practice. Nat. Rev. Cardiol., 7(9), 482–484 (2010).
  • Boden WE , O‘RourkeRA, TeoKKet al. Optimal medical therapy with or without PCI for stable coronary disease. N. Engl. J. Med. , 356(15), 1503–1516 (2007).
  • Frye RL , AugustP, BrooksMMet al. A randomized trial of therapies for Type 2 diabetes and coronary artery disease. N. Engl. J. Med. , 360(24), 2503–2515 (2009).
  • Velazquez EJ , LeeKL, DejaMAet al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N. Engl. J. Med. , 364(17), 1607–1616 (2011).
  • Tonino PA et al. , De Bruyne B, Pijls NH Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med., 360(3), 213–224 (2009).
  • Shaw LJ , BermanDS, MaronDJet al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the clinical outcomes utilizing revascularization and aggressive drug evaluation (COURAGE) trial nuclear substudy. Circulation , 117(10), 1283–1291 (2008).
  • Hachamovitch R , RozanskiA, ShawLJet al. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur. Heart J. , 32(8), 1012–1024 (2011).
  • Hachamovitch R , HayesSW, FriedmanJD, CohenI, BermanDS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation, 107(23), 2900–2907 (2003).
  • D‘Egidio G , NicholG, WilliamsKAet al. Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation: a substudy of the PARR-2 trial. JACC Cardiovasc. Imaging , 2(9), 1060–1068 (2009).
  • Ali I , RuddyTD, AlmgrahiA, AnstettFG, WellsRG. Half-time SPECT myocardial perfusion imaging with attenuation correction. J. Nucl. Med., 50(4), 554–562 (2009).
  • Vanzetto G , FagretD, PasqualiniR, MathieuJP, ChossatF, MachecourtJ. Biodistribution, dosimetry, and safety of myocardial perfusion imaging agent 99mTcN-NOET in healthy volunteers. J. Nucl. Med., 41(1), 141–148 (2000).
  • Giedd KN , BergmannSR. Fatty acid imaging of the heart. Curr. Cardiol. Rep., 13(2), 121–131 (2011).
  • Dilsizian V , BatemanTM, BergmannSRet al. Metabolic imaging with β-methyl-p-[(123)I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation , 112(14), 2169–2174 (2005).
  • Kontos MC , DilsizianV, WeilandFet al. Iodofiltic acid I 123 (BMIPP) fatty acid imaging improves initial diagnosis in emergency department patients with suspected acute coronary syndromes: a multicenter trial. J. Am. Coll. Cardiol. , 56(4), 290–299 (2010).
  • Inaba Y , BergmannSR. Diagnostic accuracy of β-methyl-p-[123I]-iodophenyl-pentadecanoic acid (BMIPP) imaging: a meta-analysis. J. Nucl. Cardiol., 15(3), 345–352 (2008).
  • Inaba Y , BergmannSR. Prognostic value of myocardial metabolic imaging with BMIPP in the spectrum of coronary artery disease: a systematic review. J. Nucl. Cardiol., 17(1), 61–70 (2010).
  • Sharir T , Ben-HaimS, MerzonKet al. High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovasc. Imaging , 1(2), 156–163 (2008).
  • Esteves FP , RaggiP, FolksRDet al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J. Nucl. Cardiol. , 16(6), 927–934 (2009).
  • Garcia EV , FaberTL, EstevesFP. Cardiac dedicated ultrafast SPECT cameras: new designs and clinical implications. J. Nucl. Med., 52(2), 210–217 (2011).
  • Chang HJ , GeorgeRT, SchuleriKHet al. Prospective electrocardiogram-gated delayed enhanced multidetector computed tomography accurately quantifies infarct size and reduces radiation exposure. JACC Cardiovasc. Imaging , 2(4), 412–420 (2009).
  • Duvall WL , SweenyJM, CroftLBet al. Comparison of high efficiency CZT SPECT MPI to coronary angiography. J. Nucl. Cardiol. , 18(4), 595–604 (2011).
  • Fiechter M , GhadriJR, KuestSMet al. Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation versus invasive coronary angiography. Eur. J. Nucl. Med. Mol. Imaging , 38(11), 2025–2030 (2011).
  • Gaemperli O , SchepisT, ValentaIet al. Cardiac image fusion from stand-alone SPECT and CT: clinical experience. J. Nucl. Med. , 48(5), 696–703 (2007).
  • Santana CA , GarciaEV, FaberTLet al. Diagnostic performance of fusion of myocardial perfusion imaging (MPI) and computed tomography coronary angiography. J. Nucl. Cardiol. , 16(2), 201–211 (2009).
  • Slomka PJ , ChengVY, DeyDet al. Quantitative analysis of myocardial perfusion SPECT anatomically guided by coregistered 64-slice coronary CT angiography. J. Nucl. Med. , 50(10), 1621–1630 (2009).
  • Rispler S , KeidarZ, GhersinEet al. Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J. Am. Coll. Cardiol. , 49(10), 1059–1067 (2007).
  • Klocke FJ , BairdMG, LorellBHet al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging – executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (ACC/AHA/ASNC Committee to revise the 1995 guidelines for the clinical use of cardiac radionuclide imaging). Circulation , 108(11), 1404–1418 (2003).
  • Udelson JE , SpieglerEJ. Emergency department perfusion imaging for suspected coronary artery disease: the ERASE chest pain trial. Md. Med. (Suppl.), 90–94 (2001).
  • Shaw LJ , IskandrianAE. Prognostic value of gated myocardial perfusion SPECT. J. Nucl. Cardiol., 11(2), 171–185 (2004).
  • Hachamovitch R , BermanDS, ShawLJet al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation , 97(6), 535–543 (1998).
  • Gill JB , RuddyTD, NewellJB, FinkelsteinDM, StraussHW, BoucherCA. Prognostic importance of thallium uptake by the lungs during exercise in coronary artery disease. N. Engl. J. Med., 317(24), 1486–1489 (1987).
  • Leslie WD , TullySA, YogendranMS, WardLM, NourKA, MetgeCJ. Prognostic value of lung sestamibi uptake in myocardial perfusion imaging of patients with known or suspected coronary artery disease. J. Am. Coll. Cardiol., 45(10), 1676–1682 (2005).
  • Weiss AT , BermanDS, LewASet al. Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: a marker of severe and extensive coronary artery disease. J. Am. Coll. Cardiol. , 9(4), 752–759 (1987).
  • Mazzanti M , GermanoG, KiatHet al. Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual-isotope myocardial perfusion SPECT. J. Am. Coll. Cardiol. , 27(7), 1612–1620 (1996).
  • Daniele S , NappiC, AcampaWet al. Incremental prognostic value of coronary flow reserve assessed with single-photon emission computed tomography. J. Nucl. Cardiol. , 18(4), 612–619 (2011).
  • Bateman TM , HellerGV, McGhieAIet al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J. Nucl. Cardiol. , 13(1), 24–33 (2006).
  • Go RT , MarwickTH, MacintyreWJet al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J. Nucl. Med. , 31(12), 1899–1905 (1990).
  • Beanlands RS , ChowBJ, DickAet al. CCS/CAR/CANM/CNCS/CanSCMR joint position statement on advanced noninvasive cardiac imaging using positron emission tomography, magnetic resonance imaging and multidetector computed tomographic angiography in the diagnosis and evaluation of ischemic heart disease – executive summary. Can. J. Cardiol. , 23(2), 107–119 (2007).
  • Yoshinaga K , ChowBJ, WilliamsKet al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J. Am. Coll. Cardiol. , 48(5), 1029–1039 (2006).
  • Marwick TH , ShanK, PatelS, GoRT, LauerMS. Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am. J. Cardiol., 80(7), 865–870 (1997).
  • Lertsburapa K , AhlbergAW, BatemanTMet al. Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J. Nucl. Cardiol. , 15(6), 745–753 (2008).
  • Dorbala S , HachamovitchR, CurillovaZet al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc. Imaging , 2(7), 846–854 (2009).
  • Ghosh N , RimoldiOE, BeanlandsRS, CamiciPG. Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur. Heart J., 31(24), 2984–2995 (2010).
  • Madar I , RavertH, DipaulaA, DuY, DannalsRF, BeckerL. Assessment of severity of coronary artery stenosis in a canine model using the PET agent 18F-fluorobenzyl triphenyl phosphonium: comparison with 99mTc-tetrofosmin. J. Nucl. Med., 48(6), 1021–1030 (2007).
  • Yu M , GuaraldiMT, MistryMet al. BMS-747158-02: a novel PET myocardial perfusion imaging agent. J. Nucl. Cardiol. , 14(6), 789–798 (2007).
  • Abramson BL , RuddyTD, DekempRA, LarameeLA, MarquisJF, BeanlandsRS. Stress perfusion/metabolism imaging: a pilot study for a potential new approach to the diagnosis of coronary disease in women. J. Nucl. Cardiol., 7(3), 205–212 (2000).
  • He ZX , ShiRF, WuYJet al. Direct imaging of exercise-induced myocardial ischemia with fluorine-18-labeled deoxyglucose and Tc-99m-sestamibi in coronary artery disease. Circulation , 108(10), 1208–1213 (2003).
  • Araujo LI , McfallsEO, LammertsmaAA, JonesT, MaseriA. Dipyridamole-induced increased glucose uptake in patients with single-vessel coronary artery disease assessed with PET. J. Nucl. Cardiol., 8(3), 339–346 (2001).
  • Sun KT , YeatmanLA, BuxtonDBet al. Simultaneous measurement of myocardial oxygen consumption and blood flow using [1-carbon-11] acetate. J. Nucl. Med. , 39(2), 272–280 (1998).
  • Schenker MP , DorbalaS, HongECet al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation , 117(13), 1693–1700 (2008).
  • Mylonas I , ZiadiMC, DekempRAet al. 013 In patients with normal perfusion imaging, is there a relationship between calcium score and myocardial flow reserve? Can. J. Cardiol. , 27(5), S66 (2011).
  • Einstein AJ , JohnsonLL, BokhariSet al. Agreement of visual estimation of coronary artery calcium from low-dose CT attenuation correction scans in hybrid PET/CT and SPECT/CT with standard Agatston score. J. Am. Coll. Cardiol. , 56(23), 1914–1921 (2010).
  • Kajander S , JoutsiniemiE, SarasteMet al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation , 122(6), 603–613 (2010).
  • Sampson UK , DorbalaS, LimayeA, KwongR, Di Carli MF. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J. Am. Coll. Cardiol., 49(10), 1052–1058 (2007).
  • Groves AM , Speechly-DickME, KayaniIet al. First experience of combined cardiac PET/64-detector CT angiography with invasive angiographic validation. Eur. J. Nucl. Med. Mol. Imaging , 36(12), 2027–2033 (2009).
  • Conti M . State of the art and challenges of time-of-flight PET. Phys. Med., 25(1), 1–11 (2009).
  • Parkash R , DekempRA, RuddyTDet al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J. Nucl. Cardiol. , 11(4), 440–449 (2004).
  • Hajjiri MM , LeavittMB, ZhengH, SpoonerAE, FischmanAJ, GewirtzH. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. JACC Cardiovasc. Imaging, 2(6), 751–758 (2009).
  • Lortie M , BeanlandsRS, YoshinagaK, KleinR, DasilvaJN, DekempRA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur. J. Nucl. Med. Mol. Imaging, 34(11), 1765–1774 (2007).
  • Camici PG , RimoldiOE. The clinical value of myocardial blood flow measurement. J. Nucl. Med., 50(7), 1076–1087 (2009).
  • Alexanderson E , Garcia-RojasL, JimenezMet al. Effect of ezetimibe-simvastatine over endothelial dysfunction in dyslipidemic patients: assessment by 13N-ammonia positron emission tomography. J. Nucl. Cardiol. , 17(6), 1015–1022 (2010).
  • Schindler TH , SchelbertHR, QuercioliA, DilsizianV. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc. Imaging, 3(6), 623–640 (2010).
  • Brush JE et al. Jr, Cannon RO 3rd, Schenke WH Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. N. Engl. J. Med., 319(20), 1302–1307 (1988).
  • Kaufmann PA , Gnecchi-RusconeT, Di Terlizzi M, Schafers KP, Luscher TF, Camici PG. Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation, 102(11), 1233–1238 (2000).
  • Schelbert HR . Coronary circulatory function abnormalities in insulin resistance: insights from positron emission tomography. J. Am. Coll. Cardiol., 53(Suppl. 5), S3–S8 (2009).
  • Teragawa H , MoritaK, ShishidoHet al. Impaired myocardial blood flow reserve in subjects with metabolic syndrome analyzed using positron emission tomography and N-13 labeled ammonia. Eur. J. Nucl. Med. Mol. Imaging , 37(2), 368–376 (2010).
  • Tamaki N , YoshinagaK, NayaM. Coronary vasomotor function assessed by positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging, 37(6), 1213–1224 (2010).
  • Yoshinaga K , ManabeO, KatohCet al. Quantitative analysis of coronary endothelial function with generator-produced 82Rb PET: comparison with 15O-labelled water PET. Eur. J. Nucl. Med. Mol. Imaging , 37(12), 2233–2241 (2010).
  • Yoshinaga K , ManabeO, TamakiN. Assessment of coronary endothelial function using PET. J. Nucl. Cardiol., 18(3), 486–500 (2011).
  • Di Carli M , CzerninJ, HohCKet al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation , 91(7), 1944–1951 (1995).
  • Gould KL . Quantification of coronary artery stenosis in vivo. Circ. Res., 57(3), 341–353 (1985).
  • Beanlands RS , MuzikO, MelonPet al. Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. J. Am. Coll. Cardiol. , 26(6), 1465–1475 (1995).
  • Uren NG , MelinJA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N. Engl. J. Med., 330(25), 1782–1788 (1994).
  • Osborne AD , MooreB, RossMA, PittsSR. The feasibility of Rubidium-82 positron emission tomography stress testing in low-risk chest pain protocol patients. Crit. Pathw. Cardiol., 10(1), 41–43 (2011).
  • Nandalur KR , DwamenaBA, ChoudhriAF, NandalurSR, ReddyP, CarlosRC. Diagnostic performance of positron emission tomography in the detection of coronary artery disease: a meta-analysis. Acad. Radiol., 15(4), 444–451 (2008).
  • Shi H , SantanaCA, RiveroAet al. Normal values and prospective validation of transient ischaemic dilation index in 82Rb PET myocardial perfusion imaging. Nucl. Med. Commun. , 28(11), 859–863 (2007).
  • Dorbala S , VangalaD, SampsonU, LimayeA, KwongR, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J. Nucl. Med., 48(3), 349–358 (2007).
  • Tio RA , DabeshlimA, SiebelinkHMet al. Comparison between the prognostic value of left ventricular function and myocardial perfusion reserve in patients with ischemic heart disease. J. Nucl. Med. , 50(2), 214–219 (2009).
  • Herzog BA , HusmannL, ValentaIet al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J. Am. Coll. Cardiol. , 54(2), 150–156 (2009).
  • Ziadi MC , DekempRA, WilliamsKAet al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J. Am. Coll. Cardiol. , 58(7), 740–748 (2011).
  • Fukushima K , JavadiMS, HiguchiTet al. Prediction of short-term cardiovascular events using quantification of global myocardial flow reserve in patients referred for clinical 82Rb PET perfusion imaging. J. Nucl. Med. , 52(5), 726–732 (2011).
  • Murthy VL , NayaM, FosterCRet al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation , 124(20), 2215–2224 (2011).
  • Beller GA . Importance of consideration of radiation doses from cardiac imaging procedures and risks of cancer. J. Nucl. Cardiol., 17(1), 1–3 (2010).
  • Einstein AJ , MoserKW, ThompsonRC, CerqueiraMD, HenzlovaMJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation, 116(11), 1290–1305 (2007).
  • Valentin DJ . Chapter 1. Ann. ICRP, 28(4), 5–7 (1998).
  • Chen J , EinsteinAJ, FazelRet al. Cumulative exposure to ionizing radiation from diagnostic and therapeutic cardiac imaging procedures: a population-based analysis. J. Am. Coll. Cardiol. , 56(9), 702–711 (2010).
  • Senthamizhchel van S , BravoPE, LodgeMA, MerrillJ, BengelFM, SgourosG. Radiation dosimetry of 82Rb in humans under pharmacologic stress. J. Nucl. Med., 52(3), 485–491 (2011).
  • Hunter C , ZiadiMC, EteleJ, HillJ, BeanlandsRS, DekempRA. New effective dose estimates for Rubidium-82 based on dynamic PET/CT imaging in humans. Canadian Cardiovascular Society (CCS) CCS185 poster: imaging: atherosclerosis and coronary artery disease. Can. J. Cardiol., 26(Suppl.) D(0), 40D–42D (2010).
  • Hendel RC , BermanDSet al., Di Carli MF ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation appropriate use criteria task force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. J. Am. Coll. Cardiol., 53(23), 2201–2229 (2009).
  • Cerqueira MD . Recommendations for reducing radiation exposure in myocardial perfusion imaging. J. Nucl. Cardiol., 17(4), 709–718 (2010).
  • Beller GA . Compliance with appropriate use criteria for cardiac radionuclide imaging. J. Nucl. Cardiol., 17(2), 165–167 (2010).
  • Chang SM , NabiF, XuJ, RazaU, MahmarianJJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging: similar patient mortality with reduced radiation exposure. J. Am. Coll. Cardiol., 55(3), 221–230 (2010).
  • Bourque JM , HollandBH, WatsonDD, BellerGA. Achieving an exercise workload of > or = 10 metabolic equivalents predicts a very low risk of inducible ischemia: does myocardial perfusion imaging have a role? J. Am. Coll. Cardiol., 54(6), 538–545 (2009).
  • Shaw LJ , MieresJH, HendelRHet al. Comparative effectiveness of exercise electrocardiography with or without myocardial perfusion single photon emission computed tomography in women with suspected coronary artery disease: results from the What is the Optimal Method for Ischemia Evaluation in Women (WOMEN) trial. Circulation , 124(11), 1239–1249 (2011).
  • Paterson DI , E O‘Meara, Chow BJ, Ukkonen H, Beanlands RS. Recent advances in cardiac imaging for patients with heart failure. Curr. Opin. Cardiol., 26(2), 132–143 (2011).
  • Mielniczuk LM , BeanlandsRS. Imaging-guided selection of patients with ischemic heart failure for high risk revascularization improves identification of those with the highest clinical benefit. Circ.Cardiovasc. Imaging, 5(2), 262–270; discussion 270 (2012).
  • Fayad ZA , ManiV, WoodwardMet al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet , 378(9802), 1547–1559 (2011).
  • Sanz J , FayadZA. Imaging of atherosclerotic cardiovascular disease. Nature, 451(7181), 953–957 (2008).
  • Nekolla SG , Martinez-MoellerA, SarasteA. PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur. J. Nucl. Med. Mol. Imaging, 36(Suppl. 1), S121–S130 (2009).
  • Sharma J , RoncariC, GieddKN, FoxJT, KaneiY. Patients with adenosine-induced ST-segment depressions and normal myocardial perfusion imaging: cardiac outcomes at 24 months. J. Nucl. Cardiol., 17(5), 874–880 (2010).
  • Williams KA , SchneiderCM. Increased stress right ventricular activity on dual isotope perfusion SPECT: a sign of multivessel and/or left main coronary artery disease. J. Am. Coll. Cardiol., 34(2), 420–427 (1999).
  • Abraham A , KassM, RuddyTDet al. Right and left ventricular uptake with Rb-82 PET myocardial perfusion imaging: markers of left main or 3 vessel disease. J. Nucl. Cardiol. , 17(1), 52–60 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.