113
Views
0
CrossRef citations to date
0
Altmetric
Research Article

BAG-S53P4 As Bone Graft Extender and Antimicrobial Activity Against Gentamicin- and Vancomycin-Resistant Bacteria

, , , , &
Pages 525-533 | Received 09 Aug 2017, Accepted 15 Nov 2017, Published online: 09 Mar 2018

References

  • Poultsides LA , LiaropoulosLL, MalizosKN . The socioeconomic impact of musculoskeletal infections. J. Bone Joint Surg. Am.92 (11), e13 (2010).
  • Aggarwal VK , BakhshiH, EckerNU, ParviziJ, GehrkeT, KendoffD . Organism profile in periprosthetic joint infection: pathogens differ at two arthroplasty infection referral centers in Europe and in the United States. J. Knee Surg.27 (5), 399–406 (2014).
  • Drago L , De VecchiE, BortolinM, ZagraL, RomanòCL, CappellettiL . Epidemiology and antibiotic resistance of late prosthetic knee and hip infections. J. Arthroplasty32 (8), 2496–2500 (2017).
  • Klein S , NurjadiD, EigenbrodT, BodeKA . Evaluation of antibiotic resistance to orally administrable antibiotics in staphylococcal bone and joint infections in one of the largest university hospitals in Germany: is there a role for fusidic acid?Int. J. Antimicrob. Agents47 (2), 155–157 (2016).
  • Peeters O , FerryT, AderFet al. Teicoplanin-based antimicrobial therapy in Staphylococcus aureus bone and joint infection: tolerance, efficacy and experience with subcutaneous administration. BMC Infect. Dis.16 (1), 622 (2016).
  • Bjerke-Kroll BT , ChristAB, McLawhornAS, SculcoPK, Jules-ElyséeKM, SculcoTP . Periprosthetic joint infections treated with two-stage revision over 14 years: an evolving microbiology profile. J. Arthroplasty29 (5), 877–882 (2014).
  • Zmistowski BM , ManriqueJ, PatelR, ChenAF . Recurrent periprosthetic joint infection after irrigation and debridement with component retention is most often due to identical organisms. J. Arthroplasty31 (9 Suppl.), 148–151 (2016).
  • van Gestel NA , GeurtsJ, HulsenDJ, van RietbergenB, HofmannS, ArtsJJ . Clinical applications of S53P4 bioactive glass in bone healing and osteomyelitic treatment: a literature review. Biomed. Res. Int2015, 684826 (2015).
  • Detsch R , StoorP, GrünewaldA, RoetherJA, LindforsNC, BoccacciniAR . Increase in VEGF secretion from human fibroblast cells by bioactive glass S53P4 to stimulate angiogenesis in bone. J. Biomed. Mater. Res. A.102 (11), 4055–4061 (2014).
  • Hench LL . Genetic design of bioactive glass. J. Eur. Ceram. Soc.29, 1257–1265 (2009).
  • Zhang D , LeppärantaO, MunukkaEet al. Antibacterial effects and dissolution behavior of six bioactive glasses. J. Biomed. Mater. Res. A.93 (2), 475–483 (2010).
  • Leppäranta O , VaahtioM, PeltolaTet al. Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J. Mater. Sci. Mater. Med.19 (2), 547–551 (2008).
  • Munukka E , LeppärantaO, KorkeamäkiMet al. Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J. Mater. Sci. Mater. Med.19 (1), 27–32 (2008).
  • Drago L , De VecchiE, BortolinM, ToscanoM, MattinaR, RomanòCL . Antimicrobial activity and resistance selection of different bioglass S53P4 formulations against multidrug resistant strains. Future Microbiol.10 (8), 1293–1299 (2015).
  • Drago L , VassenaC, FenuSet al. In vitro antibiofilm activity of bioactive glass S53P4. Future Microbiol.9 (5), 593–601 (2014).
  • Bortolin M , De VecchiE, RomanòCL, ToscanoM, MattinaR, DragoL . Antibiofilm agents against MDR bacterial strains: is bioactive glass BAG-S53P4 also effective?J. Antimicrob. Chemother.71 (1), 123–127 (2016).
  • Drago L , RomanòD, De VecchiEet al. Bioactive glass BAG-S53P4 for the adjunctive treatment of chronic osteomyelitis of the long bones: an in vitro and prospective clinical study. BMC Infect Dis.13, 584 (2013).
  • Aurégan JC , BéguéT . Bioactive glass for long bone infection: a systematic review. Injury46 (Suppl. 8), S3–S7 (2015).
  • Lindfors N , GeurtsJ, DragoLet al. Antibacterial bioactive glass, S53P4, for chronic bone infections – a multinational study. Adv. Exp. Med. Biol.971, 81–92 (2017).
  • Rantakokko J , FrantzénJP, HeinänenJet al. Posterolateral spondylodesis using bioactive glass S53P4 and autogenous bone in instrumented unstable lumbar spine burst fractures. A prospective 10-year follow-up study. Scand. J. Surg.101 (1), 66–71 (2012).
  • Frantzén J , RantakokkoJ, AroHTet al. Instrumented spondylodesis in degenerative spondylolisthesis with bioactive glass and autologous bone: a prospective 11-year follow-up. J. Spinal Disord. Tech.24 (7), 455–461 (2011).
  • Kankare J , LindforsNC . Reconstruction of vertebral bone defects using an expandable replacement device and bioactive glass S53P4 in the treatment of vertebral osteomyelitis: three patients and three pathogens. Scand. J. Surg.105 (4), 248–253 (2016).
  • Clinical and Laboratory Standards Institute guidelines (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically (10th Edition) Clinical and Laboratory Standards Institute, PA, USA (2015).
  • van de Belt H , NeutD, SchenkW, van HornJR, van der MeiHC, BusscherHJ . Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review. Acta Orthop. Scand.72 (6), 557–571 (2001).
  • Lovati AB , RomanòCL, BottagisioMet al. Modeling Staphylococcus epidermidis-induced non-unions: subclinical and clinical evidence in rats. PLoS ONE11 (1), e0147447 (2016).
  • Kanakaris NK , TosounidisTH, GiannoudisPV . Surgical management of infected non-unions: an update. Injury46 (Suppl. 5), S25–S32 (2015).
  • Muschler G , LaneJ, DawsonE . The biology of spinal fusion. In : Spinal Fusion, Science and Technique.CotlerJ, CotlerH( Eds ). Springer-Verlag, Heidelberg, Germany (1990).
  • Geurts J , Chris ArtsJJ, WalenkampGH . Bone graft substitutes in active or suspected infection. Contra-indicated or not?Injury42 (Suppl. 2), S82–S86 (2011).
  • Virolainen P , HeikkiläJ, Yli-UrpoA, VuorioE, AroHT . Histomorphometric and molecular biologic comparison of bioactive glass granules and autogenous bone grafts in augmentation of bone defect healing. J. Biomed. Mater. Res.35, 9–17 (1997).
  • Allan I , NewmanH, WilsonM . Antibacterial activity of particulate bioglass against supra- and subgingival bacteria. Biomaterials22, 1683–1687 (2001).
  • Jones JR , SepulvedaP, HenchLL . Dose-dependent behavior of bioactive glass dissolution. J. Biomed. Mater. Res. Appl. Biomater.58, 720–726 (2001).
  • Ran S , HeZ, LiangJ . Survival of Enterococcus faecalis during alkaline stress: changes in morphology, ultrastructure, physiochemical properties of the cell wall and specific gene transcripts. Arch. Oral Biol.58 (11), 1667–1676 (2013).
  • Evans M , DaviesJK, SundqvistG, FigdorD . Mechanisms involved in the resistance of Enterococcus faecalis to calcium hydroxide. Int. Endod. J.35, 221–228 (2002).
  • Oga M , ArizonoT, SugiokaY . Inhibition of bacterial adhesion by tobramycin-impregnated PMMA bone cement. Acta Orthop. Scand.63 (3), 301–304 (1992).
  • Kendall RW , DuncanCP, SmithJA, Ngui-YenJH . Persistence of bacteria on antibiotic loaded acrylic depots. A reason for caution. Clin. Orthop. Relat. Res. (329), 273–280 (1996).
  • Anagnostakos K , HitzlerP, PapeD, KohnD, KelmJ . Persistence of bacterial growth on antibiotic-loaded beads: is it actually a problem?Acta Orthop.79 (2), 302–307 (2008).
  • Hendriks JG , NeutD, van HornJR, van der MeiHC, BusscherHJ . Bacterial survival in the interfacial gap in gentamicin-loaded acrylic bone cements. J. Bone Joint Surg. Br.87 (2), 272–276 (2005).
  • Rasouli MR , TripathiMS, KenyonR, WettersN, Della ValleCJ, ParviziJ . Low rate of infection control in enterococcal periprosthetic joint infections. Clin. Orthop. Relat. Res.470 (10), 2708–2716 (2012).
  • Schmolders J , HischebethGT, FriedrichMJet al. Evidence of MRSE on a gentamicin and vancomycin impregnated polymethyl-methacrylate (PMMA) bone cement spacer after two-stage exchange arthroplasty due to periprosthetic joint infection of the knee. BMC Infect. Dis.14, 144 (2014).
  • Corona PS , EspinalL, Rodríguez-PardoD, PigrauC, LarrosaN, FloresX . Antibiotic susceptibility in gram-positive chronic joint arthroplasty infections: increased aminoglycoside resistance rate in patients with prior aminoglycoside-impregnated cement spacer use. J. Arthroplasty29 (8), 1617–1621 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.