298
Views
0
CrossRef citations to date
0
Altmetric
Review

Cardiotoxicity in Childhood Cancer Survivors: Strategies for Prevention and Management

, , , &
Pages 647-670 | Published online: 07 Aug 2012

References

  • Mariotto AB , RowlandJH, YabroffKRet al. Long-term survivors of childhood cancers in the United States. Cancer Epidemiol. Biomarkers Prev. , 18, 1033–1040 (2009).
  • Hinkle AS , ProukouC, FrenchCAet al. A clinic-based, comprehensive care model for studying late effects in long-term survivors of pediatric illnesses. Pediatrics , 113(Suppl. 4), 1141–1145 (2004).
  • Reulen RC , WinterDL, FrobisherCet al. Long-term cause-specific mortality among survivors of childhood cancer. JAMA , 304(2), 172–179 (2010).
  • Mulrooney DA , YeazelMW, KawashimaTet al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor study cohort. BMJ , 339, b4606 (2009).
  • van der Pal HJ et al. , van Dalen EC, van Delden E High risk of symptomatic cardiac events in childhood cancer survivors. J. Clin. Oncol., 30(13), 1429–1437 (2012).
  • Lipshultz SE , AdamsMJ. Cardiotoxicity after childhood cancer: beginning with the end in mind. J. Clin. Oncol., 28(8), 1276–1281 (2010).
  • Hudson MM , MertensAC, YasuiYet al. Health status of adult long-term survivors of childhood cancer: a report from the childhood cancer survivor study. JAMA , 290(12), 1583–1592 (2003).
  • Mody R , LiS, DoverDCet al. Twenty-five-year follow-up among survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor study. Blood , 111(12), 5515–5523 (2008).
  • Miller TL , LipsitzSR, Lopez-MitnikGet al. Characteristics and determinants of adiposity in pediatric cancer survivors. Cancer Epidemiol. Biomarkers Prev. , 19(8), 2013–2022 (2010).
  • National Research Council. Chapter 4: late effects of childhood cancer. In: Childhood Cancer Survivorship: Improving Care and Quality of Life. Hewitt M, Weiner SL, Simone JV (Eds). National Academic Press, DC, USA, 48–49 (2003).
  • Alvarez JA , ScullyRE, MillerTLet al. Long-term effects of treatments for childhood cancers. Curr. Opin. Pediatr. , 19, 23–31 (2007).
  • van Dalen EC , RaphaëlMF, CaronHN, KremerLC. Treatment including anthracyclines versus treatment not including anthracyclines for childhood cancer. Cochrane Database Syst. Rev., 1, CD006647 (2009).
  • Fulbright JM , HuhW, AndersonP, ChandraJ. Can anthracycline therapy for pediatric malignancies be less cardiotoxic? Curr. Oncol. Rep., 12(6), 411–419 (2010).
  • Herman EH , FerransVJ, JordanW, ArdalanB. Reduction of chronic daunorubicin cardiotoxicity by ICRF-187 in rabbits. Res. Commun. Chem. Pathol. Pharmacol., 31(1), 85–97 (1981).
  • Herman EH , el-HageAN, FerransVJ, ArdalanB. Comparison of the severity of the chronic cardiotoxicity produced by doxorubicin in normotensive and hypertensive rats. Toxicol. Appl. Pharmacol., 78(2), 202–214 (1985).
  • Outomuro D , GranaDR, AzzatoF, MileiJ. Adriamycin-induced myocardial toxicity: new solutions for an old problem? Int. J. Cardiol., 117(1), 6–15 (2007).
  • Mordente A , MeucciE, MartoranaGE, GiardinaB, MinottiG. Human heart cytosolic reductases and anthracycline cardiotoxicity. IUBMB Life, 52, 83–88 (2001).
  • Wouters KA , KremerLC, MillerTL, HermanEH, LipshultzSE. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br. J. Haematol., 131(5), 561–578 (2005).
  • Gianni L , ZweierJL, LevyA, MyersCE. Characterization of the cycle of iron-mediated electron transfer from adriamycin to molecular oxygen. J. Biol. Chem., 260(11), 6820–6826 (1985).
  • Olson RD , MushlinPS. Doxorubicin cardiotoxicity: analysis of prevailing hypothesis. FASEB J., 4(13), 3076–3086 (1990).
  • Milei J , BoverisA, LlesuySet al. Amelioration of adriamycin-induced cardiotoxicity in rabbits by prenylamine and vitamins A and E. Am. Heart J. , 111, 95–102 (1986).
  • Ferrero ME , FerreroE, GajaU. Adriamycin: energy metabolism and mitochondrial oxidations in the heart of treated rabbits. Biochem. Pharmacol., 25(2), 125–130 (1976).
  • Earm YE , HoWK, SoI. Effects of adriamycin on ionic currents in single cardiac myocytes of the rabbit. J. Mol. Cell. Cardiol., 26(2), 163–172 (1994).
  • Olson RD , LiX, PaladePet al. Sarcoplasmic reticulum calcium release is stimulated and inhibited by daunorubicin and daunorubicinol. Toxicol. Appl. Pharmacol. , 169(2), 168–176 (2000).
  • Gozalvez M , BlancoM. Inhibition of NA-K ATPase by the antitumor antibiotic adriamycin. 5th International Biophysics Congress, Copenhagen. Cancer Res., 39(1), 257–261 (1979).
  • Lou H , DanelisenI, SingalPK. Cytokines are not upregulated in adriamycin-induced cardiomyopathy and heart failure. J. Mol. Cell. Cardiol., 36(5), 683–690 (2004).
  • Lenaz L , PageJA. Cardiotoxicity of adriamycin and related anthracyclines. Cancer Treat. Rev., 3(3), 111–120 (1976).
  • Lipshultz SE , RusconiP, ScullyRE. Chapter 18: assessment of cardiotoxicity during anti-cancer therapy. In: NT-proBNP as a Biomarker in Cardiovascular Diseases. Januzzi JL, Bayes-Genis A (Eds). Prous Science SA, Barcelona, Spain, 193–198 (2007).
  • Pointon AV , WalkerTM, PhillipsKMet al. Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation. PLoS ONE , 5(9), e12733 (2010).
  • Gonzalvez F , GottliebE. Cardiolipin: setting the beat of apoptosis. Apoptosis, 12(5), 877–885 (2007).
  • Goormaghtigh E , BrasseurR, HuartP, RuysschaertJM. Study of the adriamycin cardiolipin complex structure using attenuated total reflection infrared spectroscopy. Biochemistry, 26(6), 1789–1794 (1987).
  • Garcia Fernandez M , TroianoL, MorettiL. Early changes in intramitochondrial cardiolipin distribution during apoptosis. Cell Growth Differ., 13(9), 449–455 (2002).
  • Aguilar L , Ortega-PierresG, CamposBet al. Phospholipid membranes form specific nonbilayer molecular arrangements that are antigenic. J. Biol. Chem. , 274(36), 25193–25196 (1999).
  • Vlasova II , TyurinVA, KapralovAAet al. Nitric oxide inhibits peroxidase activity of cytochrome C cardiolipin complex and blocks cardioliopin oxidation. J. Biol. Chem. , 281(21), 14554–14562 (2006).
  • Arola OJ , SarasteA, PulkkiK, KallajokiM, ParvinenM, Voipio-PulkkiLM. Acute doxorubicin cardiotoxicity involves cardiomyocte apoptosis. Cancer Res., 60(7), 1789–1792 (2000).
  • Zhang YQ , ShiJ, LiYJ, WeiL. Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch. Immunol. Ther. Exp., 57(6), 435–445 (2009).
  • Adams MJ , LipshultzSE. Pathophysiology of anthracycline- and radiation-associated cardiomyopathies: implications for screening and prevention. Pediatr. Blood Cancer, 44(7), 600–606 (2005).
  • Lipshultz SE , ColanSD, GelberRD, Perez-AtaydeAR, SallanSE, SandersSP. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N. Engl. J. Med., 324(12), 808–815 (1991).
  • Sorensen K , LevittG, BullC, ChessellsJ, SullivanI. Anthracycline dose in childhood acute lymphoblastic leukemia: issues of early survival versus late cardiotoxicity. J. Clin. Oncol., 15(1), 61–68 (1997).
  • Giantris A , AbdurrahmanL, HinkleAet al. Anthracycline-induced cardiotoxicity in children and young adults. Crit. Rev. Oncol. Hematol. , 27, 53–68 (1998).
  • Doroshow JH , LockerGY, MyersCE. Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J. Clin. Invest., 65(1), 128–135 (1980).
  • Cascales A , Sanchez-VegaB, NavarroN, Pastor-QuiranteF, CorralJ, VicenteV, de la Pena FA. Clinical and genetic determinants of anthracycline-induced cardiac iron accumulation. Int. J. Cardiol., 154(3), 282–286 (2010).
  • Arai M , YoguchiA, TakizawaTet al. Mechanism of doxorubicin-induced inhibition of sarcoplasmic reticulum Ca2+-ATPase gene transcription. Circ. Res. , 86(1), 8–14 (2000).
  • Jeyaseelan R , PoizatC, WuHY, KedesL. Molecular mechanisms of doxorubicin-induced cardiomyopathy. Selective suppression of Reiske iron-sulfur protein, ADP/ATP translocase, and phosphofructokinase genes is associated with ATP depletion in rat cardiomyocytes. J. Biol. Chem., 272(9), 5828–5832 (1997).
  • Lebrecht DMS , SetzerB, KetelsenUP, HaberstrohJ, WalkerUA. Time-dependant and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation, 108(19), 2423–2429 (2003).
  • Arola OJ , SarasteA, PulkkiK, KallajokiM, ParvinenM, Voipio-PulkkiLM. Acute doxorubicin cardiotoxicity involves cardiomyocte apoptosis. Cancer Res., 60(7), 1789–1792 (2000).
  • Childs AC , PhaneufSL, DirksAJ, PhillipsT, LeeuwenburghC. Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res., 62(16), 4592–4598 (2002).
  • Von Hoff DD , LayardM, BasaPet al. Risk factors for doxorubicin-induced congestive heart failure. Ann. Intern. Med. , 91(5), 710–717 (1979).
  • Swain SM , WhaleyFS, EwerMS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer, 97(11), 2869–2879 (2003).
  • van Dalen EC , van der Pal HJ, Kok WE, Caron HN, Kremer LC. Clinical heart failure in a cohort of children treated with anthracyclines: a long-term follow-up study. Eur. J. Cancer, 42(18), 3191–3198 (2006).
  • van der Pal HJ et al. , van Dalen EC, Hauptmann M Cardiac function in 5-year survivors of childhood cancer: a long-term follow-up study. Arch. Intern. Med., 170(14), 1247–1255 (2010).
  • Blanco JG , SunCL, LandierWet al. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes – a report from the Children‘s Oncology Group. J. Clin. Oncol. , 30(13), 1415–1421 (2012).
  • van Dalen EC , CaronHN, DickinsonHO, KremerLCM. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst. Rev., 25(1), CD003917. Update in: Cochrane Database Syst. Rev., 2011(6), CD003917 (2005).
  • Lipshultz SE , LipsitzSR, SallenSEet al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J. Clin. Oncol. , 23(12), 2629–2636 (2005).
  • Davies SM . Getting to the heart of the matter. J. Clin. Oncol., 30(13), 1399–1400 (2012).
  • Visscher H , RossCJD, RassekhSRet al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J. Clin. Oncol. , 30(13), 1422–1428 (2012).
  • Krischer JP , EpsteinS, CuthbertsonDD, GoorinAM, EpsteinML, LipshultzSE. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J. Clin. Oncol., 15, 1544–1552 (1997).
  • Sorensen K , LevittGA, BullC, DorupI, SullivanID. Late anthracycline cardiotoxicity after childhood cancer: a prospective longitudinal study. Cancer, 97(8), 1991–1998 (2003).
  • Nysom K , HolmK, LipsitzSRet al. Relationship between cumulative anthracycline dose and late cardiotoxicity in childhood acute lymphoblastic leukemia. J. Clin. Oncol. , 2, 545–550 (1998).
  • Lipshultz SE , LipsitzSR, MoneSMet al. Female sex and higher drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N. Engl. J. Med. , 332(26), 1738–1743 (1995).
  • Steinherz LJ , SteinherzPG, TanCT, HellerG, MurphyML. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA, 266(12), 1672–1677 (1991).
  • Anderlini P , BengaminRS, WongFCet al. Idarubicin cardiotoxicity: a retrospective study in acute myeloid leukemia and myelodysplasia. J. Clin. Oncol. , 13(11), 2827–2834 (1995).
  • Sorensen K , LevittG, Sebag-MontefioreD, BullC, SullivanI. Cardiac function in Wilms‘ tumor survivors. J. Clin. Oncol., 13(7), 1546–1556 (1995).
  • Nysom K , ColanDC, LipshultzSE. Late cardiotoxicity following anthracycline therapy for childhood cancer. Prog. Pediatr. Cardiol., 8, 121–138 (1998).
  • Green DM , GrigorievYA, NanBet al. Congestive heart failure after treatment for Wilms‘ tumor: a report from the National Wilms‘ Tumor Study Group. J. Clin. Oncol. , 19(7), 1926–1934 (2001).
  • Kremer LCM , van Dalen EC, Offringa M, Ottenkamp J, Voûte PA. Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study. J. Clin. Oncol., 19(1), 191–196 (2001).
  • Tukenova M , GuiboutC, OberlinOet al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J. Clin. Oncol. , 28(8), 1308–1315 (2010).
  • Rodvold KA , RushingDA, TewksburyDA. Doxorubicin clearance in the obese. J. Clin. Oncol., 6(8), 1321–1327 (1998).
  • Bristow MR , ThompsonPD, MartinRP, MasonJW, BillinghamME, HarrisonDC. Early anthracycline cardiotoxicity. Am. J. Med., 65(5), 823–832 (1978).
  • Lipshultz SE , MillerTM, ScullyREet al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J. Clin. Oncol. , 30(10), 1042–1049 (2012).
  • Ali MK , EwerMS, GibbsHR, SwaffordJ, GraffKL. Late doxorubicin-associated cardiotoxicity in children. The possible role of intercurrent viral infection. Cancer, 74(1), 182–188 (1994).
  • Tolba KA , DeliargyrisEN. Cardiotoxicity of cancer therapy. Cancer Invest., 17(6), 408–422 (1999).
  • Lipshultz SE , AlvarezJA, ScullyRE. Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart, 94(4), 525–533 (2008).
  • Grenier MA , LipshultzME. Epidemiology of anthracycline cardiotoxicity in children and adults. Semin. Oncol., 25(4 Suppl. 10), 72–85 (1998).
  • Simbre VC , DuffySA, DadlaniGH, MillerTL, LipshultzSE. Cardiotoxicity of cancer chemotherapy: implications for children. Paediatr. Drugs, 7, 187–202 (2005).
  • Barry E , AlvarezJA, ScullyRE, MillerTL, LipshultzSE. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin. Pharmacother., 8, 1039–1058 (2007).
  • Herman EH , ZhangJ, LipshultzSEet al. Correlation between serum levels of cardiac troponin-T and the severity of the chronic cardiomyopathy induced by doxorubicin. J. Clin. Oncol. , 17, 2237–2243 (1999).
  • Lipshultz SE , SandersSP, GoorinAM, KrischerJP, SallanSE, ColanSD. Monitoring for anthracycline cardiotoxicity. Pediatrics, 93, 433–437 (1994).
  • Carver JR , ShapiroCL, NGAet al. ASCO Cancer Survivorship Exert Panel. American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J. Clin. Oncol. , 25, 3991–4008 (2007).
  • Steinhertz LJ , GrahamT, HurwitzRet al. Guidelines for cardiac monitoring of children during and after anthracycline therapy: Report of the cardiology committee of the Children‘s Cancer Study Group. Pediatrics , 89, 942–949 (1992).
  • Lipshultz SE , SandersSP, ColanSD, GoorinAM, SallanSE, KrischerJP. Letter to the Editor. Pediatrics, 94, 781 (1994)
  • Adams MJ , LipshultzSE, SchwartzC, FajardoLF, CoenV, ConstineLS. Radiation-associated cardiovascular disease: manifestations and management. Semin. Radiat. Oncol., 13(3), 346–356 (2003).
  • Adams MJ , HardenberghPH, ConstineLS, LipshultzSE. Radiation-associated cardiovascular disease. Crit. Rev. Oncol. Hematol., 45(1), 55–75 (2003).
  • Lipshultz SE , RifaiN, DaltonVMet al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N. Engl. J. Med. , 351(2), 145–153 (2004).
  • Ganame J , ClausP, EyskensBet al. Acute cardiac functional and morphological changes after anthracycline infusions in children. Am. J. Cardiol. , 99(7), 974–977 (2007).
  • Ganame J , ClausP, UyttebroeckAet al. Myocardial dysfunction late after low-dose anthracycline treatment in asymptomatic pediatric patients. J. Am. Soc. Echocardiogr. , 20(12), 1351–1358 (2007).
  • Colan SD , BorrowKM, NeumanA. Left ventricular end-systolic wall stress-velocity of fiber shortening relation: a load independent index of myocardial contractility. J. Am. Coll. Cardiol., 4, 715–724 (1984).
  • Lipshultz SE , ColanSD. The use of echocardiography and holter monitoring in the assessment of anthracycline-treated patients. In: Cardiac Toxicity After Treatment for Childhood Cancer. Wiley-Liss, NY, USA, 45–62 (1993).
  • Mitani I , JainD, JoskaTM, BurtnessB, ZaretBL. Doxorubicin cardiotoxicity: Prevention of congestive heart failure with serial cardiac function monitoring with equilibrium radionuclide angiocardiography in the current era. J. Nucl. Cardiol., 10(2), 132–139 (2003).
  • Glanzmann C , HugueninP, LutolfUM, MaireR, JenniR, GumppenbergV. Cardiac lesions after mediastinal radiation for Hodgkin‘s disease. Radiother. Oncol., 30(1), 43–54 (1994).
  • Lipshultz SE , RifaiN, SallanSEet al. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation , 96(8), 2641–2648 (1997).
  • Levin ER , GardnerDG, SamsonWK. Natriuretic peptides. N. Engl. J. Med., 339(5), 321–328 (1998).
  • Cowie MR , MendezGF. BNP and congestive heart failure. Prog. Cardiovasc. Dis., 44(4), 293–321 (2002).
  • Linssen GC , BakkerSJ, VoorsAAet al. N-terminal pro-B-type natriuretic peptide is an independent predictor of cardiovascular morbidity and mortality in the general population. Eur. Heart J. , 31(1), 120–127 (2010).
  • Bibbins-Domingo K , GuptaR, NaBet al. N-terminal fragment of the prohormone brain-type natriuretic peptide (NT-proBNP), cardiovascular events, and mortality in patients with stable coronary heart disease. JAMA , 297, 169–176 (2007).
  • Trachtenberg BH , LandyDC, FrancoVIet al. Anthracycline-associated cardiotoxicity in survivors of childhood cancer. Pediatr. Cardiol. , 32, 342–353 (2011).
  • Franco VI , HenkelJM, MillerTL, LipshultzSE. Cardiovascular effects in childhood cancer survivors treated with anthracyclines. Cardiol. Res. Pract., 10, 134679 (2011).
  • Schwartz CL , HobbieWL, TruesdellS, ConstineLC, ClarkEB. Corrected QT interval prolongation in anthracycline-treated survivors of childhood cancer. J. Clin. Oncol., 11(10), 1906–1910 (1993).
  • Larsen RL , BarberG, HeiseCT, AugustCS. Exercise assessment of cardiac function in children and young adults before and after bone marrow transplantation. Pediatrics, 89(4 Pt 2), 722–729 (1992).
  • Weesner KM . Exercise echocardiography in the detection of anthracycline cardiotoxicity. Cancer, 68(2), 435–438 (1991).
  • Adams MJ , LipsitzSR, ColanSDet al. Cardiovascular status in long-term survivors of Hodgkin‘s disease treated with chest radiotherapy. J. Clin. Oncol. , 22(15), 3139–3148 (2004).
  • Hogenhuis J , JaarsmaT, VoorsAA, HillegeHL, LesmanI, van Veldhuisen DJ. Correlates of B-type natriuretic peptide and 6-min walk in heart failure patients. Int. J. Cardiol., 108(1), 63–67 (2006).
  • Ryberg M , NielsenD, SkovsgaardT, HansenJ, JensenBV, DombernowskyP. Epirubicin cardiotoxicity: an analysis of 469 patients with metastatic breast cancer. J. Clin. Oncol., 16(11), 3502–3508 (1998).
  • Legha SS , BenjaminRS, MackayBet al. Adriamycin therapy by continuous intravenous infusion in patients with metastatic breast cancer. Cancer , 49(9), 1762–1766 (1982).
  • Hortobagyi GN , FryeD, BuzdarAUet al. Decreased cardiac toxicity of doxorubicin administered by continuous intravenous infusion in combination chemotherapy for metastatic breast carcinoma. Cancer , 63(1), 37–45 (1989).
  • Shapira J , GotfriedM, LishnerM, RavidM. Reduced cardiotoxicity of doxorubicin by a 6-hour infusion regiment. A prospective evaluation. Cancer, 65(4), 870–873 (1990).
  • Lipshultz SE , GiantrisAL, LipsitzSRet al. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91–01 Acute Lymphoblastic Leukemia protocol. J. Clin. Oncol. , 20(6), 1677–1682 (2002).
  • Levitt GA , DorupI, SorensenK, SullivanI. Does anthracycline administration by infusion in children affect late cardiotoxicity? Br. J. Haematol., 24(4), 463–468 (2004).
  • Singal PK , IliskovicN. Doxorubicin-induced cardiomyopathy. N. Engl. J. Med., 339(13), 900–905 (1998).
  • Weiss RB . The anthracyclines: will we ever find a better doxorubicin? Semin. Oncol., 19(6), 670–686 (1992).
  • Ganzina F 4´-epi-doxorubicin, a new analogue of doxorubicin: a preliminary overview of preclinical and clinical data. Cancer Treat. Rev., 10(1), 1–22 (1983).
  • Lahtinen R , KuikkaJ, NousiaineneT, UusituoaM, LansimiesE. Cardiotoxicity of epirubicin and doxorubicin: a double-blind randomized study. Eur. J. Haematol., 46(5), 301–305 (1991).
  • Cottin Y , TouzeryC, DallozFet al. Comparison of epirubicin and doxorubicin cardiotoxicity induced by low doses: evolution of the diastolic and systolic parameters studies by radionuclide angiography. Clin. Cardiol. , 21(9), 665–670 (1998).
  • Dorr RT , ShippNG, LeeKM. Comparison of cytotoxicity in heart cells and tumor cells exposed to DNA intercalating agents in vitro. Anticancer Drugs, 2(1), 27–33 (1991).
  • Alderton PM , GrossJ, GreenMD. Comparative study of doxorubicin, mitoxantrone, and epirubicin in combination with ICRF-187 (ADR-529) in a chronic cardiotoxicity animal model. Cancer Res., 52(1), 194–201 (1992).
  • Herman EH , ZhangJ, HasinoffBB, ClarkJRJ, FerransVJ. Comparison of the structural changes induced by doxorubicin and mitoxantrone in the heart, kidney and intestine and characterization of the Fe(III)-mitoxantrone complex. J. Mol. Cell. Cardiol., 29(9), 2415–2430 (1997).
  • Creutzig U , RitterJ, ZimmermannMet al. Idarubicin improves blast cell clearance during induction therapy in children with AML: results of study AML-BFM 93. AML-BFM Study Group. Leukemia , 15(3), 348–354 (2001).
  • Tardi PG , BomanNL, CullisPR. Liposomal doxorubicin. J. Drug Target., 4(3), 129–140 (1996).
  • Batist G , RamakrishnanG, RaoCSet al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J. Clin. Oncol. , 19(5), 1444–1454 (2001).
  • Harris L , BatistG, BeltRet al. Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multi-center trial as first-line therapy of metastatic breast carcinoma. Cancer , 94(1), 25–36 (2002).
  • Safra T . Cardiac safety of liposomal anthracyclines. Oncologist, 8(2), 17–24 (2003).
  • Gabizon AA . Liposomal anthracyclines. Hematol. Oncol. Clin. North Am., 8(2), 431–450 (1994).
  • Money-Kyrle JF , BatesF, ReadyJ, GazzardBG, PhillipsRH, BoagFC. Liposomal daunorubicin in advanced Kaposi‘s sarcoma: a Phase II study. Clin. Oncol. (R. Coll. Radiol.), 5(6), 367–371 (1993).
  • Gill PS , WernzJ, ScaddenDT. Randomized Phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi‘s sarcoma. J. Clin. Oncol., 14(8), 2353–2364 (1996).
  • O‘Brien ME , WiglerN, InbarMet al. Reduced cardiotoxicity and comparable efficacy in a Phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol. , 15(3), 440–449 (2004).
  • Sieswerda E , KremerLC, CaronHN, van Dalen EC: The use of liposomal anthracycline analogues for childhood malignancies: a systematic review. Eur. J. Cancer, 47(13), 2000–2008 (2011).
  • Zimethbaum P , EderH, FrishmanW. Probucol: pharmacology and clinical application. J. Clin. Pharmacol., 30(1), 3–9 (1990).
  • Carew TE , SchwenkeDC, SteinbergD. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc. Natl Acad. Sci. USA, 84(21), 7725–7729 (1987).
  • Kuzuya M , KuzuyaF. Probucol as an antioxidant and antiatherogenic drug. Free Radic. Biol. Med., 14(1), 67–77 (1993).
  • Siveski-Iliskovic N , HillM, ChowDA, SinghalPK. Probucol protects against doxorubicin cardiomyopathy without interfering with its antitumor effect. Circulation, 91(1), 10–15 (1995).
  • Singal PK , DeallyCM, WeinbergLE. Subcellular effects of doxorubicin in the heart. A concise review. J. Mol. Cell. Cardiol., 19(8), 817–828 (1987).
  • Iliskovic N , SingalPK. Lipid lowering: an important factor in preventing doxorubicin-induced heart failure. Am. J. Pathol., 150(2), 727–734 (1997).
  • Iliskovic N , HasinoffBB, MaliszaKL, LiT, DanelisenI, SingalPK. Mechanisms of beneficial effects of probucol in doxorubicin cardiomyopathy. Mol. Cell. Biochem., 196(1–2), 43–49 (1999).
  • Li T , DanelisenI, Bello-KleinA, SingalPK. Effects of probucol on changes of antioxidant enzymes in doxorubicin-induced cardiomyopathy in rats. Cardiovasc. Res., 46(3), 523–530 (2000).
  • Li T , SingalPK. Adriamycin-induced early changes in myocardial antioxidant enzymes and their modulation by probucol. Circulation, 102(17), 2105–2110 (2000).
  • De Flora S , BennicelliC, SerraD, IzzottiA, CesaroneCF. Role of glutathione and N-acetylcysteine on the mutagenicity and carcinogenesis. In: Absorption and Utilization of Amino Acids (Volume 3). Friedman M (Ed.). CRC Press, FL, USA, 19–53 (1989).
  • Myers CE , BonowR, PalmeriSet al. A randomized controlled trial assessing the prevention of doxorubicin cardiomyopathy by N-acetylcysteine. Semin. Oncol. , 10(1), 53–55 (1983).
  • Frishman WH . Carvedilol. Drug Therapy, 339(24), 1759–1765 (1998).
  • Yue TL , ChengHY, LyskoPGet al. Carvedilol, a new vasodilator and beta adrenoreceptor antagonist, is an antioxidant and free radical scavenger. J. Pharmacol. Exper. Therap. , 263(1), 92–98 (1992).
  • Feuerstein GZ , RuffoloRR Jr. Carvedilol, a novel multiple action antihypertensive agent with antioxidant activity and the potential for myocardial and vascular protection. Eur. Heart J., 16, 38–42 (1995).
  • Noguchi N , NishinoK, NikiE. Antioxidant action of the antihypertensive drug, carvedilol, against lipid peroxidation. Biochem. Pharmacol., 59(9), 1069–1076 (2000).
  • Matsui H , MorishimaI, NumaguchiY, TokiY, OkumuraK, HayakawaT. Protective effects of carvedilol against doxorubicin-induced cardiomyopathy in rats. Life Sci., 65(12), 1265–1274 (1999).
  • Fazio S , PalmieriEA, FerravanteB, BoneF, BiondiB, SaccaL. Doxorubicin-induced cardiomyopathy treated with carvedilol. Clin. Cardiol., 21(10), 777–779 (1998).
  • Spallarossa P , GaribaldiS, AltieriPet al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J. Mol. Cell. Cardiol. , 37(4), 837–846 (2004).
  • Nakamae H , TsumuraK, TeradaYet al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer , 104(11), 2492–2498 (2005).
  • Tokudome T , MizushigeK, NomaTet al. Prevention of doxorubicin (adriamycin)-induced cardiomyopathy by simultaneous administration of angiotensin-converting enzyme inhibitor assessed by acoustic densitometry. J. Cardiovasc. Pharmacol. , 36(3), 361–368 (2000).
  • Fischer PW , SalloumF, DasA, HyderH, KukrejaRC. Phosphodiesterase-5 inhibition with Sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation, 111(13), 1601–1610 (2005).
  • Hanley PJ , DröseS, BrandtUet al. 5-hydroxydecanoate is metabolised in mitochondria and creates a rate-limiting bottleneck for beta-oxidation of fatty acids. J. Physiol. , 562(2), 307–318 (2005).
  • Di X , GenningsC, BearHDet al. Influence of the phosphodiesterase-5 inhibitor, Sildenafil, on sensitivity to chemotherapy in breast tumor cells. Breast Cancer Res. Treat. , 124(2), 349–360 (2010).
  • Essayan DM . Cyclic nucleotide phosphodiesterases. J. Allergy Clin. Immunol., 108(5), 671–680 (2001).
  • Asmis R , WangY, XuL, KsgatiM, BegleyJG, MieyalJJ. A novel thiol oxidation-based mechanism for adriamycin-induced cell injury in human macrophages. FASEB J., 19(13), 1866–1868 (2005).
  • Li W , LamMS, BirkelandAet al. Cell-based assays for profiling activity and safety properties of cancer drugs. J. Pharmacol. Toxicol. Methods. , 54(3), 313–319 (2006).
  • Raja SG , DantonMD, MacArthur,KJ, PollockJC. Effects of escalating doses of sildenafil on hemodynamics and gas exchange in children with pulmonary hypertension and congenital cardiac defects. J. Cardiothorac. Vasc. Anesth., 21(2), 203–207 (2007).
  • Karatza AA , BushA, MageeAG. Safety and efficacy of sildenafil therapy in children with pulmonary hypertension. Int. J. Cardiol., 100(2), 267–273 (2005).
  • Baquero H , SolizA, NeiraF, VenegasME, SolaA. Oral sildenafil in infants with persistent pulmonary hypertension of the newborn: a pilot randomized blinded study. Pediatrics, 117(4), 1077–1083 (2006).
  • Juliana AE , AbbadFCB. Severe persistent pulmonary hypertension of the newborn in a setting where limited resources exclude the use of inhaled nitric oxide: successful treatment with sildenafil. Eur. J. Pediatr., 164(10), 626–629 (2005).
  • Diez JJ , IglesiasP. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur. J. Endocrinol., 148(3), 293–300 (2003).
  • Konishi M , HaraguchiG, OhigashiHet al. Adiponectin protects against doxorubicin-induced cardiomyopathy by anti-apoptotic effects through AMPK upregulation. Cardiovasc. Res. , 89(2), 309–319 (2011).
  • Li L , TakemuraG, LiYet al. Preventive effect of erythropoietin on cardiac dysfunction in doxorubicin-induced cardiomyopathy. Circulation , 113(4), 535–543 (2006).
  • Hasinoff BB . The interaction of the cardioprotective agent ICRF-187 [+)-1, 2-bis(3, 5 dioxopiperazinyl-1-yL)propane); its hydrolysis product (ICRF-198); and other chelating agents with the Fe(III) and Cu(II) complexes of doxorubicin. Agents Actions, 26(3–4), 378–385 (1989).
  • Speyer JL , GreenMD, Zeleniuch-JacquotteAet al. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J. Clin. Oncol. , 10(1), 117–127 (1992).
  • Swain SM , WhaleyFS, GerberMC, EwerMS, BianchineJR, GamsRA. Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J. Clin. Oncol., 15(4), 1333–1340 (1997).
  • Wexler LH , AndrichMP, VenzonDet al. Randomized trial of the cardioprotective agent ICRF-187 in pediatric sarcoma patients treated with doxorubicin. J. Clin. Oncol. , 14(2), 362–372 (1996).
  • Swain SM , WhaleyFS, GerberMCet al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J. Clin. Oncol. , 15(4), 1318–1332 (1997).
  • Lopez M , ViciPet al., Di Lauro L Randomized prospective clinical trial to evaluate cardioprotection of dexrazoxane in patients with advanced breast cancer and soft tissue sarcomas. J. Clin. Oncol., 16(1), 86–92 (1998).
  • Lipshultz SE , ScullyRE, LipsitzSRet al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol. , 11(10), 950–961 (2010).
  • Tebbi CK , LondonWB, FriedmanDet al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin‘s disease. J. Clin. Oncol. , 25, 493–500 (2007).
  • Herman EH , ZhangJ, RifaiNet al. The use of serum levels of cardiac troponin T to compare the protective activity of dexrazoxane against doxorubicin- and mitoxantrone-induced cardiotoxicity. Cancer Chemother. Pharmacol. , 48(4), 297–304 (2001).
  • Barry EV , VroomanLM, DahlbergSEet al. Absence of secondary malignant neoplasms in children with high-risk acute lymphoblastic leukemia treated with dexrazoxane. J. Clin. Oncol. , 26, 1106–1111 (2008).
  • Vrooman LM , NeuberDS, StevensonKEet al. The low incidence of secondary acutemyelogenous leukaemia in children and adolescents treated with dexrazoxane for acute lymphoblastic leukaemia: a report from the Dana-Farber Cancer Institute ALL Consortium. Eur. J. Cancer , 47(9), 1373–1379 (2011).
  • Schuchter LM , HensleyML, MeropolNJ, WinerEP. Update of recommendations for the use of chemotherapy and radiotherapy protectants: clinical practice guidelines of the American Society of Clinical Oncology. J. Clin. Oncol., 20(12), 2895–2903 (2002).
  • Yang JL , FernandesDJ, SpeicherL, CapizziRL. Biochemical determinants of the cytoprotective effect of amifostine. Proc. Am. Cancer Res., 36, 3725 (1995).
  • Calabro-Jones PM , AguileraJA, WardJF, SmolukGD, FaheyRC. Uptake of WR-2721 derivatives by cells in cultures: identification of the transported form of the drug. Cancer Res., 48(13), 3634–3640 (1988).
  • Nazeyrollas P , FrancesC, PrevostAet al. Efficiency of amifostine as a protection against doxorubicin toxicity in rats during a 12-day treatment. Anticancer Res. , 23(1A), 405–409 (2003).
  • Dragojevic-Simic VM , DobricSL, BokonjicDRet al. Amifostine protection against doxorubicin cardiotoxicity in rats. Anticancer Drugs , 15(2), 169–178 (2004).
  • Herman EH , FerransVJ. Reduction of chronic doxorubicin cardiotoxicity in dogs by pretreatment with (+/-)-1, 2-bis (3, 5-dioxopipreazine-1-yl) propane (ICRF-187). Cancer Res., 41(9 Pt 1), 3436–3440 (1981).
  • The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N. Engl. J. Med., 325(5), 293–302 (1991).
  • Haq MM , LeghaSS, ChoskiJet al. Doxorubicin-induced congestive heart failure in adults. Cancer , 56(6), 1361–1365 (1985).
  • Redfield MM , GershBJ, BaileyKR, RodehefferRJ. Natural history of incidentally discovered asymptomatic idiopathic dilated cardiomyopathy. Am. J. Cardiol., 74(7), 737–739 (1994).
  • Sieswerda E , van Dalen EC, Postma A, Cheuk DK, Caron HN, Kremer LC: Medical interventions for treating anthracycline-induced symptomatic and asymptomatic cardiotoxicity during and after treatment for childhood cancer. Cochrane Database Syst. Rev., 7(9), CD008011 (2011).
  • Lipshultz SE , VlachSA, LipsitzSRet al. Cardiac changes associated with growth hormone therapy among children treated with anthracyclines. Pediatrics , 115, 1613–1622 (2005).
  • Silber JH , CnaanA, ClarkBJet al. Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. J. Clin. Oncol. , 22(5), 820–828 (2004).
  • Lipshultz SE , LipsitzSR, SallanSEet al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood Cancer J. Clin. Oncol. , 20, 4517–4522 (2002).
  • Mertens AC , SencerS, MyersCDet al. Complementary and alternative therapy use in adult survivors of childhood cancer: a report from the Childhood Cancer Survivor study. Pediatr. Blood Cancer , 50, 90–97 (2008).
  • Ibsen S , ZahavyE, WrasdiloW, BernsM, ChanM, EsenerS. A novel doxorubicin prodrug with controllable photolysis activation for cancer chemotherapy. Pharm. Res., 27(9), 1848–1860 (2010).
  • Young K , HareJM. Stem cells in cardiopulmonary development: Implications for novel approaches to therapy for pediatric cardiopulmonary diseases. Progr. Pediatr. Cardiol., 25(3), 37–49 (2008).
  • Assmus B , SchachingerV, TeupeCet al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation , 106(24), 3009–3017 (2002).
  • Schachinger V , AssmusB, BrittenMBet al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J. Am. Coll. Cardiol. , 44(8), 1690–1699 (2004).
  • Wollert KC , MeyerGP, LotzJet al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet , 364, 10–16 (2004).
  • Meyer GP , WollertKC, LotzJet al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months‘ follow-up data from the randomized, controlled BOOST (BOnemarrOw transfer to enhance ST-elevation infarct regeneration)trial. Circulation , 113(10), 1287–1294 (2006).
  • Pillekamp F , ReppelM, BrockmeierK, HeschelerJ. Stem cells and their potential relevance to paediatric cardiology. Cardiol. Young, 16(2), 117–124 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.