3,650
Views
0
CrossRef citations to date
0
Altmetric
Review

Right on Q: Genetics begin to Unravel Coxiella Burnetii host cell Interactions

, , , , &
Pages 919-939 | Received 29 Feb 2016, Accepted 12 May 2016, Published online: 15 Jul 2016

References

  • Raoult D, Marrie T, Mege J. Natural history and pathophysiology of Q fever. Lancet Infect. Dis. 5, 219 – 226 (2005).
  • Kampschreur LM, Delsing CE, Groenwold RH et al. Chronic Q fever in the Netherlands 5 years after the start of the Q fever epidemic: results from the Dutch chronic Q fever database. J. Clin. Microbiol. 52, 1637 – 1643 (2014).
  • Babudieri C. Q fever: a zoonosis. Adv. Vet. Sci. 5, 81 – 84 (1959).
  • Angelakis E, Raoult D. Q fever. Vet. Microbiol. 140, 297 – 309 (2010).
  • Hackert VH, Van Der Hoek W, Dukers-Muijrers N et al. Q fever: single-point source outbreak with high attack rates and massive numbers of undetected infections across an entire region. Clin. Infect. Dis. 55, 1591 – 1599 (2012).
  • Palmer NC, Kierstead M, Key DW, Williams JC, Peacock MG, Vellend H. Placentitis and abortion in goats and sheep in Ontario caused by Coxiella burnetii. Can. Vet. J. 24, 60 – 61 (1983).
  • Kersh GJ, Wolfe TM, Fitzpatrick KA et al. Presence of Coxiella burnetii DNA in the environment of the United States, 2006 to 2008. Appl. Environ. Microbiol. 76, 4469 – 4475 (2010).
  • Duron O. The IS1111 insertion sequence used for detection of Coxiella burnetii is widespread in Coxiella-like endosymbionts of ticks. FEMS Microbiol. Lett. 362, fnv132 (2015).
  • Van Asseldonk MA, Prins J, Bergevoet RH. Economic assessment of Q fever in the Netherlands. Prev. Vet. Med. 112, 27 – 34 (2013).
  • Beare PA, Unsworth N, Andoh M et al. Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect. Immun. 77, 642 – 656 (2009).
  • Pearson T, Hornstra HM, Sahl JW et al. When outgroups fail; phylogenomics of rooting the emerging pathogen. Coxiella burnetii. Syst. Biol. 62, 752 – 762 (2013).
  • Duron O, Noel V, Mccoy KD et al. The recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q fever pathogen. Coxiella burnetii. PLoS Pathog. 11, e1004892 (2015).
  • Pallen MJ, Wren BW. Bacterial pathogenomics. Nature 449, 835 – 842 (2007).
  • Bliven KA, Maurelli AT. Antivirulence genes: insights into pathogen evolution through gene loss. Infect. Immun. 80, 4061 – 4070 (2012).
  • Van Schaik EJ, Chen C, Mertens K, Weber MM, Samuel JE. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat. Rev. Microbiol. 11, 561 – 573 (2013).
  • Russell-Lodrigue KE, Andoh M, Poels MW et al. Coxiella burnetii isolates cause genogroup-specific virulence in mouse and guinea pig models of acute Q fever. Infect. Immun. 77, 5640 – 5650 (2009).
  • Glazunova O, Roux V, Freylikman O et al. Coxiella burnetii genotyping. Emerg. Infect. Dis. 11, 1211 – 1217 (2005).
  • Hornstra HM, Priestley RA, Georgia SM et al. Rapid typing of Coxiella burnetii. PLoS ONE 6, e26201 (2011).
  • Mahamat A, Edouard S, Demar M et al. Unique clone of Coxiella burnetii causing severe Q fever, French Guiana. Emerg. Infect. Dis. 19, 1102 – 1104 (2013).
  • Pearson T, Hornstra HM, Hilsabeck R et al. High prevalence and two dominant host-specific genotypes of Coxiella burnetii in U.S. milk. BMC Microbiol. 14, 41 (2014).
  • Kersh GJ, Oliver LD, Self JS, Fitzpatrick KA, Massung RF. Virulence of pathogenic Coxiella burnetii strains after growth in the absence of host cells. Vector Borne Zoonotic Dis. 11, 1433 – 1438 (2011).
  • Toman R, Skultety L. Structural study on a lipopolysaccharide from Coxiella burnetii strain Nine Mile in avirulent Phase II. Carbohydr. Res. 283, 175 – 185 (1996).
  • Amano K, Williams JC. Chemical and immunological characterization of lipopolysaccharides from Phase I and Phase II Coxiella burnetii. J. Bacteriol. 160, 994 – 1002 (1984).
  • Ftacek P, Skultety L, Toman R. Phase variation of Coxiella burnetii strain Priscilla: influence of this phenomenon on biochemical features of its lipopolysaccharide. J. Endotoxin. Res. 6, 369 – 376 (2000).
  • Hackstadt T, Peacock MG, Hitchcock PJ, Cole RL. Lipopolysaccharide variation in Coxiella burnetii: intrastrain heterogeneity in structure and antigenicity. Infect. Immun. 48, 359 – 365 (1985).
  • Beare PA, Samuel JE, Howe D, Virtaneva K, Porcella SF, Heinzen RA. Genetic diversity of the Q fever agent, Coxiella burnetii assessed by microarray-based whole-genome comparisons. J. Bacteriol. 188, 2309 – 2324 (2006).
  • Denison AM, Massung RF, Thompson HA. Analysis of the O-antigen biosynthesis regions of Phase II isolates of Coxiella burnetii. FEMS Microbiol. Lett. 267, 102 – 107 (2007).
  • Kuley R, Smith HE, Frangoulidis D, Smits MA, Jan Roest HI, Bossers A. Cell-free propagation of Coxiella burnetii does not affect its relative virulence. PLoS ONE 10, e0121661 (2015).
  • Beare PA, Howe D, Cockrell DC, Heinzen RA. Efficient method of cloning the obligate intracellular bacterium Coxiella burnetii. Appl. Environ. Microbiol. 73, 4048 – 4054 (2007).
  • Hackstadt T. Biosafety concerns and Coxiella burnetii. Trends Microbiol. 4, 341 – 342 (1996).
  • Howe D, Shannon JG, Winfree S, Dorward DW, Heinzen RA. Coxiella burnetii Phase I and II variants replicate with similar kinetics in degradative phagolysosome-like compartments of human macrophages. Infect. Immun. 78, 3465 – 3474 (2010).
  • Graham JG, Macdonald LJ, Hussain SK, Sharma UM, Kurten RC, Voth DE. Virulent Coxiella burnetii pathotypes productively infect primary human alveolar macrophages. Cell. Microbiol. 15, 1012 – 1025 (2013).
  • Moos A, Hackstadt T. Comparative virulence of intra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect. Immun. 55, 1144 – 1150 (1987).
  • Williams JC, Peacock MG, Mccaul TF. Immunological and biological characterization of Coxiella burnetii Phases I and II, separated from host components. Infect. Immun. 32, 840 – 851 (1981).
  • Hackstadt T. Steric hindrance of antibody binding to surface proteins of Coxiella burnetti by Phase I lipopolysaccharide. Infect. Immun. 56, 802 – 807 (1988).
  • Zamboni DS, Campos MA, Torrecilhas AC et al. Stimulation of toll-like receptor 2 by Coxiella burnetii is required for macrophage production of pro-inflammatory cytokines and resistance to infection. J. Biol. Chem. 279, 54405 – 54415 (2004).
  • Bradley WP, Boyer MA, Nguyen HT et al. Primary role for TLR-driven TNF rather than cytosolic immune detection in restricting Coxiella burnetii Phase II replication within mouse macrophages. Infect. Immun. 84, 998 – 1015 (2016).
  • Zamboni DS, Rabinovitch M. Phagocytosis of apoptotic cells increases the susceptibility of macrophages to infection with Coxiella burnetii Phase II through down-modulation of nitric oxide production. Infect. Immun. 72, 2075 – 2080 (2004).
  • Zamboni DS. Genetic control of natural resistance of mouse macrophages to Coxiella burnetii infection in vitro: macrophages from restrictive strains control parasitophorous vacuole maturation. Infect. Immun. 72, 2395 – 2399 (2004).
  • Shannon JG, Howe D, Heinzen RA. Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc. Natl Acad. Sci. USA 102, 8722 – 8727 (2005).
  • Khavkin T, Tabibzadeh SS. Histologic, immunofluorescence, and electron microscopic study of infectious process in mouse lung after intranasal challenge with Coxiella burnetii. Infect. Immun. 56, 1792 – 1799 (1988).
  • Graham JG, Winchell CG, Kurten RC, Voth DE. Development of an ex vivo tissue platform to study the human lung response to Coxiella burnetii. Infect. Immun. 84 (5 ), 1438 – 1445 (2016).
  • Calverley M, Erickson S, Read AJ, Harmsen AG. Resident alveolar macrophages are susceptible to and permissive of Coxiella burnetii infection. PLoS ONE 7, e51941 (2012).
  • Stein A, Louveau C, Lepidi H et al. Q fever pneumonia: virulence of Coxiella burnetii pathovars in a murine model of aerosol infection. Infect. Immun. 73, 2469 – 2477 (2005).
  • Sanchez J, Souriau A, Buendia AJ et al. Experimental Coxiella burnetii infection in pregnant goats: a histopathological and immunohistochemical study. J. Comp. Pathol. 135, 108 – 115 (2006).
  • Bechah Y, Verneau J, Ben Amara A et al. Persistence of Coxiella burnetii the agent of Q fever, in murine adipose tissue. PLoS ONE 9, e97503 (2014).
  • Voth DE, Heinzen RA. Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell. Microbiol. 9, 829 – 840 (2007).
  • Baca OG, Klassen DA, Aragon AS. Entry of Coxiella burnetii into host cells. Acta Virol. 37, 143 – 155 (1993).
  • Tujulin E, Macellaro A, Lilliehook B, Norlander L. Effect of endocytosis inhibitors on Coxiella burnetii interaction with host cells. Acta Virol. 42, 125 – 131 (1998).
  • Martinez E, Cantet F, Fava L, Norville I, Bonazzi M. Identification of OmpA, a Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-content screening. PLoS Pathog. 10, e1004013 (2014).
  • Capo C, Lindberg FP, Meconi S et al. Subversion of monocyte functions by Coxiella burnetii: impairment of the cross-talk between avb3 integrin and CR3. J. Immunol. 163, 6078 – 6085 (1999).
  • Meconi S, Jacomo V, Boquet P, Raoult D, Mege JL, Capo C. Coxiella burnetii induces reorganization of the actin cytoskeleton in human monocytes. Infect. Immun. 66, 5527 – 5533 (1998).
  • Salinas RP, Ortiz Flores RM, Distel JS, Aguilera MO, Colombo MI, Beron W. Coxiella burnetii phagocytosis Is regulated by GTPases of the Rho family and the RhoA effectors mDia1 and ROCK. PLoS ONE 10, e0145211 (2015).
  • Meconi S, Capo C, Remacle-Bonnet M, Pommier G, Raoult D, Mege JL. Activation of protein tyrosine kinases by Coxiella burnetii: role in actin cytoskeleton reorganization and bacterial phagocytosis. Infect. Immun. 69, 2520 – 2526 (2001).
  • Rosales EM, Aguilera MO, Salinas RP et al. Cortactin is involved in the entry of Coxiella burnetii into nonphagocytic cells. PLoS ONE 7, e39348 (2012).
  • Romano PS, Gutierrez MG, Beron W, Rabinovitch M, Colombo MI. The autophagic pathway is actively modulated by Phase II Coxiella burnetii to efficiently replicate in the host cell. Cell. Microbiol. 9, 891 – 909 (2007).
  • Schulze-Luehrmann J, Eckart RA, Olke M, Saftig P, Liebler-Tenorio E, Luhrmann A. LAMP proteins account for the maturation delay during the establishment of the Coxiella burnetii-containing vacuole. Cell. Microbiol. 18, 181 – 194 (2016).
  • Aguilera M, Salinas R, Rosales E, Carminati S, Colombo MI, Beron W. Actin dynamics and Rho GTPases regulate the size and formation of parasitophorous vacuoles containing Coxiella burnetii. Infect. Immun. 77, 4609 – 4620 (2009).
  • Vazquez CL, Colombo MI. Coxiella burnetii modulates Beclin 1 and Bcl-2, preventing host cell apoptosis to generate a persistent bacterial infection. Cell. Death Differ. 17, 421 – 438 (2010).
  • Newton HJ, Kohler LJ, Mcdonough JA et al. A screen of Coxiella burnetii mutants reveals important roles for Dot/Icm effectors and host autophagy in vacuole biogenesis. PLoS Pathog. 10, e1004286 (2014).
  • Flannagan RS, Cosio G, Grinstein S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol. 7, 355 – 366 (2009).
  • Case ED, Smith JA, Ficht TA, Samuel JE, De Figueiredo P. Space: a final frontier for vacuolar pathogens. Traffic 17, 461 – 474 (2016).
  • Voth DE, Howe D, Heinzen RA. Coxiella burnetii inhibits apoptosis in human THP-1 cells and monkey primary alveolar macrophages. Infect. Immun. 75, 4263 – 4271 (2007).
  • Hackstadt T, Williams JC. Incorporation of macromolecular precursors by Coxiella burnetii in an axenic medium. In : Rickettsiae and Rickettsial Diseases. Burgdorfer W, Anacker RL( Eds ) . Academic Press, Inc., NY, USA, 431 – 440 (1981).
  • Howe D, Melnicakova J, Barak I, Heinzen RA. Maturation of the Coxiella burnetii parasitophorous vacuole requires bacterial protein synthesis but not replication. Cell Microbiol. 5, 469 – 480 (2003).
  • Deretic V, Levine B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5, 527 – 549 (2009).
  • Winchell CG, Graham JG, Kurten RC, Voth DE. Coxiella burnetii type IV secretion-dependent recruitment of macrophage autophagosomes. Infect. Immun. 82, 2229 – 2238 (2014).
  • Beron W, Gutierrez MG, Rabinovitch M, Colombo MI. Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect. Immun. 70, 5816 – 5821 (2002).
  • Campoy EM, Zoppino FC, Colombo MI. The early secretory pathway contributes to the growth of the Coxiella-replicative niche. Infect. Immun. 79, 402 – 413 (2011).
  • Gutierrez MG, Vazquez CL, Munafo DB et al. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell. Microbiol. 7, 981 – 993 (2005).
  • Kohler LJ, Roy CR. Biogenesis of the lysosome-derived vacuole containing Coxiella burnetii. Microbes Infect. 17, 766 – 771 (2015).
  • Mcdonough JA, Newton HJ, Klum S, Swiss R, Agaisse H, Roy CR. Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening. MBio 4, e00606 – e00612 (2013).
  • Larson CL, Beare PA, Howe D, Heinzen RA. Coxiella burnetii effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis. Proc. Natl Acad. Sci. USA 110, E4770 – E4779 (2013).
  • Itakura E, Mizushima N. Syntaxin 17: the autophagosomal SNARE. Autophagy 9, 917 – 919 (2013).
  • Campoy EM, Mansilla ME, Colombo MI. Endocytic SNAREs are involved in optimal Coxiella burnetii vacuole development. Cell. Microbiol. 15, 922 – 941 (2013).
  • Coleman SA, Fischer ER, Howe D, Mead DJ, Heinzen RA. Temporal analysis of Coxiella burnetii morphological differentiation. J. Bacteriol. 186, 7344 – 7352 (2004).
  • Luhrmann A, Roy CR. Coxiella burnetii inhibits activation of host cell apoptosis through a mechanism that involves preventing cytochrome c release from mitochondria. Infect. Immun. 75, 5282 – 5289 (2007).
  • Voth DE, Heinzen RA. Sustained activation of Akt and Erk1/2 is required for Coxiella burnetii antiapoptotic activity. Infect. Immun. 77, 205 – 213 (2009).
  • Macdonald LJ, Graham JG, Kurten RC, Voth DE. Coxiella burnetii exploits host cAMP-dependent protein kinase signalling to promote macrophage survival. Cell Microbiol. 16, 146 – 159 (2014).
  • Beare PA, Gilk SD, Larson CL et al. Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages. MBio 2, e00175–00111 (2011).
  • Macdonald LJ, Kurten RC, Voth DE. Coxiella burnetii alters cyclic AMP-dependent protein kinase signaling during growth in macrophages. Infect. Immun. 80, 1980 – 1986 (2012).
  • Seshadri R, Paulsen IT, Eisen JA et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc. Natl Acad. Sci. USA 100, 5455 – 5460 (2003).
  • Segal G, Shuman HA. Possible origin of the Legionella pneumophila virulence genes and their relation to Coxiella burnetii. Mol. Microbiol. 33, 669 – 670 (1999).
  • Segal G, Feldman M, Zusman T. The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol. Rev. 29, 65 – 81 (2005).
  • Zusman T, Yerushalmi G, Segal G. Functional similarities between the icm/dot pathogenesis systems of Coxiella burnetii and Legionella pneumophila. Infect. Immun. 71, 3714 – 3723 (2003).
  • Zamboni DS, Mcgrath S, Rabinovitch M, Roy CR. Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Mol. Microbiol. 49, 965 – 976 (2003).
  • Carey KL, Newton HJ, Luhrmann A, Roy CR. The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLoS Pathog. 7, e1002056 (2011).
  • Chen C, Banga S, Mertens K et al. Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc. Natl Acad. Sci. USA 107, 21755 – 21760 (2010).
  • Lifshitz Z, Burstein D, Peeri M et al. Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal. Proc. Natl Acad. Sci. USA 110, 707 – 715 (2013).
  • Pan X, Luhrmann A, Satoh A, Laskowski-Arce MA, Roy CR. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320, 1651 – 1654 (2008).
  • Voth DE, Beare PA, Howe D et al. The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. J. Bacteriol. 193, 1493 – 1503 (2011).
  • Voth DE, Howe D, Beare PA et al. The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence Dot/Icm-mediated secretion. J. Bacteriol. 191, 4232 – 4242 (2009).
  • Maturana P, Graham JG, Sharma UM, Voth DE. Refining the plasmid-encoded type IV secretion system substrate repertoire of Coxiella burnetii. J. Bacteriol. 195, 3269 – 3276 (2013).
  • Weber MM, Chen C, Rowin K et al. Identification of Coxiella burnetii type IV secretion substrates required for intracellular replication and Coxiella-containing vacuole formation. J. Bacteriol. 195, 3914 – 3924 (2013).
  • Lifshitz Z, Burstein D, Schwartz K, Shuman HA, Pupko T, Segal G. Identification of novel Coxiella burnetii Icm/Dot effectors and genetic analysis of their involvement in modulating a mitogen-activated protein kinase pathway. Infect. Immun. 82, 3740 – 3752 (2014).
  • Graham JG, Winchell CG, Sharma UM, Voth DE. Identification of ElpA, a Coxiella burnetii pathotype-specific Dot/Icm type IV secretion system substrate. Infect. Immun. 83, 1190 – 1198 (2015).
  • Luhrmann A, Nogueira CV, Carey KL, Roy CR. Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc. Natl Acad. Sci. USA 107, 18997 – 19001 (2010).
  • Cunha LD, Ribeiro JM, Fernandes TD et al. Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA. Nat. Commun. 6, 10205 (2015).
  • Falkow S. Molecular Koch's postulates applied to bacterial pathogenicity – a personal recollection 15 years later. Nat. Rev. Microbiol. 2, 67 – 72 (2004).
  • Beare PA, Sandoz KM, Omsland A, Rockey DD, Heinzen RA. Advances in genetic manipulation of obligate intracellular bacterial pathogens. Front. Microbiol. 2, 97 (2011).
  • Beare PA, Howe D, Cockrell DC, Omsland A, Hansen B, Heinzen RA. Characterization of a Coxiella burnetii ftsZ mutant generated by Himar1 transposon mutagenesis. J. Bacteriol. 191, 1369 – 1381 (2009).
  • Omsland A, Cockrell DC, Howe D et al. Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc. Natl Acad. Sci. USA 106, 4430 – 4434 (2009).
  • Omsland A, Beare PA, Hill J et al. Isolation from animal tissue and genetic transformation of Coxiella burnetii are facilitated by an improved axenic growth medium. Appl. Environ. Microbiol. 77, 3720 – 3725 (2011).
  • Beare PA, Larson CL, Gilk SD, Heinzen RA. Two systems for targeted gene deletion in Coxiella burnetii. Appl. Environ. Microbiol. 78, 4580 – 4589 (2012).
  • Beare PA, Sandoz KM, Larson CL, Howe D, Kronmiller B, Heinzen RA. Essential role for the response regulator PmrA in Coxiella burnetii type 4B secretion and colonization of mammalian host cells. J. Bacteriol. 196, 1925 – 1940 (2014).
  • Sandoz KM, Beare PA, Cockrell DC, Heinzen RA. A defined axenic medium allows complementation of arginine auxotrophy for genetic transformation of Coxiella burnetii. Appl. Environ. Microbiol. 82, 3042 – 3051 (2016).
  • Larson CL, Beare PA, Voth DE et al. Coxiella burnetii effector proteins that localize to the parasitophorous vacuole membrane promote intracellular replication. Infect. Immun. 83, 661 – 670 (2015).
  • Newton HJ, Mcdonough JA, Roy CR. Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole. PLoS ONE 8, e54566 (2013).
  • Kubori T, Hyakutake A, Nagai H. Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol. Microbiol. 67, 1307 – 1319 (2008).
  • Nagai H, Cambronne ED, Kagan JC, Amor JC, Kahn RA, Roy CR. A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc. Natl Acad. Sci. USA 102, 826 – 831 (2005).
  • Burstein D, Zusman T, Degtyar E, Viner R, Segal G, Pupko T. Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog. 5, e1000508 (2009).
  • Huang L, Boyd D, Amyot WM et al. The E Block motif is associated with Legionella pneumophila translocated substrates. Cell Microbiol. 13, 227 – 245 (2011).
  • De Felipe KS, Pampou S, Jovanovic OS et al. Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J. Bacteriol. 187, 7716 – 7726 (2005).
  • Zusman T, Aloni G, Halperin E et al. The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol. Microbiol. 63, 1508 – 1523 (2007).
  • Segal G. The Legionella pneumophila two-component regulatory systems that participate in the regulation of Icm/Dot effectors. Curr. Top. Microbiol. Immunol. 376, 35 – 52 (2013).
  • Sutherland MC, Binder KA, Cualing PY, Vogel JP. Reassessing the role of DotF in the Legionella pneumophila type IV secretion system. PLoS ONE 8, e65529 (2013).
  • Luo ZQ, Isberg RR. Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc. Natl Acad. Sci. USA 101, 841 – 846 (2004).
  • Waag DM, Byrne WR, Estep J, Gibbs P, Pitt ML, Banfield CM. Evaluation of cynomolgus (Macaca fascicularis) and rhesus (Macaca mulatta) monkeys as experimental models of acute Q fever after aerosol exposure to Phase-I Coxiella burnetii. Lab. Anim. Sci. 49, 634 – 638 (1999).
  • Jeong KC, Sutherland MC, Vogel JP. Novel export control of a Legionella Dot/Icm substrate is mediated by dual, independent signal sequences. Mol. Microbiol. 96, 175 – 188 (2015).
  • Schnell U, Dijk F, Sjollema KA, Giepmans BN. Immunolabeling artifacts and the need for live-cell imaging. Nat. Methods 9, 152 – 158 (2012).
  • Eckart RA, Bisle S, Schulze-Luehrmann J et al. Antiapoptotic activity of Coxiella burnetii effector protein AnkG is controlled by p32-dependent trafficking. Infect. Immun. 82, 2763 – 2771 (2014).
  • Rodriguez-Escudero M, Cid VJ, Molina M, Schulze-Luehrmann J, Luhrmann A, Rodriguez-Escudero I. Studying Coxiella burnetii type IV substrates in the yeast Saccharomyces cerevisiae: focus on subcellular localization and protein aggregation. PLoS ONE 11, e0148032 (2016).
  • Weber MM, Faris R, Mclachlan J et al. Modulation of the host transcriptome by Coxiella burnetii nuclear effector Cbu1314. Microbes Infect. 18 (5 ), 336 – 345 (2016).
  • Siggers KA, Lesser CF. The yeast Saccharomyces cerevisiae: a versatile model system for the identification and characterization of bacterial virulence proteins. Cell Host Microbe 4, 8 – 15 (2008).
  • Ashida H, Mimuro H, Ogawa M et al. Cell death and infection: a double-edged sword for host and pathogen survival. J. Cell Biol. 195, 931 – 942 (2011).
  • Klingenbeck L, Eckart RA, Berens C, Luhrmann A. The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level. Cell Microbiol. 15, 675 – 687 (2013).
  • Bisle S, Klingenbeck L, Borges V et al. The Inhibition of the apoptosis pathway by the Coxiella burnetii effector protein CaeA requires the EK repetition motif, but is independent of survivin. Virulence 7 (4 ), 400 – 412 (2016).
  • Bonifacino JS, Traub LM. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395 – 447 (2003).
  • Keyel PA, Mishra SK, Roth R, Heuser JE, Watkins SC, Traub LM. A single common portal for clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors. Mol. Biol. Cell 17, 4300 – 4317 (2006).
  • Motley A, Bright NA, Seaman MN, Robinson MS. Clathrin-mediated endocytosis in AP-2-depleted cells. J. Cell Biol. 162, 909 – 918 (2003).
  • Martinez E, Allombert J, Cantet F et al. The Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development. Proc. Natl Acad. Sci. USA 113, E3260 – E3269 (2016).
  • O'Connor TJ, Adepoju Y, Boyd D, Isberg RR. Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion. Proc. Natl Acad. Sci. USA 108, 14733 – 14740 (2011).
  • Brodin P, Christophe T. High-content screening in infectious diseases. Curr. Opin. Chem. Biol. 15, 534 – 539 (2011).
  • Boutros M, Heigwer F, Laufer C. Microscopy-based high-content screening. Cell 163, 1314 – 1325 (2015).
  • Selvaraj SK, Prasadarao NV. Escherichia coli K1 inhibits proinflammatory cytokine induction in monocytes by preventing NF-kappaB activation. J. Leukoc. Biol. 78, 544 – 554 (2005).
  • Stead CM, Omsland A, Beare PA, Sandoz KM, Heinzen RA. Sec-mediated secretion by Coxiella burnetii. BMC Microbiol. 13, 222 (2013).
  • Charpentier X, Gabay JE, Reyes M, Zhu JW, Weiss A, Shuman HA. Chemical genetics reveals bacterial and host cell functions critical for type IV effector translocation by Legionella pneumophila. PLoS Pathog. 5, e1000501 (2009).
  • Roy CR, Berger KH, Isberg RR. Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol. Microbiol. 28, 663 – 674 (1998).
  • Yu XJ, Mcgourty K, Liu M, Unsworth KE, Holden DW. pH sensing by intracellular Salmonella induces effector translocation. Science 328, 1040 – 1043 (2010).
  • Deng W, Li Y, Hardwidge PR et al. Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect. Immun. 73, 2135 – 2146 (2005).
  • Cambronne ED, Roy CR. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog. 3, e188 (2007).
  • Sutherland MC, Nguyen TL, Tseng V, Vogel JP. The Legionella IcmSW complex directly interacts with DotL to mediate translocation of adaptor-dependent substrates. PLoS Pathog. 8, e1002910 (2012).
  • Baca OG, Scott TO, Akporiaye ET, Deblassie R, Crissman HA. Cell cycle distribution patterns and generation times of L929 fibroblast cells persistently infected with Coxiella burnetii. Infect. Immun. 47, 366 – 369 (1985).
  • Barquist L, Boinett CJ, Cain AK. Approaches to querying bacterial genomes with transposon-insertion sequencing. RNA Biol. 10, 1161 – 1169 (2013).
  • Wright AV, Nunez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164, 29 – 44 (2016).
  • Michard C, Sperandio D, Bailo N et al. The Legionella kinase LegK2 targets the ARP2/3 complex to inhibit actin nucleation on phagosomes and allow bacterial evasion of the late endocytic pathway. MBio 6, e00354 – e00315 (2015).
  • Zhou Y, Zhu Y. Diversity of bacterial manipulation of the host ubiquitin pathways. Cell. Microbiol. 17, 26 – 34 (2015).
  • Rolando M, Sanulli S, Rusniok C et al. Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication. Cell Host Microbe 13, 395 – 405 (2013).
  • Bierne H, Cossart P. When bacteria target the nucleus: the emerging family of nucleomodulins. Cell. Microbiol. 14, 622 – 633 (2012).
  • Ensminger AW. Legionella pneumophila armed to the hilt: justifying the largest arsenal of effectors in the bacterial world. Curr. Opin. Microbiol. 29, 74 – 80 (2015).
  • Jeong KC, Sexton JA, Vogel JP. Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the metaeffector SidJ. PLoS Pathog. 11, e1004695 (2015).
  • Andoh M, Zhang G, Russell-Lodrigue KE, Shive HR, Weeks BR, Samuel JE. T cells are essential for bacterial clearance, and gamma interferon, tumor necrosis factor alpha, and B cells are crucial for disease development in Coxiella burnetii infection in mice. Infect. Immun. 75, 3245 – 3255 (2007).
  • Islam A, Lockhart M, Stenos J, Graves S. The attenuated Nine Mile Phase II clone 4/RSA439 strain of Coxiella burnetii is highly virulent for severe combined immunodeficient (SCID) mice. Am. J. Trop. Med. Hyg. 89, 800 – 803 (2013).
  • Ochoa-Reparaz J, Sentissi J, Trunkle T, Riccardi C, Pascual DW. Attenuated Coxiella burnetii Phase II causes a febrile response in gamma interferon knockout and Toll-like receptor 2 knockout mice and protects against reinfection. Infect. Immun. 75, 5845 – 5858 (2007).
  • Norville IH, Hartley MG, Martinez E, Cantet F, Bonazzi M, Atkins TP. Galleria mellonella as an alternative model of Coxiella burnetii infection. Microbiology 160, 1175 – 1181 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.