244
Views
0
CrossRef citations to date
0
Altmetric
Review

The Gallbladder and Vermiform Appendix Influence the Assemblage of Intestinal Microorganisms

, &
Pages 541-555 | Received 24 Nov 2019, Accepted 05 Mar 2020, Published online: 01 Jun 2020

References

  • Stinton LM , MyersRP, ShafferEA. Epidemiology of gallstones. Gastroenterol. Clin. North Am.39(2), 157vii–169vii; (2010).
  • Lammert F , GurusamyK, KoCWet al. Gallstones. Nat. Rev. Dis. Primers2, 16024 (2016).
  • Zimmitti G , ManzoniA, GueriniFet al. Current role of minimally invasive radical cholecystectomy for gallbladder cancer. Gastroenterol. Res. Pract.2016, 7684915 (2016).
  • Dosch AR , ImagawaDK, JutricZ. Bile metabolism and lithogenesis: an update. Surg. Clin. North Am.99(2), 215–229 (2019).
  • Schoeler M , CaesarR. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord.20(4), 461–472 (2019).
  • Snyder MJ , GuthrieM, CagleS. Acute appendicitis: efficient diagnosis and management. Am. Fam. Physician98(1), 25–33 (2018).
  • Vitetta L , ChenJ, ClarkeS. The vermiform appendix: an immunological organ sustaining a microbiome inoculum. Clin. Sci. (Lond.)133(1), 1–8 (2019).
  • Vasavan T , FerraroE, IbrahimE, DixonP, GorelikJ, WilliamsonC. Heart and bile acids – clinical consequences of altered bile acid metabolism. Biochim. Biophys. Acta Mol. Basis Dis.1864(4 Pt B), 1345–1355 (2018).
  • Ramirez-Perez O , Cruz-RamonV, Chinchilla-LopezP, Mendez-SanchezN. The role of the gut microbiota in bile acid metabolism. Ann. Hepatol.16(Suppl. 1), S21–S26 (2017).
  • Wahlstrom A , SayinSI, MarschallHU, BackhedF. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab.24(1), 41–50 (2016).
  • Chiang JY . Recent advances in understanding bile acid homeostasis. F1000Res.6, 2029 (2017).
  • Chiang JYL , FerrellJM. Bile acid metabolism in liver pathobiology. Gene Expr.18(2), 71–87 (2018).
  • Consortium HMP . Structure, function and diversity of the healthy human microbiome. Nature486(7402), 207–214 (2012).
  • Ridlon JM , KangDJ, HylemonPB, BajajJS. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol.30(3), 332–338 (2014).
  • Reese AT , DunnRR. Drivers of microbiome biodiversity: a review of general rules, feces and ignorance. mBio9(4), pii:e01294–18 (2018).
  • Vemuri R , GundamarajuR, ShastriMDet al. Gut microbial changes, interactions and their implications on human lifecycle: an ageing perspective. Biomed. Res. Int.2018, 4178607 (2018).
  • Dore J , BlottiereH. The influence of diet on the gut microbiota and its consequences for health. Curr. Opin. Biotechnol.32, 195–199 (2015).
  • Lozupone CA , StombaughJI, GordonJI, JanssonJK, KnightR. Diversity, stability and resilience of the human gut microbiota. Nature489(7415), 220–230 (2012).
  • Foley MH , O’FlahertyS, BarrangouR, TheriotCM. Bile salt hydrolases: gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract. PLoS Pathog.5(3), e1007581 (2019).
  • Cai JS , ChenJH. The mechanism of enterohepatic circulation in the formation of gallstone disease. J. Membr. Biol.247(11), 1067–1082 (2014).
  • Chiang JYL , FerrellJM. Bile acids as metabolic regulators and nutrient sensors. Annu. Rev. Nutr.39, 175–200 (2019).
  • Makishima M , OkamotoAY, RepaJJet al. Identification of a nuclear receptor for bile acids. Science284(5418), 1362–1365 (1999).
  • Watanabe M , HoutenSM, MatakiCet al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature439(7075), 484–489 (2006).
  • Chen J , ThomsenM, VitettaL. Interaction of gut microbiota with dysregulation of bile acids in the pathogenesis of nonalcoholic fatty liver disease and potential therapeutic implications of probiotics. J. Cell. Biochem.120(3), 2713–2720 (2019).
  • Chen Y , WuS, TianY. Cholecystectomy as a risk factor of metabolic syndrome: from epidemiologic clues to biochemical mechanisms. Lab. Invest.98(1), 7–14 (2018).
  • Choi M , MoschettaA, BookoutALet al. Identification of a hormonal basis for gallbladder filling. Nat. Med.12(11), 1253–1255 (2006).
  • Lundasen T , GalmanC, AngelinB, RudlingM. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J. Intern. Med.260(6), 530–536 (2006).
  • Thawer S , AuretJ, SchnoellerCet al. Surfactant protein-D Is essential for immunity to helminth infection. PLoS Pathog.12(2), e1005461 (2016).
  • Sorensen GL . Surfactant protein D in respiratory and non-respiratory diseases. Front. Med (Lausanne)5, 18 (2018).
  • Wright JR . Immunoregulatory functions of surfactant proteins. Nat. Rev. Immunol.5(1), 58–68 (2005).
  • Kingma PS , WhitsettJA. In defense of the lung: surfactant protein A and surfactant protein D. Curr. Opin. Pharmacol.6(3), 277–283 (2006).
  • Breen EC , MalloyJL, TangKet al. Impaired pulmonary defense against Pseudomonas aeruginosa in VEGF gene inactivated mouse lung. J. Cell. Physiol.228(2), 371–379 (2013).
  • Giannoni E , SawaT, AllenL, Wiener-KronishJ, HawgoodS. Surfactant proteins A and D enhance pulmonary clearance of Pseudomonas aeruginosa. Am. J. Respir. Cell Mol. Biol.34(6), 704–710 (2006).
  • Du X , MengQ, SharifAet al. Surfactant proteins SP-A and SP-D ameliorate pneumonia severity and intestinal injury in a murine model of Staphylococcus Aureus pneumonia. Shock46(2), 164–172 (2016).
  • Jounblat R , KadiogluA, IannelliF, PozziG, EggletonP and rewPW. Binding and agglutination of Streptococcus pneumoniae by human surfactant protein D (SP-D) vary between strains, but SP-D fails to enhance killing by neutrophils. Infect. Immun.72(2), 709–716 (2004).
  • Wu H , KuzmenkoA, WanSet al. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability. J. Clin. Invest.111(10), 1589–1602 (2003).
  • Kuzmenko AI , WuH, McCormackFX. Pulmonary collectins selectively permeabilize model bacterial membranes containing rough lipopolysaccharide. Biochemistry45(8), 2679–2685 (2006).
  • Sarashina-Kida H , NegishiH, NishioJet al. Gallbladder-derived surfactant protein D regulates gut commensal bacteria for maintaining intestinal homeostasis. Proc. Natl Acad. Sci. USA114(38), 10178–10183 (2017).
  • Zhang L , MengQ, YepuriN, WangG, XiX, CooneyRN. Surfactant proteins-A and -D attenuate LPS-induced apoptosis in primary intestinal epithelial cells (IECs). Shock49(1), 90–98 (2018).
  • Leaphart CL , CavalloJ, GribarSCet al. A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. J. Immunol.179(7), 4808–4820 (2007).
  • Hogenkamp A , HeriasMV, TootenPC, VeldhuizenEJ, HaagsmanHP. Effects of surfactant protein D on growth, adhesion and epithelial invasion of intestinal Gram-negative bacteria. Mol. Immunol.44(14), 3517–3527 (2007).
  • Portincasa P , DiCiaula A, WangHHet al. Coordinate regulation of gallbladder motor function in the gut-liver axis. Hepatology47(6), 2112–2126 (2008).
  • Gadaleta RM , OldenburgB, WillemsenECet al. Activation of bile salt nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-kappaB signaling in the intestine. Biochim. Biophys. Acta1812(8), 851–858 (2011).
  • Zweers SJ , BooijKA, KomutaMet al. The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract. Hepatology55(2), 575–583 (2012).
  • Walters JR . Bile acid diarrhoea and FGF19: new views on diagnosis, pathogenesis and therapy. Nat. Rev. Gastroenterol. Hepatol.11(7), 426–434 (2014).
  • Latenstein CSS , WennmackerSZ, de JongJJ, van LaarhovenC, DrenthJPH, de ReuverPR. Etiologies of long-term postcholecystectomy symptoms: a systematic review. Gastroenterol. Res. Pract.2019, 4278373 (2019).
  • Goldacre MJ , WottonCJ, AbisgoldJ, YeatesDG, CollinsJ. Association between cholecystectomy and intestinal cancer: a national record linkage study. Ann. Surg.256(6), 1068–1072 (2012).
  • Chavez-Tapia NC , Kinney-NoveloIM, Sifuentes-RenteriaSEet al. Association between cholecystectomy for gallstone disease and risk factors for cardiovascular disease. Ann. Hepatol.11(1), 85–89 (2012).
  • Garruti G , WangDQ, DiCiaula A, PortincasaP. Cholecystectomy: a way forward and back to metabolic syndrome?Lab. Invest.98(1), 4–6 (2018).
  • Di Ciaula A , GarrutiG, WangDQ, PortincasaP. Cholecystectomy and risk of metabolic syndrome. Eur. J. Intern Med.53, 3–11 (2018).
  • Mertens KL , KalsbeekA, SoetersMR, EgginkHM. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front. Neurosci.11, 617 (2017).
  • Fort JM , AzpirozF, CasellasF and reuJ, MalageladaJR. Bowel habit after cholecystectomy: physiological changes and clinical implications. Gastroenterology111(3), 617–622 (1996).
  • Sauter GH , MoussavianAC, MeyerG, SteitzHO, ParhoferKG, JungstD. Bowel habits and bile acid malabsorption in the months after cholecystectomy. Am. J. Gastroenterol.97(7), 1732–1735 (2002).
  • Kim DB , PaikCN, SongDS, KimYJ, LeeJM. The characteristics of small intestinal bacterial overgrowth in patients with gallstone diseases. J. Gastroenterol. Hepatol.33(8), 1477–1484 (2018).
  • Kullak-Ublick GA , PaumgartnerG, BerrF. Long-term effects of cholecystectomy on bile acid metabolism. Hepatology21(1), 41–45 (1995).
  • Amigo L , HuscheC, ZanlungoSet al. Cholecystectomy increases hepatic triglyceride content and very-low-density lipoproteins production in mice. Liver Int.31(1), 52–64 (2011).
  • Shaffer EA , SmallDM. Biliary lipid secretion in cholesterol gallstone disease. The effect of cholecystectomy and obesity. J. Clin. Invest.59(5), 828–840 (1977).
  • Keren N , KonikoffFM, PaitanYet al. Interactions between the intestinal microbiota and bile acids in gallstones patients. Environ. Microbiol. Rep.7(6), 874–880 (2015).
  • Herrera J , AmigoL, HuscheCet al. Fecal bile acid excretion and messenger RNA expression levels of ileal transporters in high risk gallstone patients. Lipids Health Dis.8, 53 (2009).
  • Malagelada JR , GoVL, SummerskillWH, GambleWS. Bile acid secretion and biliary bile acid composition altered by cholecystectomy. Am. J. Dig. Dis.18(6), 455–459 (1973).
  • van Berge Henegouwen GP , HofmannAF. Clinical aspects of disturbances in the enterohepatic circulation of bile acids in man: the cholanopathies. Neth. J. Med.21(6), 257–269 (1978).
  • Pomare EW , HeatonKW. The effect of cholecystectomy on bile salt metabolism. Gut14(10), 753–762 (1973).
  • Sonne DP , HareKJ, MartensPet al. Postprandial gut hormone responses and glucose metabolism in cholecystectomized patients. Am. J. Physiol. Gastrointest. Liver Physiol.304(4), G413–419 (2013).
  • Housset C , ChretienY, DebrayD, ChignardN. Functions of the gallbladder. Compr. Physiol.6(3), 1549–1577 (2016).
  • Roda E , AldiniR, MazzellaGet al. Enterohepatic circulation of bile acids after cholecystectomy. Gut19(7), 640–649 (1978).
  • Boyer JL . Bile formation and secretion. Compr. Physiol.3(3), 1035–1078 (2013).
  • Hundt M , BasitH, JohnS. Physiology, bile secretion. In: StatPearls.StatPearls Publishing StatPearls Publishing LLC, FL, USA (2020).
  • Jones ML , MartoniCJ, GanopolskyJG, LabbeA, PrakashS. The human microbiome and bile acid metabolism: dysbiosis, dysmetabolism, disease and intervention. Expert. Opin. Biol. Ther.14(4), 467–482 (2014).
  • Ramirez-Perez O , Cruz-RamonV, Chinchilla-LopezP, Mendez-SanchezN. The role of the gut microbiota in bile acid metabolism. Ann. Hepatol.16(Suppl. 1), S3–105; s15-s20 (2017).
  • Jia W , XieG, JiaW. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol.15(2), 111–128 (2018).
  • Ridlon JM , HarrisSC, BhowmikS, KangDJ, HylemonPB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes.7(1), 22–39 (2016).
  • Watanabe M , FukiyaS, YokotaA. Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents. J. Lipid Res.58(6), 1143–1152 (2017).
  • Sannasiddappa TH , LundPA, ClarkeSR. In vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus. Front. Microbiol.8, 1581 (2017).
  • Ridlon JM , AlvesJM, HylemonPB, BajajJS. Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship. Gut Microbes.4(5), 382–387 (2013).
  • Islam KB , FukiyaS, HagioMet al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology141(5), 1773–1781 (2011).
  • Yoon WJ , KimHN, ParkEet al. The impact of cholecystectomy on the gut microbiota: a case-control study. J. Clin. Med.8(1), pii: E79 (2019).
  • Mullish BH , McDonaldJAK, PechlivanisAet al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection. Gut68(10), 1791–1800 (2019).
  • Katsidzira L , OcvirkS, WilsonAet al. Differences in fecal gut microbiota, short-chain fatty acids and bile acids link colorectal cancer risk to dietary changes associated with urbanization among zimbabweans. Nutr. Cancer71(8), 1313–1324 (2019).
  • Thoma C . Bile salt hydrolases involved in the effectiveness of FMT for Clostridium difficile infection. Nat. Rev. Gastroenterol. Hepatol.16(4), 198 (2019).
  • Wang Y , LiJ, ZachariahP, AbramsJ, FreedbergDE. Relationship between remote cholecystectomy and incident Clostridioides difficile infection. Clin. Microbiol. Infect.25(8), 994–999 (2019).
  • Studer N , DesharnaisL, BeutlerMet al. Functional intestinal bile acid 7alpha-dehydroxylation by Clostridium scindens associated with protection from Clostridium difficile infection in a gnotobiotic mouse model. Front. Cell Infect. Microbiol.6, 191 (2016).
  • Coats M , ShimiSM. Cholecystectomy and the risk of alimentary tract cancers: a systematic review. World J. Gastroenterol.21(12), 3679–3693 (2015).
  • Bernstein C , HolubecH, BhattacharyyaAKet al. Carcinogenicity of deoxycholate, a secondary bile acid. Arch. Toxicol.85(8), 863–871 (2011).
  • Cao H , XuM, DongWet al. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int. J. Cancer140(11), 2545–2556 (2017).
  • Wang S , DongW, LiuLet al. Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis. Mol. Carcinog.58(7), 1155–1167 (2019).
  • Chen J , ZhaoKN, VitettaL. Effects of intestinal microbial(−)elaborated butyrate on oncogenic signaling pathways. Nutrients11(5), pii: E1026 (2019).
  • Chen J , VitettaL. Inflammation-modulating effect of butyrate in the prevention of colon cancer by dietary fiber. Clin. Colorectal Cancer17(3), e541–e544 (2018).
  • Huynh J , ChandA, GoughD, ErnstM. Therapeutically exploiting STAT3 activity in cancer – using tissue repair as a road map. Nat. Rev. Cancer19(2), 82–96 (2019).
  • Kooij IA , SahamiS, MeijerSL, BuskensCJ, TeVelde AA. The immunology of the vermiform appendix: a review of the literature. Clin. Exp. Immunol.186(1), 1–9 (2016).
  • Laurin M , EverettML, ParkerW. The cecal appendix: one more immune component with a function disturbed by post-industrial culture. Anat. Rec. (Hoboken)294(4), 567–579 (2011).
  • Randal Bollinger R , BarbasAS, BushEL, LinSS, ParkerW. Biofilms in the large bowel suggest an apparent function of the human vermiform appendix. J. Theor. Biol.249(4), 826–831 (2007).
  • Guinane CM , TadrousA, FouhyFet al. Microbial composition of human appendices from patients following appendectomy. mBio4(1), e00366-12 (2013).
  • Jackson HT , MongodinEF, DavenportKP, FraserCM, SandlerAD, ZeichnerSL. Culture-independent evaluation of the appendix and rectum microbiomes in children with and without appendicitis. PLoS ONE9(4), e95414 (2014).
  • Le Chatelier E , NielsenT, QinJet al. Richness of human gut microbiome correlates with metabolic markers. Nature500(7464), 541–546 (2013).
  • Cotillard A , KennedySP, KongLCet al. Dietary intervention impact on gut microbial gene richness. Nature500(7464), 585–588 (2013).
  • Beaurepaire JE , JonesM, EcksteinRP, SmithRC, PiperDW, TennantC. The acute appendicitis syndrome: psychological aspects of the inflamed and non-inflamed appendix. J. Psychosom. Res.36(5), 425–437 (1992).
  • Creed F . Life events and appendicectomy. Lancet1(8235), 1381–1385 (1981).
  • Maes M , KuberaM, LeunisJC. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from Gram-negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro. Endocrinol. Lett.29(1), 117–124 (2008).
  • Maes M , KuberaM, LeunisJC, BerkM. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J. Affect. Disord.141(1), 55–62 (2012).
  • Campos AC , RochaNP, NicoliJR, VieiraLQ, TeixeiraMM, TeixeiraAL. Absence of gut microbiota influences lipopolysaccharide-induced behavioral changes in mice. Behav. Brain Res.312, 186–194 (2016).
  • Guida F , TurcoF, IannottaMet al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav. Immun.67, 230–245 (2018).
  • Kelly JR , BorreY, OBCet al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res.82, 109–118 (2016).
  • Zheng P , ZengB, ZhouCet al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry.21(6), 786–796 (2016).
  • Jiang H , LingZ, ZhangYet al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun.48, 186–194 (2015).
  • Skonieczna-Zydecka K , GrochansE, MaciejewskaDet al. Faecal short chain fatty acids profile is changed in polish depressive women. Nutrients10(12), pii:E1939 (2018).
  • Huang Y , ShiX, LiZet al. Possible association of Firmicutes in the gut microbiota of patients with major depressive disorder. Neuropsychiatr. Dis. Treat.14, 3329–3337 (2018).
  • Riviere A , SelakM, LantinD, LeroyF, DeVuyst L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol.7, 979 (2016).
  • Wu SC , ChenWT, MuoCH, KeTW, FangCW, SungFC. Association between appendectomy and subsequent colorectal cancer development: an Asian population study. PLoS ONE10(2), e0118411 (2015).
  • Chen CH , TsaiMC, LinHC, LeeHC, LeeCZ, ChungSD. Appendectomy increased the risk of ischemic heart disease. J. Surg. Res.199(2), 435–440 (2015).
  • Tzeng YM , KaoLT, KaoS, LinHC, TsaiMC, LeeCZ. An appendectomy increases the risk of rheumatoid arthritis: a five-year follow-up study. PLoS ONE10(5), e0126816 (2015).
  • Boesmans L , Valles-ColomerM, WangJet al. Butyrate producers as potential next-generation probiotics: safety assessment of the administration of Butyricicoccus pullicaecorum to healthy volunteers. mSystems3(6), pii:e00094–18 (2018).
  • Louis P , HoldGL, FlintHJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol.12(10), 661–672 (2014).
  • Goncalves P , AraujoJR, DiSanto JP. a cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm. Bowel Dis.24(3), 558–572 (2018).
  • Myrelid P , LanderholmK, NordenvallC, PinkneyTD and erssonRE. Appendectomy and the risk of colectomy in ulcerative colitis: a national cohort study. Am. J. Gastroenterol.112(8), 1311–1319 (2017).
  • Park SH , LoftusEVJr, YangSK. Appendiceal skip inflammation and ulcerative colitis. Dig. Dis. Sci.59(9), 2050–2057 (2014).
  • Parada Venegas D , Dela Fuente MK, LandskronGet al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol.10, 277 (2019).
  • Shen ZH , ZhuCX, QuanYSet al. Relationship between intestinal microbiota and ulcerative colitis: mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J. Gastroenterol.24(1), 5–14 (2018).
  • Chen J , VitettaL. Bile acids and butyrate in the effects of probiotics/synbiotics on nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol.31(11), 1475–1476 (2019).
  • Patel R , DuPontHL. New approaches for bacteriotherapy: prebiotics, new-generation probiotics and synbiotics. Clin. Infect. Dis.60(Suppl. 2), S108–S121 (2015).
  • Oh TJ , SulWJ, OhHNet al. Butyrate attenuated fat gain through gut microbiota modulation in db/db mice following dapagliflozin treatment. Sci. Rep.9(1), 20300 (2019).
  • Yu C , LiuS, ChenLet al. Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism. J. Endocrinol. doi:10.1530/joe-19-0122 (2019) ( Epub ahead of print).
  • Killinger BA , MadajZ, SikoraJWet al. The vermiform appendix impacts the risk of developing Parkinson’s disease. Sci. Transl. Med.10(465), pii:eaar5280 (2018).
  • Killinger B , LabrieV. The appendix in Parkinson’s disease: from vestigial remnant to vital organ?J. Parkinsons Dis.9(s2), S345–S358 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.