119
Views
0
CrossRef citations to date
0
Altmetric
Review

The Role of O-GlcNAc Transferase in Regulating the Gene Transcription of Developing and Failing Hearts

&
Pages 801-812 | Published online: 12 Dec 2014

References

  • Zeidan Q , HartGW . The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways . J. Cell Sci.123 ( Pt 1 ), 13 – 22 ( 2010 ).
  • Sakabe K , WangZ, HartGW . Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code . Proc. Natl Acad. Sci. USA107 ( 46 ), 19915 – 19920 ( 2010 ).
  • Kreppel LK , BlombergMA, HartGW . Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats . J. Biol. Chem.272 ( 14 ), 9308 – 9315 ( 1997 ).
  • Song M , KimHS, ParkJMet al. O-GlcNAc transferase is activated by CaMKIV-dependent phosphorylation under potassium chloride-induced depolarization in NG-108-115 cells . Cell. Signal.20 ( 1 ), 94 – 104 ( 2008 ).
  • Shafi R , IyerSP, ElliesLGet al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny . Proc. Natl Acad. Sci. USA97 ( 11 ), 5735 – 5739 ( 2000 ).
  • Kreppel LK , HartGW . Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats . J. Biol. Chem.274 ( 45 ), 32015 – 32022 ( 1999 ).
  • Lazarus BD , LoveDC, HanoverJA . Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates . Glycobiology16 ( 5 ), 415 – 421 ( 2006 ).
  • Marsh SA , Dell’ItaliaLJ, ChathamJC . Activation of the hexosamine biosynthesis pathway and protein O-GlcNAcylation modulate hypertrophic and cell signaling pathways in cardiomyocytes from diabetic mice . Amino Acids40 ( 3 ), 819 – 828 ( 2011 ).
  • Medford HM , ChathamJC, MarshSA . Chronic ingestion of a western diet increases O-linked-beta-N-acetylglucosamine (O-GlcNAc) protein modification in the rat heart . Life Sci.90 ( 23–24 ), 883 – 888 ( 2012 ).
  • Lunde IG , AronsenJM, KvaloyHet al. Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure . Physiol. Genom.44 ( 2 ), 162 – 172 ( 2012 ).
  • Laczy B , MarshSA, BrocksCA, WittmannI, ChathamJC . Inhibition of O-GlcNAcase in perfused rat hearts by NAG-thiazolines at the time of reperfusion is cardioprotective in an O-GlcNAc-dependent manner . Am. J. Physiol. Heart Circ. Physiol.299 ( 5 ), H1715 – H1727 ( 2010 ).
  • Champattanachai V , MarchaseRB, ChathamJC . Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein-associated O-GlcNAc . Am. J. Physiol. Cell. Physiol.292 ( 1 ), C178 – C187 ( 2007 ).
  • O’Donnell N , ZacharaNE, HartGW, MarthJD . Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability . Mol. Cell. Biol.24 ( 4 ), 1680 – 1690 ( 2004 ).
  • Watson LJ , FacundoHT, NgohGAet al. O-linked beta-N-acetylglucosamine transferase is indispensable in the failing heart . Proc. Natl Acad. Sci. USA107 ( 41 ), 17797 – 17802 ( 2010 ).
  • Watson LJ , LongBW, DemartinoAMet al. Cardiomyocyte Ogt is essential for postnatal viability . Am. J. Physiol. Heart Circ. Physiol.306 ( 1 ), H142 – H153 ( 2014 ).
  • Zachara NE , O’DonnellN, CheungWD, MercerJJ, MarthJD, HartGW . Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells . J. Biol. Chem.279 ( 29 ), 30133 – 30142 ( 2004 ).
  • Bernardo BC , WeeksKL, PretoriusL, McMullenJR . Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies . Pharmacol. Ther.128 ( 1 ), 191 – 227 ( 2010 ).
  • Fulop N , MasonMM, DuttaKet al. Impact of Type 2 diabetes and aging on cardiomyocyte function and O-linked N-acetylglucosamine levels in the heart . Am. J. Physiol. Cell Physiol.292 ( 4 ), C1370 – 1378 ( 2007 ).
  • Clark RJ , McDonoughPM, SwansonEet al. Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation . J. Biol. Chem.278 ( 45 ), 44230 – 44237 ( 2003 ).
  • Taylor RP , ParkerGJ, HazelMWet al. Glucose deprivation stimulates O-GlcNAc modification of proteins through up-regulation of O-linked N-acetylglucosaminyltransferase . J. Biol. Chem.283 ( 10 ), 6050 – 6057 ( 2008 ).
  • Dias WB , CheungWD, WangZ, HartGW . Regulation of calcium/calmodulin-dependent kinase IV by O-GlcNAc modification . J. Biol. Chem.284 ( 32 ), 21327 – 21337 ( 2009 ).
  • Anderson ME , BrownJH, BersDM . CaMKII in myocardial hypertrophy and heart failure . J. Mol. Cell. Cardiol.51 ( 4 ), 468 – 473 ( 2011 ).
  • Erickson JR , PereiraL, WangLet al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation . Nature502 ( 7471 ), 372 – 376 ( 2013 ).
  • Zou L , Zhu-MauldinX, MarchaseRBet al. Glucose deprivation-induced increase in protein O-GlcNAcylation in cardiomyocytes is calcium-dependent . J. Biol. Chem.287 ( 41 ), 34419 – 34431 ( 2012 ).
  • Zhu-Mauldin X , MarshSA, ZouL, MarchaseRB, ChathamJC . Modification of STIM1 by O-linked N-acetylglucosamine (O-GlcNAc) attenuates store-operated calcium entry in neonatal cardiomyocytes . J. Biol. Chem.287 ( 46 ), 39094 – 39106 ( 2012 ).
  • Collins HE , Zhu-MauldinX, MarchaseRB, ChathamJC . STIM1/Orai1-mediated SOCE: current perspectives and potential roles in cardiac function and pathology . Am. J. Physiol. Heart Circ. Physiol.305 ( 4 ), H446 – 458 ( 2013 ).
  • Ruthenburg AJ , LiH, PatelDJ, AllisCD . Multivalent engagement of chromatin modifications by linked binding modules . Nat. Rev. Mol. Cell Biol.8 ( 12 ), 983 – 994 ( 2007 ).
  • Sims RJ 3rd , ReinbergD . Is there a code embedded in proteins that is based on post-translational modifications?Nat. Rev. Mol. Cell Biol.9 ( 10 ), 815 – 820 ( 2008 ).
  • Kelly WG , DahmusME, HartGW . RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc . J. Biol. Chem.268 ( 14 ), 10416 – 10424 ( 1993 ).
  • Ranuncolo SM , GhoshS, HanoverJA, HartGW, LewisBA . Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo . J. Biol. Chem.287 ( 28 ), 23549 – 23561 ( 2012 ).
  • Yang X , ZhangF, KudlowJE . Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression . Cell110 ( 1 ), 69 – 80 ( 2002 ).
  • Zachara NE , MolinaH, WongKY, PandeyA, HartGW . The dynamic stress-induced ‘O-GlcNAc-ome’ highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways . Amino Acids40 ( 3 ), 793 – 808 ( 2011 ).
  • Ogawa M , SakakibaraY, KamemuraK . Requirement of decreased O-GlcNAc glycosylation of Mef2D for its recruitment to the myogenin promoter . Biochem. Biophys. Res. Commun.433 ( 4 ), 558 – 562 ( 2013 ).
  • McKinsey TA , ZhangCL, OlsonEN . Signaling chromatin to make muscle . Curr. Opin. Cell Biol.14 ( 6 ), 763 – 772 ( 2002 ).
  • Medford HM , PorterK, MarshSA . Immediate effects of a single exercise bout on protein O-GlcNAcylation and chromatin regulation of cardiac hypertrophy . Am. J. Physiol. Heart Circ. Physiol.305 ( 1 ), H114 – 123 ( 2013 ).
  • Medford HM , CoxEJ, MillerLE, MarshSA . Consuming a western diet for two weeks suppresses fetal genes in mouse hearts . Am. J. Physiol. Regul. Integrat. Comparat. Physiol.306 ( 8 ), R519 – R526 ( 2014 ).
  • Xie M , HillJA . HDAC-dependent ventricular remodeling . Trends Cardiovasc. Med.23 ( 6 ), 229 – 235 ( 2013 ).
  • Papait R , CattaneoP, KunderfrancoPet al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy . Proc. Natl Acad. Sci. USA110 ( 50 ), 20164 – 20169 ( 2013 ).
  • Hanover JA , KrauseMW, LoveDC . Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation . Nat. Rev. Mol. Cell Biol.13 ( 5 ), 312 – 321 ( 2012 ).
  • Sinclair DA , SyrzyckaM, MacauleyMSet al. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc) . Proc. Natl Acad. Sci. USA106 ( 32 ), 13427 – 13432 ( 2009 ).
  • Pfeifer GP , KadamS, JinSG . 5-hydroxymethylcytosine and its potential roles in development and cancer . Epigenetics Chromatin6 ( 1 ), 10 ( 2013 ).
  • Chen Q , ChenY, BianC, FujikiR, YuX . TET2 promotes histone O-GlcNAcylation during gene transcription . Nature493 ( 7433 ), 561 – 564 ( 2013 ).
  • Jang H , KimTW, YoonSet al. O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network . Cell Stem Cell11 ( 1 ), 62 – 74 ( 2012 ).
  • Vella P , ScelfoA, JammulaSet al. Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells . Mol. Cell49 ( 4 ), 645 – 656 ( 2013 ).
  • Zhang Y , LiTS, LeeSTet al. Dedifferentiation and proliferation of mammalian cardiomyocytes . PLoS ONE5 ( 9 ), e12559 ( 2010 ).
  • Morrisey EE . Rewind to recover: dedifferentiation after cardiac injury . Cell Stem Cell9 ( 5 ), 387 – 388 ( 2011 ).
  • Peng W , ZhangY, ZhengMet al. Cardioprotection by CaMKII-deltaB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70 . Circ. Res.106 ( 1 ), 102 – 110 ( 2010 ).
  • Little GH , SawA, BaiYet al. Critical role of nuclear calcium/calmodulin-dependent protein kinase IIdeltaB in cardiomyocyte survival in cardiomyopathy . J. Biol. Chem.284 ( 37 ), 24857 – 24868 ( 2009 ).
  • Backs J , BacksT, NeefSet al. The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload . Proc. Natl Acad. Sci. USA106 ( 7 ), 2342 – 2347 ( 2009 ).
  • Backs J , SongK, BezprozvannayaS, ChangS, OlsonEN . CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy . J. Clin. Invest.116 ( 7 ), 1853 – 1864 ( 2006 ).
  • Nakagawa Y , KuwaharaK, HaradaMet al. Class II HDACs mediate CaMK-dependent signaling to NRSF in ventricular myocytes . J. Mol. Cell. Cardiol.41 ( 6 ), 1010 – 1022 ( 2006 ).
  • Zhang T , KohlhaasM, BacksJet al. CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses . J. Biol. Chem.282 ( 48 ), 35078 – 35087 ( 2007 ).
  • Jopling C , SleepE, RayaM, MartiM, RayaA, Izpisua BelmonteJC . Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation . Nature464 ( 7288 ), 606 – 609 ( 2010 ).
  • Kubin T , PolingJ, KostinSet al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling . Cell Stem Cell9 ( 5 ), 420 – 432 ( 2011 ).
  • Gupta R , BrunakS . Prediction of glycosylation across the human proteome and the correlation to protein function . Pac. Symp. Biocomput.2002, 310 – 322 ( 2002 ).
  • YinOYang server . www.cbs.dtu.dk/services/YinOYang .
  • Bergmann O , BhardwajRD, BernardSet al. Evidence for cardiomyocyte renewal in humans . Science324 ( 5923 ), 98 – 102 ( 2009 ).
  • Kim HS , ParkSY, ChoiYRet al. Excessive O-GlcNAcylation of proteins suppresses spontaneous cardiogenesis in ES cells . FEBS Lett.583 ( 15 ), 2474 – 2478 ( 2009 ).
  • Hoch B , WobusAM, KrauseEG, KarczewskiP . delta-Ca2+/calmodulin-dependent protein kinase II expression pattern in adult mouse heart and cardiogenic differentiation of embryonic stem cells . J. Cell. Biochem.79 ( 2 ), 293 – 300 ( 2000 ).
  • Grey C , MeryA, PuceatM . Fine-tuning in Ca2+ homeostasis underlies progression of cardiomyopathy in myocytes derived from genetically modified embryonic stem cells . Hum. Mol. Genet.14 ( 10 ), 1367 – 1377 ( 2005 ).
  • Gray CB , Heller BrownJ . CaMKIIdelta subtypes: localization and function . Front. Pharmacol.5, 15 ( 2014 ).
  • Shi FT , KimH, LuWet al. Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells . J. Biol. Chem.288 ( 29 ), 20776 – 20784 ( 2013 ).
  • Zafir A , ReadnowerR, LongBWet al. Protein O-GlcNAcylation is a novel cytoprotective signal in cardiac stem cells . Stem Cells31 ( 4 ), 765 – 775 ( 2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.