208
Views
0
CrossRef citations to date
0
Altmetric
Review

PET Imaging of Atherosclerosis

, , &
Pages 115-131 | Published online: 21 Jan 2015

References

  • Falk E . Pathogenesis of atherosclerosis . J. Am. Coll. Cardiol.47 ( 8 ), C7 – C12 ( 2006 ).
  • Libby P , TherouxP . Pathophysiology of coronary artery disease . Circulation111 ( 25 ), 3481 – 3488 ( 2005 ).
  • Wentzel JJ , ChatzizisisYS, GijsenFJH, GiannoglouGD, FeldmanCL, StonePH . Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions . Cardiovasc. Res.96 ( 2 ), 234 – 243 ( 2012 ).
  • Stone PH , SaitoS, TakahashiSet al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION study . Circulation126 ( 2 ), 172 – 181 ( 2012 ).
  • Stary HC , ChandlerAB, GlagovSet al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association . Circulation89 ( 5 ), 2462 – 2478 ( 1994 ).
  • Stary HC , ChandlerAB, DinsmoreREet al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association . Circulation92 ( 5 ), 1355 – 1374 ( 1995 ).
  • Davies MJ , ThomasA . Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death . N. Engl. J. Med.310 ( 18 ), 1137 – 1140 ( 1984 ).
  • Virmani R , KolodgieFD, BurkeAP, FarbA, SchwartzSM . Lessons from sudden coronary death : a comprehensive morphological classification scheme for atherosclerotic lesions . Arterioscler. Thromb. Vasc. Biol.20 ( 5 ), 1262 – 1275 ( 2000 ).
  • Lozano R , NaghaviM, ForemanKet al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010 . Lancet380 ( 9859 ), 2095 – 2128 ( 2013 ).
  • Global Atlas on Cardiovascular Disease Prevention and Control. Mendis S , PuskaP, NorrvingB, MendisS, PuskaP, NorrvingB ( Eds ). WHO, Switzerland ( 2011 ).
  • Nichols M , TownsendN, Luengo-FernandezRet al. European Cardiovascular Disease Statistics 2012. L⊘gstrup S , O’KellyS ( Eds ). European Heart Network, Belgium, and European Society of Cardiology, France ( 2012 ).
  • Go AS , MozaffarianD, RogerVLet al. Heart disease and stroke statistics – 2014 update: a report from the American Heart Association . Circulation129 ( 3 ), e28 – e292 ( 2014 ).
  • Glagov S , WeisenbergE, ZarinsCK, StankunaviciusR, KolettisGJ . Compensatory enlargement of human atherosclerotic coronary arteries . N. Engl. J. Med.316 ( 22 ), 1371 – 1375 ( 1987 ).
  • Varnava AM , MillsPG, DaviesMJ . Relationship between coronary artery remodeling and plaque vulnerability . Circulation105 ( 8 ), 939 – 943 ( 2002 ).
  • Smits PC , PasterkampG, van UffordMAQet al. Coronary artery disease: arterial remodelling and clinical presentation . Heart82 ( 4 ), 461 – 464 ( 1999 ).
  • Mintz GS , PainterJA, PichardADet al. Atherosclerosis in angiographically ‘normal’ coronary artery reference segments: an intravascular ultrasound study with clinical correlations . J. Am. Coll. Cardiol.25 ( 7 ), 1479 – 1485 ( 1995 ).
  • Hackett DD , DaviesGG, MaseriAA . Pre-existing coronary stenoses in patients with first myocardial infarction are not necessarily severe . Eur. Heart J.9 ( 12 ), 1317 – 1323 ( 1988 ).
  • Ambrose JAJ , TannenbaumMAM, AlexopoulosDDet al. Angiographic progression of coronary artery disease and the development of myocardial infarction . J. Am. Coll. Cardiol.12 ( 1 ), 56 – 62 ( 1988 ).
  • Little WC , ConstantinescuM, ApplegateRJet al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 78 ( 5 ), 1157 – 1166 ( 1988 ).
  • Narula J , NakanoM, VirmaniRet al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques . J. Am. Coll. Cardiol.61 ( 10 ), 1041 – 1051 ( 2013 ).
  • Tian J , RenX, VergalloRet al. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study . J. Am. Coll. Cardiol.63 ( 21 ), 2209 – 2216 ( 2014 ).
  • Arbab-Zadeh A , NakanoM, VirmaniR, FusterV . Acute coronary events . Circulation125 ( 9 ), 1147 – 1156 ( 2012 ).
  • Zaman T , AgarwalS, AnabtawiAGet al. Angiographic lesion severity and subsequent myocardial infarction . Am. J. Cardiol.110 ( 2 ), 167 – 172 ( 2012 ).
  • Ojio S , TakatsuH, TanakaTet al. Considerable time from the onset of plaque rupture and/or thrombi until the onset of acute myocardial infarction in humans coronary angiographic findings within 1 week before the onset of infarction . Circulation102 ( 17 ), 2063 – 2069 ( 2000 ).
  • Puri R , NichollsSJ, EllisSG, TuzcuEM, KapadiaSR . High-risk coronary atheroma: the interplay between ischemia, plaque burden, and disease progression . J. Am. Coll. Cardiol.63 ( 12 ), 1134 – 1140 ( 2014 ).
  • Bentzon JF , OtsukaF, VirmaniR, FalkE . Mechanisms of plaque formation and rupture . Circ. Res.114 ( 12 ), 1852 – 1866 ( 2014 ).
  • Falk E , NakanoM, BentzonJF, FinnAV, VirmaniR . Update on acute coronary syndromes: the pathologists’ view . Eur. Heart J.34 ( 10 ), 719 – 728 ( 2013 ).
  • Prati F , AlbertucciM . Searching between the plaques layers to understand the past and predict the future . J. Am. Coll. Cardiol.63 ( 21 ), 2217 – 2219 ( 2014 ).
  • Epstein FH , RossR . Atherosclerosis – an inflammatory disease . N. Engl. J. Med.340 ( 2 ), 115 – 126 ( 1999 ).
  • Libby P . Inflammation in atherosclerosis . Arterioscler. Thromb. Vasc. Biol.32 ( 9 ), 2045 – 2051 ( 2012 ).
  • Dutta P , CourtiesG, WeiYet al. Myocardial infarction accelerates atherosclerosis . Nature487 ( 7407 ), 325 – 329 ( 2012 ).
  • Virmani R , BurkeAP, FarbA, KolodgieFD . Pathology of the vulnerable plaque . J. Am. Coll. Cardiol.47 ( 8 ), C13 – C18 ( 2006 ).
  • Stone GW , MaeharaA, LanskyAJet al. A prospective natural-history study of coronary atherosclerosis . N. Engl. J. Med.364 ( 3 ), 226 – 235 ( 2011 ).
  • Calvert PA , ObaidDR, O’SullivanMet al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) study . JACC Cardiovasc. Imaging4 ( 8 ), 894 – 901 ( 2011 ).
  • Falk E , ShahPK, FusterV . Coronary plaque disruption . Circulation92 ( 3 ), 657 – 671 ( 1995 ).
  • Noguchi T , KawasakiT, TanakaAet al. High-intensity signals in coronary plaques on noncontrast T1-weighted magnetic resonance imaging as a novel determinant of coronary events . J. Am. Coll. Cardiol.63 ( 10 ), 989 – 999 ( 2014 ).
  • Libby P . Molecular bases of the acute coronary syndromes . Circulation91 ( 11 ), 2844 – 2850 ( 1995 ).
  • Galis ZS , SukhovaGK, LarkMW, LibbyP . Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques . J. Clin. Invest.94 ( 6 ), 2493 – 2503 ( 1994 ).
  • Sluimer JC , GascJ-M, van WanroijJLet al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis . J. Am. Coll. Cardiol.51 ( 13 ), 1258 – 1265 ( 2008 ).
  • Sluimer JC , DaemenMJ . Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis . 218 ( 1 ), 7 – 29 ( 2009 ).
  • Virmani R . Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage . Arterioscler. Thromb. Vasc. Biol.25 ( 10 ), 2054 – 2061 ( 2005 ).
  • Marsch E , SluimerJC, DaemenMJAP . Hypoxia in atherosclerosis and inflammation . Curr. Opin Lipidol.24 ( 5 ), 393 – 400 ( 2013 ).
  • Boström P , MagnussonB, SvenssonP-Aet al. Hypoxia converts human macrophages into triglyceride-loaded foam cells . Arterioscler. Thromb. Vasc. Biol.26 ( 8 ), 1871 – 1876 ( 2006 ).
  • Aikawa E , NahrendorfM, FigueiredoJ-Let al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo . Circulation116 ( 24 ), 2841 – 2850 ( 2007 ).
  • Menini S , IacobiniC, RicciCet al. The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis . Cardiovasc. Res.100 ( 3 ), 472 – 480 ( 2013 ).
  • New SEP , GoettschC, AikawaMet al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques . Circ. Res.113 ( 1 ), 72 – 77 ( 2013 ).
  • Kataoka Y , WolskiK, UnoKet al. Spotty calcification as a marker of accelerated progression of coronary atherosclerosis: insights from serial intravascular ultrasound . J. Am. Coll. Cardiol.59 ( 18 ), 1592 – 1597 ( 2012 ).
  • Vengrenyuk Y , CarlierS, XanthosSet al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps . Proc. Natl Acad. Sci. USA103 ( 40 ), 14678 – 14683 ( 2006 ).
  • Abedin M , TintutY, DemerLL . Vascular calcification: mechanisms and clinical ramifications . Arterioscler. Thromb. Vasc. Biol.24 ( 7 ), 1161 – 1170 ( 2004 ).
  • Mochizuki T , TsukamotoE, KugeYet al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models . J. Nucl. Med.42 ( 10 ), 1551 – 1555 ( 2001 ).
  • Zanzonico P . Positron emission tomography: a review of basic principles, scanner design and performance, and current systems . Semin. Nucl. Med.34 ( 2 ), 87 – 111 ( 2004 ).
  • Bucerius J , ManiV, MoncrieffCet al. Optimizing 18F-FDG PET/CT imaging of vessel wall inflammation: the impact of 18F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels . Eur. J. Nucl. Med. Mol. Imaging41 ( 2 ), 369 – 383 ( 2013 ).
  • Vallabhajosula S , MachacJ, KnesaurekKet al. Imaging atherosclerotic macrophage density by positron emission tomography using F-18-fluorodeoxyglucose (FDG) . J. Nucl. Med.5, ( 38 ), 144 ( 1996 ).
  • Helft G , WorthleySG, ZhangZYet al. Non-invasive in vivo imaging of atherosclerotic lesions using fluorine-18 deoxyglucose (18-FDG) pet correlates with macrophage content in a rabbit model . Circulation100 ( 18 Suppl. ), I1 – I928 ( 1999 ).
  • Lederman RJ , RaylmanRR, FisherSJet al. Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG) . Nucl. Med. Commun.22 ( 7 ), 747 – 753 ( 2001 ).
  • Yun M , YehD, AraujoLI, JangS, NewbergA, AlaviA . F-18 FDG uptake in the large arteries: a new observation . Clin. Nucl. Med.26 ( 4 ), 314 – 319 ( 2001 ).
  • Rudd JH , WarburtonEA, FryerTDet al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography . Circulation105 ( 23 ), 2708 – 2711 ( 2002 ).
  • Tawakol A , MigrinoRQ, BashianGGet al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients . J. Am. Coll. Cardiol.48 ( 9 ), 1818 – 1824 ( 2006 ).
  • Niccoli Asabella A , CicconeMM, CorteseFet al. Higher reliability of 18F-FDG target background ratio compared to standardized uptake value in vulnerable carotid plaque detection: a pilot study . Ann. Nucl. Med.28 ( 6 ), 571 – 579 ( 2014 ).
  • Bural GG , TorigianDA, ChamroonratWet al. FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries . Eur. J. Nucl. Med. Mol. Imaging35 ( 3 ), 562 – 569 ( 2008 ).
  • Rudd JHF , MyersKS, BansilalSet al. Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers: a prospective fluorodeoxyglucose positron-emission tomography/computed tomography imaging study . Circ. Cardiovasc. Imaging2 ( 2 ), 107 – 115 ( 2009 ).
  • Wassélius JA , LarssonSA, JacobssonH . FDG-accumulating atherosclerotic plaques identified with 18F-FDG-PET/CT in 141 patients . Mol. Imaging Biol.11 ( 6 ), 455 – 459 ( 2009 ).
  • Noh TS , MoonS-H, ChoYSet al. Relation of carotid artery 18F-FDG uptake to C-reactive protein and Framingham risk score in a large cohort of asymptomatic adults . J. Nucl. Med.54 ( 12 ), 2070 – 2076 ( 2013 ).
  • Yoo HJ , KimS, ParkMSet al. Vascular inflammation stratified by C-reactive protein and low-density lipoprotein cholesterol levels: analysis with 18F-FDG PET . J. Nucl. Med.52 ( 1 ), 10 – 17 ( 2011 ).
  • Græbe M , PedersenSF, H⊘jgaardL, KjærA, SillesenH . 18FDG PET and ultrasound echolucency in carotid artery plaques . JACC Cardiovasc. Imaging3 ( 3 ), 289 – 295 ( 2010 ).
  • Silvera SS , AidiHE, RuddJHFet al. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries . Atherosclerosis207 ( 1 ), 139 – 143 ( 2009 ).
  • Figueroa AL , SubramanianSS, CuryRCet al. Distribution of inflammation within carotid atherosclerotic plaques with high-risk morphological features: a comparison between positron emission tomography activity, plaque morphology, and histopathology . Circ. Cardiovasc. Imaging5 ( 1 ), 69 – 77 ( 2012 ).
  • Rudd JHF , MyersKS, BansilalSet al. 18Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials . J. Am. Coll. Cardiol.50 ( 9 ), 892 – 896 ( 2007 ).
  • Rudd JHF , MyersKS, BansilalSet al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations . J. Nucl. Med.49 ( 6 ), 871 – 878 ( 2008 ).
  • Font MA , FernandezA, CarvajalAet al. Imaging of early inflammation in low-to-moderate carotid stenosis by 18-FDG-PET . Front. Biosci. (Landmark Ed.)14, 3352 – 3360 ( 2009 ).
  • Pedersen SF , GræbeM, Fisker HagAM, H⊘jgaardL, SillesenH, KjærA . Gene expression and 18FDG uptake in atherosclerotic carotid plaques . Nucl. Med. Commun.31 ( 5 ), 423 – 429 ( 2010 ).
  • Græbe M , PedersenSF, BorgwardtL, H⊘jgaardL, SillesenH, KjaerA . Molecular pathology in vulnerable carotid plaques: correlation with [18]-fluorodeoxyglucose positron emission tomography (FDG-PET) . Eur. J. Vasc. Endovasc. Surg.37 ( 6 ), 714 – 721 ( 2009 ).
  • Folco EJ , SheikineY, RochaVZet al. Hypoxia but not inflammation augments glucose uptake in human macrophages . J. Am. Coll. Cardiol.58 ( 6 ), 603 – 614 ( 2011 ).
  • Pedersen SF , GræbeM, HagAMF, H⊘jgaardL, SillesenH, KjærA . 18F-FDG imaging of human atherosclerotic carotid plaques reflects gene expression of the key hypoxia marker HIF-1α . Am. J. Nucl. Med. Mol. Imaging3 ( 5 ), 384 – 392 ( 2013 ).
  • Pedersen SF , GræbeM, HagAMF, HoejgaardL, SillesenH, KjærA . Microvessel density but not neoangiogenesis is associated with 18F-FDG uptake in human atherosclerotic carotid plaques . Mol. Imaging Biol.14 ( 3 ), 384 – 392 ( 2011 ).
  • Ogawa M , NakamuraS, SaitoY, KosugiM, MagataY . What can be seen by 18F-FDG PET in atherosclerosis imaging? The effect of foam cell formation on 18F-FDG uptake to macrophages in vitro . J. Nucl. Med.53 ( 1 ), 55 – 58 ( 2012 ).
  • Satomi T , OgawaM, MoriIet al. Comparison of contrast agents for atherosclerosis imaging using cultured macrophages: FDG versus ultrasmall superparamagnetic iron oxide . J. Nucl. Med.54 ( 6 ), 999 – 1004 ( 2013 ).
  • Dunphy MPS , FreimanA, LarsonSM, StraussHW . Association of vascular 18F-FDG uptake with vascular calcification . J. Nucl. Med.46 ( 8 ), 1278 – 1284 ( 2005 ).
  • Menezes LJ , KotzeCW, AguOet al. Investigating vulnerable atheroma using combined 18F-FDG PET/CT angiography of carotid plaque with immunohistochemical validation . J. Nucl. Med.52 ( 11 ), 1698 – 1703 ( 2011 ).
  • Ben-Haim S , KupzovE, TamirA, FrenkelA, IsraelO . Changing patterns of abnormal vascular wall F-18 fluorodeoxyglucose uptake on follow-up PET/CT studies . J. Nucl. Cardiol.13 ( 6 ), 791 – 800 ( 2006 ).
  • Elkhawad M , RuddJHF, Sarov-BlatLet al. Effects of p38 mitogen-activated protein kinase inhibition on vascular and systemic inflammation in patients with atherosclerosis . JACC Cardiovasc. Imaging5 ( 9 ), 911 – 922 ( 2012 ).
  • Fayad ZA , ManiV, WoodwardMet al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial . Lancet378 ( 9802 ), 1547 – 1559 ( 2011 ).
  • Ryu Y , YoshidaK, SuzukiYet al. Long-term changes of aortic 18F-FDG uptake and calcification in health-screening subjects . Ann. Nucl. Med.27 ( 3 ), 239 – 246 ( 2012 ).
  • Alexopoulos N , KatritsisD, RaggiP . Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis . Atherosclerosis233 ( 1 ), 104 – 112 ( 2014 ).
  • Grundy SM . Obesity, metabolic syndrome, and coronary atherosclerosis . Circulation105 ( 23 ), 2696 – 2698 ( 2002 ).
  • Apovian CM , BigorniaS, MottMet al. Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects . Arterioscler. Thromb. Vasc. Biol.28 ( 9 ), 1654 – 1659 ( 2008 ).
  • Bucerius J , ManiV, WongSet al. Arterial and fat tissue inflammation are highly correlated: a prospective 18F-FDG PET/CT study . Eur. J. Nucl. Med. Mol. Imaging41 ( 5 ), 934 – 945 ( 2014 ).
  • Kang S , KyungC, ParkJSet al. Subclinical vascular inflammation in subjects with normal weight obesity and its association with body fat: an 18 F-FDG-PET/CT study . Cardiovasc. Diabetol.13 ( 1 ), 70 ( 2014 ).
  • Kim TN , KimS, YangSJet al. Vascular inflammation in patients with impaired glucose tolerance and Type 2 diabetes: analysis with 18F-fluorodeoxyglucose positron emission tomography . Circ. Cardiovasc. Imaging3 ( 2 ), 142 – 148 ( 2010 ).
  • Tahara N , KaiH, YamagishiS-Iet al. Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome . J. Am. Coll. Cardiol.49 ( 14 ), 1533 – 1539 ( 2007 ).
  • Kim EJ , KimS, SeoHS, KangDO . The metabolic activity of the spleen and bone marrow in patients with acute myocardial infarction evaluated by 18F-FDG PET imaging . Circ. Cardiovasc. Imaging7 ( 3 ), 454 – 460 ( 2014 ).
  • Davies JR , RuddJHF, FryerTDet al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging . Stroke36 ( 12 ), 2642 – 2647 ( 2005 ).
  • Moustafa RR , Izquierdo-GarciaD, FryerTDet al. Carotid plaque inflammation is associated with cerebral microembolism in patients with recent transient ischemic attack or stroke: a pilot study . Circ. Cardiovasc. Imaging3 ( 5 ), 536 – 541 ( 2010 ).
  • Marnane M , MerwickA, SheehanOCet al. Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence . Ann. Neurol.71 ( 5 ), 709 – 718 ( 2012 ).
  • Chróinín DN , MarnaneM, AkijianLet al. Serum lipids associated with inflammation-related PET-FDG uptake in symptomatic carotid plaque . Neurology82 ( 19 ), 1693 – 1699 ( 2014 ).
  • Paulmier B , DuetM, KhayatRet al. Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events . J. Nucl. Cardiol.15 ( 2 ), 209 – 217 ( 2008 ).
  • Rominger A , SaamT, WolpersSet al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease . J. Nucl. Med.50 ( 10 ), 1611 – 1620 ( 2009 ).
  • Figueroa AL , AbdelbakyA, TruongQAet al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events . JACC Cardiovasc. Imaging6 ( 12 ), 1250 – 1259 ( 2013 ).
  • Muntendam P , McCallC, SanzJ, FalkE, FusterV ; High-Risk Plaque Initiative . The BioImage Study: novel approaches to risk assessment in the primary prevention of atherosclerotic cardiovascular disease – study design and objectives . Am. Heart J.160 ( 1 ), 49 – 57.e1 ( 2010 ).
  • Fernández-Ortiz A , Jiménez-BorregueroLJ, PeñalvoJLet al. The Progression and Early Detection of Subclinical Atherosclerosis (PESA) study: rationale and design . Am. Heart J.166 ( 6 ), 990 – 998 ( 2013 ).
  • Tahara N , KaiH, IshibashiMet al. Simvastatin attenuates plaque inflammation . J. Am. Coll. Cardiol.48 ( 9 ), 1825 – 1831 ( 2006 ).
  • Ishii H , NishioM, TakahashiHet al. Comparison of atorvastatin 5 and 20 mg/d for reducing F-18 fluorodeoxyglucose uptake in atherosclerotic plaques on positron emission tomography/computed tomography: a randomized, investigator-blinded, open-label, 6-month study in Japanese adults scheduled for percutaneous coronary intervention . Clin. Ther.32 ( 14 ), 2337 – 2347 ( 2010 ).
  • Wu Y-W , KaoH-L, HuangC-Let al. The effects of 3-month atorvastatin therapy on arterial inflammation, calcification, abdominal adipose tissue and circulating biomarkers . Eur. J. Nucl. Med. Mol. Imaging39 ( 3 ), 399 – 407 ( 2011 ).
  • Tawakol A , FayadZA, MoggRet al. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study . J. Am. Coll. Cardiol.62 ( 10 ), 909 – 917 ( 2013 ).
  • Subramanian S , EmamiH, VucicEet al. High-dose atorvastatin reduces periodontal inflammation: a novel pleiotropic effect of statins . J. Am. Coll. Cardiol.62 ( 25 ), 2382 – 2391 ( 2013 ).
  • Tawakol A , SinghP, RuddJHFet al. Effect of treatment for 12 weeks with rilapladib, a lipoprotein-associated phospholipase A2 inhibitor, on arterial inflammation as assessed with 18F-fluorodeoxyglucose-positron emission tomography imaging . J. Am. Coll. Cardiol.63 ( 1 ), 86 – 88 ( 2014 ).
  • Burg S , DupasA, StuteSet al. Partial volume effect estimation and correction in the aortic vascular wall in PET imaging . Phys. Med. Biol.58 ( 21 ), 7527 – 7542 ( 2013 ).
  • Izquierdo-Garcia D , DaviesJR, GravesMJet al. Comparison of methods for magnetic resonance-guided [18-F]fluorodeoxyglucose positron emission tomography in human carotid arteries: reproducibility, partial volume correction, and correlation between methods . Stroke40 ( 1 ), 86 – 93 ( 2009 ).
  • Buther F , DawoodM, SteggerLet al. List mode-driven cardiac and respiratory gating in PET . J. Nucl. Med.50 ( 5 ), 674 – 681 ( 2009 ).
  • Saam T , RomingerA, WolpersSet al. Association of inflammation of the left anterior descending coronary artery with cardiovascular risk factors, plaque burden and pericardial fat volume: a PET/CT study . Eur. J. Nucl. Med. Mol. Imaging37 ( 6 ), 1203 – 1212 ( 2010 ).
  • Wykrzykowska J , LehmanS, WilliamsGet al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation . J. Nucl. Med.50 ( 4 ), 563 – 568 ( 2009 ).
  • Williams G , KolodnyGM . Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet . AJR Am. J. Roentgenol.190 ( 2 ), W151 – W156 ( 2008 ).
  • Rogers IS , NasirK, FigueroaALet al. Feasibility of FDG imaging of the coronary arteries . JACC Cardiovasc. Imaging3 ( 4 ), 388 – 397 ( 2010 ).
  • Laitinen IEK , LuotoP, NagrenKet al. Uptake of 11C-choline in mouse atherosclerotic plaques . J. Nucl. Med.51 ( 5 ), 798 – 802 ( 2010 ).
  • Matter CM . 18F-choline images murine atherosclerotic plaques ex vivo . Arterioscler. Thromb. Vasc. Biol.26 ( 3 ), 584 – 589 ( 2005 ).
  • Kato K , SchoberO, IkedaMet al. Evaluation and comparison of 11C-choline uptake and calcification in aortic and common carotid arterial walls with combined PET/CT . Eur. J. Nucl. Med. Mol. Imaging36 ( 10 ), 1622 – 1628 ( 2009 ).
  • Bucerius J , SchmaljohannJ, BöhmIet al. Feasibility of 18F-fluoromethylcholine PET/CT for imaging of vessel wall alterations in humans – first results . Eur. J. Nucl. Med. Mol. Imaging35 ( 4 ), 815 – 820 ( 2008 ).
  • 18F-choline PET-CT and MRI of Carotid Plaques (ParisK) . www.clinicaltrials.gov
  • Boy C , HeusnerTA, PoeppelTDet al. 68Ga-DOTATOC PET/CT and somatostatin receptor (sst1–sst5) expression in normal human tissue: correlation of sst2 mRNA and SUVmax . Eur. J. Nucl. Med. Mol. Imaging38 ( 7 ), 1224 – 1236 ( 2011 ).
  • Armani C , CatalaniE, BalbariniA, BagnoliP, CerviaD . Expression, pharmacology, and functional role of somatostatin receptor subtypes 1 and 2 in human macrophages . J. Leukoc. Biol.81 ( 3 ), 845 – 855 ( 2006 ).
  • Adams RL , AdamsIP, LindowSW, ZhongW, AtkinSL . Somatostatin receptors 2 and 5 are preferentially expressed in proliferating endothelium . Br. J. Cancer92 ( 8 ), 1493 – 1498 ( 2005 ).
  • Dalm VASH , van HagenPM, van KoetsveldPMet al. Expression of somatostatin, cortistatin, and somatostatin receptors in human monocytes, macrophages, and dendritic cells . Am. J. Physiol. Endocrinol. Metab.285 ( 2 ), E344 – E353 ( 2003 ).
  • Li X , BauerW, KreisslMCet al. Specific somatostatin receptor II expression in arterial plaque: 68Ga-DOTATATE autoradiographic, immunohistochemical and flow cytometric studies in apoE-deficient mice . Atherosclerosis230 ( 1 ), 33 – 39 ( 2013 ).
  • Rominger A , SaamT, VoglEet al. In vivo imaging of macrophage activity in the coronary arteries using 68Ga-DOTATATE PET/CT: correlation with coronary calcium burden and risk factors . J. Nucl. Med.51 ( 2 ), 193 – 197 ( 2010 ).
  • Li X , SamnickS, LapaCet al. 68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with 18F-FDG, calcium burden and risk factors . EJNMMI Res.2 ( 1 ), 52 ( 2012 ).
  • Vascular Inflammation Imaging Using Somatostatin Receptor Positron Emission Tomography (VISION) . www.clinicaltrials.gov
  • Laitinen I , MarjamäkiP, NågrenKet al. Uptake of inflammatory cell marker [11C]PK11195 into mouse atherosclerotic plaques . Eur. J. Nucl. Med. Mol. Imaging36 ( 1 ), 73 – 80 ( 2009 ).
  • Fujimura Y , HwangPM, Trout IiiHet al. Increased peripheral benzodiazepine receptors in arterial plaque of patients with atherosclerosis: an autoradiographic study with [3H]PK 11195 . Atherosclerosis201 ( 1 ), 108 – 111 ( 2008 ).
  • Bird JLE , Izquierdo-GarciaD, DaviesJRet al. Evaluation of translocator protein quantification as a tool for characterising macrophage burden in human carotid atherosclerosis . Atherosclerosis210 ( 2 ), 388 – 391 ( 2010 ).
  • Gaemperli O , ShalhoubJ, OwenDRJet al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography . Eur. Heart J.33 ( 15 ), 1902 – 1910 ( 2012 ).
  • Shalhoub J , OskrochiY, DaviesAH, OwenDRJ . Clinical assessment of carotid atherosclerosis inflammation by positron emission tomography . Curr. Mol. Med.13 ( 10 ), 1646 – 1652 ( 2013 ).
  • Lee ST , ScottAM . Hypoxia positron emission tomography imaging with 18F-fluoromisonidazole . Semin. Nucl. Med.37 ( 6 ), 451 – 461 ( 2007 ).
  • Markus R , ReutensDC, KazuiSet al. Topography and temporal evolution of hypoxic viable tissue identified by 18F-fluoromisonidazole positron emission tomography in humans after ischemic stroke . Stroke34 ( 11 ), 2646 – 2652 ( 2003 ).
  • Mateo J , Izquierdo-GarciaD, BadimonJJ, FayadZA, FusterV . Noninvasive assessment of hypoxia in rabbit advanced atherosclerosis using 18F-fluoromisonidazole PET imaging . Circ. Cardiovasc. Imaging7 ( 2 ), 312 – 320 ( 2014 ).
  • Joshi FR , ManavakR, FryerTDet al. Imaging of hypoxia and inflammation in carotid atherosclerosis with 18F-fluoromisonidazole and 18F-fluorodeoxyglucose positron emission tomography . Circulation128, A14673 ( 2013 ).
  • Su H , GorodnyN, GomezLFet al. Atherosclerotic plaque uptake of a novel integrin tracer 18F-Flotegatide in a mouse model of atherosclerosis . J. Nucl. Cardiol.21 ( 3 ), 553 – 562 ( 2014 ).
  • Beer AJ , PelisekJ, HeiderPet al. PET/CT Imaging of integrin αvβ3 expression in human carotid atherosclerosis . JACC Cardiovasc. Imaging7 ( 2 ), 178 – 187 ( 2014 ).
  • Dweck MR , JenkinsWSA, VeseyATet al. 18F-sodium fluoride uptake is a marker of active calcification and disease progression in patients with aortic stenosis . Circ. Cardiovasc. Imaging7 ( 2 ), 371 – 378 ( 2014 ).
  • Joshi NV , VeseyAT, WilliamsMCet al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial . Lancet383 ( 9918 ), 705 – 713 ( 2014 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.