429
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Silver Nanoparticles Stabilized with Propolis Show Reduced Toxicity and Potential Activity Against Fungal Infections

, , , , , & show all
Pages 521-539 | Received 04 Jun 2019, Accepted 13 Mar 2020, Published online: 01 Jun 2020

References

  • Siddiqi KS , HusenA, RaoRAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol.16(1), 14 (2018).
  • Westerberg DP , VoyackMJ. Onychomycosis: current trends in diagnosis and treatment. Am. Fam. Physician88(11), 762–770 (2013).
  • Sav H , RafatiH, ÖzYet al. Biofilm formation and resistance to fungicides in clinically relevant members of the fungal genus Fusarium. J. Fungi (Basel)4(1), 16 (2018).
  • Stewart PS . Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob. Agents Chemother.40(11), 2517–2522 (1996).
  • Lockhart SR , GuarnerJ. Emerging and reemerging fungal infections. Semin. Diagn. Pathol.36(3), 177–181 (2019).
  • Halteh P , ScherRK, LipnerSR. Over-the-counter and natural remedies for onychomycosis: do they really work?Cutis98(5), E25–E26 (2016).
  • LaSenna CE , TostiA. Patient considerations in the management of toe onychomycosis - role of efinaconazole. Patient Prefer. Adherence2015(9), 887–891 (2015).
  • Carmona EM , LimperAH. Overview of treatment approaches for fungal infections. Clin. Chest Med.38(3), 393–402 (2017).
  • Ostrosky-Zeichner L , HarringtonR, AzieNet al. A risk score for fluconazole failure among patients with candidemia. Antimicrob. Agents Chemother.61(5), e02091–16 (2017).
  • Popp C , Ramírez-ZavalaB, SchwanfelderS, KrügerI, MorschhäuserJ. Evolution of fluconazole-resistant Candida albicans strains by drug-induced mating competence and parasexual recombination. mBio10(1), e02740–18 (2019).
  • Das RK , BrarSK. Plant mediated green synthesis: modified approaches. Nanoscale2013(5), 10155–10162 (2013).
  • Zhang XF , LiuZG, ShenW, GurunathanS. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci.17(9), E1534 (2016).
  • Ahmad A , MukherjeeP, SenapatiSet al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B: Biointerfaces28(4), 313–318 (2003).
  • Ahmed S , AhmadM, SwamiBLet al. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Research7(1), 17–28 (2016).
  • Marcucci MC , FerreresF, García-VigueiraCet al. Phenolic compounds from Brazilian propolis with pharmacological activities. J. Ethnopharmacol.74(2), 105–112 (2001).
  • Kumazawa S , HamasakaT, NakayamaT. Antioxidant activity of propolis of various geographic origins. Food Chem.84(3), 329–339 (2004).
  • Ahangari Z , NaseriM, VatandoostF. Propolis: chemical composition and its applications in endodontics. Iran. Endod. J.13(3), 285–292 (2018).
  • Flora Priyadarshini J , SivakumariK, SlevarajRet al. Green synthesis of silver nanoparticles from propolis. RJLBPCS4(4), 23 (2018).
  • Patil S , DesaiN, MahadikK, ParadkarA. Can green synthesized propolis loaded silver nanoparticles gel enhance wound healing caused by burns?Euro. J. Integrat. Med.7(3), 243–250 (2015).
  • Tobaldini-Valerio FK , Bonfim-MendonçaPS, RossetoHCet al. Propolis: a potential natural product to fight Candida species infections. Future Microbiol.11(8), 1035–1046 (2016).
  • Galletti J , Tobaldini-ValérioFK, SilvaSet al. Antibiofilm activity of propolis extract on Fusarium species from onychomycosis. Future Microbiol.12(14), 1311–1321 (2017).
  • Gucwa K , KusznierewiczB, MilewskiS, Van DijckP, SzwedaP. Antifungal activity and synergism with azoles of polish propolis. Pathogens.7(2), E56 (2018).
  • Veiga FF , GadelhaMC, da SilvaMRTet al. Propolis extract for onychomycosis topical treatment: from bench to clinic. Front. Microbiol.9, 779 (2018).
  • Nani BD , SardiJCO, LazariniJGet al. Anti-inflammatory and anti-Candida effects of brazilian organic propolis, a promising source of bioactive molecules and functional food. ACS68(10), 2861–2871 (2019).
  • Singh M , SinghS, SalgarARet al. An in vitro comparative evaluation of antimicrobial efficacy of propolis, Morinda citrifolia Juice, sodium hypochlorite and chlorhexidine on Enterococcus faecalis and Candida albicans. J. Contemp. Dent. Pract.20(1), 40–45 (2019).
  • Bruschi ML , FrancoSL, GremiãoMPD. Application of an HPLC method for analysis of propolis extract. J. Liquid Chromatography Related Technol.26(14), 2399–2409 (2003).
  • Dota KF , ConsolaroME, SvidzinskiTI, BruschiML. Antifungal activity of brazilian propolis microparticles against yeasts isolated from vulvovaginal candidiasis. Evid Based Complement. Alternat. Med.2011, 201953 (2011).
  • Teixeira EW , MessageD, NegriG, SalatinoA, StringhetaPC. Seasonal variation, chemical composition and antioxidant activity of Brazilian propolis samples. Evid. Based Complement. Alternat. Med.7(3), 307–315 (2008).
  • Roy N , MondalS, LaskarRAet al. Biogenic synthesis of Au and Ag nanoparticles by Indian propolis and its constituents. Colloids Surf. B Biointerfaces76(1), 317–325 (2010).
  • Kado NY , LangleyD, EisenstadtE. A simple modification of the Salmonella liquid-incubation assay increased sensitivity for detecting mutagens in human urine. Mutat. Res.121(1), 25–32 (1983).
  • Clinical and Laboratory Standards Institute . Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard–Second Edition, CLSI Document M27-S4.CLSI, PA, USA (2012).
  • Clinical and Laboratory Standards Institute . Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard-Second Edition, CLSI Document M38-A2.CLSI, PA, EUA (2008).
  • Bernstein L , KaldorJ, McCannJ, PikeMC. An empirical approach to the statistical analysis of mutagenesis data from the Salmonella test. Mutat. Res.97(4), 267–281 (1982).
  • Banskota AH , TezukaY, KadotaS. Recent progress in pharmacological research of propolis. Phytother. Res.15(7), 561–571 (2001).
  • De Funari CS , deOliveira Ferro V, MathorMB. Analysis of propolis from Baccharis dracunculifolia DC. (Compositae) and its effects on mouse fibroblasts. J. Ethnopharmacol.111(2), 206–212 (2007).
  • Lara HH , Romero-UrbinaDG, PierceCet al. Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J. Nanobiotechnol.13, 91 (2015).
  • Sharma VK , YngardRA, LinY. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci.145(1-2), 83–96 (2009).
  • Yuan YG , PengQL, GurunathanS. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int. J. Mol. Sci.18(3), 569 (2017).
  • Mallick K , WitcombMJ, ScurrellMS. Polymer stabilized silver nanoparticles: a photochemical synthesis route. J. Materials Sci.39(14), 4459–4463 (2004).
  • Bhattacharjee S . DLS and zeta potential – what they are and what they are not?J. Control. Rel.235, 337–351 (2016).
  • Heshmati M , ArbabiBidgoli S, KhoeiSet al. Mutagenic effects of nanosilver consumer products: a new approach to physicochemical properties. Iran J. Pharm. Res.14(4), 1171–1180 (2015).
  • Shaalan MI , El-MahdyMM, TheinerS, El-MatbouliM, SalehM. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Vet. Scand.59(11), 49 (2017).
  • Huang YW , CambreM, LeeHJ. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int. J. Mol. Sci.18(12), 2702 (2017).
  • Beyth N , Houri-HaddadY, DombA, KhanW, HazanR. Alternative antimicrobial approach: nano-antimicrobial materials. Evid. Based Complement Alternat. Med.2015, 246012 (2015).
  • Chandran PR , NaseerM, UdupaNet al. Size controlled synthesis of biocompatible gold nanoparticles and their activity in the oxidation of NADH. Nanotechnology23(1), 015602 (2012).
  • Jeong SH , YeoSY, YiSC. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J. Materials Sci.40(20), 5407–5411 (2005).
  • Hatipoglu MK , KeleştemurS, AltunbekMet al. Source of cytotoxicity in a colloidal silver nanoparticle suspension. Nanotechnology26(19), 195103 (2015).
  • Kim S , ChoiJE, ChoiJet al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro.23(6), 1076–1084 (2009).
  • Gengan RM , AnandK, PhulikdareeA, ChuturgoonA. A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia leaf. Colloids Surf. B Biointerfaces105, 87–91 (2013).
  • Wypij M , CzarneckaJ, ŚwiecimskaMet al. Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World J. Microbiol. Biotechnol.34(2), 23 (2018).
  • Valenzuela-Barra G , CastroC, FiqueroaCet al. Anti-inflammatory activity and phenolic profile of propolis from two locations in Región Metropolitana de Santiago, Chile. J. Ethnopharmacol.168, 37–44 (2015).
  • Silva RPD , MachadoBAS, BarretoGAet al. Antioxidant, antimicrobial, antiparasitic, and cytotoxic properties of various Brazilian propolis extracts. PLoS ONE12(3), e0172585 (2017).
  • Velluti F , MosconiN, AcevedoAet al. Synthesis, characterization, microbiological evaluation, genotoxicity and synergism tests of new nano silver complexes with sulfamoxole: x-ray diffraction of [Ag2(SMX)2]·DMSO. J. Inorg. Biochem.141, 58–69 (2014).
  • Mosconi N , GiulidoriC, VellutiF. Antibacterial, antifungal, phytotoxic, and genotoxic properties of two complexes of Ag(I) with sulfachloropyridazine (SCP): x-ray diffraction of [Ag(SCP)]n. Chem. Med. Chem.9(6), 1211–1220 (2014).
  • Radhakrishnan VS , ReddyMudiam MK, KumarMet al. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). Int. J. Nanomedicine2018(13), 2647–2663 (2018).
  • Manivasagan P , VenkatesanJ, SenthilkumarKet al. Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. Biomed. Res. Int.2013, 287638 (2013).
  • Rathod D , GolinskaP, WypijMet al. A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Med. Microbiol. Immunol.205(5), 435–447 (2016).
  • Xue B , HeD, GaoSet al. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int. J. Nanomed.2016(11), 1899–1906 (2016).
  • Gao SS , ZhaoIS, DuffinSet al. Revitalising silver nitrate for caries management. Int. J. Environ. Res. Public Health.15(1), 80 (2018).
  • Tupaki-Sreepurna A , Al-HatmiAM, KindoAJ, SundaramM, de HoogGS. Multidrug-resistant Fusarium in keratitis: a clinico-mycological study of keratitis infections in Chennai, India. Mycoses60(4), 230–233 (2017).
  • Kimoto T , AraiS, KohguchiMet al. Apoptosis and suppression of tumor growth by artepillin C extracted from Brazilian propolis. Cancer Detect. Prev.22(6), 506–515 (1998).
  • Koo H , HayacibaraMF, SchobelBDet al. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J. Antimicrob. Chemother.52(5), 782–789 (2003).
  • Su ZZ , LinJ, GrunbergerD, FisherPB. Growth suppression and toxicity induced by caffeic acid phenethyl ester (CAPE) in type 5 adenovirus-transformed rat embryo cells correlate directly with transformation progression. Cancer Res.54(7), 1865–1870 (1994).
  • Amoros M , SimõesCM, GirreL, SauvagerF, CormierM. Synergistic effect of flavones and flavonols against herpes simplex virus type 1 in cell culture. Comparison with the antiviral activity of propolis. J. Nat. Prod.55(12), 1732–1740 (1992).
  • Bueno-Silva B , AlencarSM, KooHet al. Anti-inflammatory and antimicrobial evaluation of neovestitol and vestitol isolated from Brazilian red propolis. J. Agric. Food Chem.61(19), 4546–5450 (2013).
  • Berretta AA , de CastroPA, CavalheiroAHet al. Evaluation of mucoadhesive gels with propolis (EPP-AF) in preclinical treatment of candidiasis vulvovaginal infection. Evid. Based Complement Alternat. Med.2013, 641480 (2013).
  • Abbasi AJ , MohammadiF, BayatMet al. Applications of propolis in dentistry: a review. Ethiop. J. Health Sci.28(4), 505–512 (2018).
  • Al-Waili N , Al-GhamdiA, AnsariMJ, Al-AttalY, SalomK. Synergistic effects of honey and propolis toward drug multi-resistant Staphylococcus aureus, Escherichia coli and Candida albicans isolates in single and polymicrobial cultures. Int. J. Med. Sci.9(9), 793–800 (2012).
  • Ong TH , ChitraE, RamamurthySet al. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms. PLoS ONE12(3), e0174888 (2017).
  • Possamai MM , Honorio-FrançaAC, ReinaqueAP, FrançaEL, SoutoPC. Brazilian propolis: a natural product that improved the fungicidal activity by blood phagocytes. Biomed. Res. Int.2013, 541018 (2013).
  • Selvaraj M , PanduranganP, RamasamiNet al. Highly potential antifungal activity of quantum-sized silver nanoparticles against Candida albicans. Appl. Biochem. Biotechnol.173(1), 55–66 (2014).
  • Monteiro DR , TakamiyaAS, FeresinLPet al. Susceptibility of Candida albicans and Candida glabrata biofilms to silver nanoparticles in intermediate and mature development phases. J. Prosthodont. Res.59(1), 42–48 (2015).
  • Panácek A , KolárM, VecerováRet al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials30(31), 6333–6340 (2009).
  • Kim KJ , SungWS, SuhBK. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals22(2), 235–242 (2009).
  • Hwang IS , LeeJ, HwangJHet al. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J.279(7), 1327–1338 (2012).
  • Vazquez-Muñoz R , Avalos-BorjaM, Castro-LongoriaE. Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PLoS ONE9(10), e108876 (2014).
  • Priegnitz BE , WargenauA, BrandtUet al. The role of initial spore adhesion in pellet and biofilm formation in Aspergillus niger. Fung. Gen. Biol.49(1), 30–38 (2012).
  • Kernien JF , SnarrBD, SheppardDC, NettJE. The interface between fungal biofilms and innate immunity. Front. Immunol.8, 1968 (2018).
  • Ahmadi MS , LeeHH, SanchezDAet al. Sustained nitric oxide-releasing nanoparticles induce cell death in Candida albicans yeast and hyphal cells, preventing biofilm formation in vitro and in a rodent central venous catheter model. Antimicrob. Agents Chemother.60(4), 2185–2194 (2016).
  • Lara HH , GuisbiersG, MendozaJet al. Synergistic antifungal effect of chitosan-stabilized selenium nanoparticles synthesized by pulsed laser ablation in liquids against Candida albicans biofilms. Int. J. Nanomedicine2018(13), 2697–2708 (2018).
  • Taff HT , MitchellKF, EdwardJAet al. Mechanisms of Candida biofilm drug resistance. Future Microbiol.8(10), 1325–1337 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.