441
Views
3
CrossRef citations to date
0
Altmetric
Review

The Present Danger of New Delhi Metallo-β-Lactamase: A Threat to Public Health

ORCID Icon, , , ORCID Icon, , , ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1759-1778 | Received 28 Mar 2020, Accepted 19 Nov 2020, Published online: 06 Jan 2021

References

  • Aslam B , WangW , ArshadMIet al. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist.11, 1645–1658 (2018).
  • Li B , WebsterTJ. Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res.36(1), 22–32 (2018).
  • Munita JM , AriasCA. Mechanisms of antibiotic resistance. Microbiol. Spectr.4(2), 1–37 (2016).
  • Eichenberger EM , ThadenJT. Epidemiology and mechanisms of resistance of extensively drug resistant Gram-negative bacteria. Antibiotics (Basel)8(2), 37 (2019).
  • Qamar MU , WalshTR , TolemanMAet al. Dissemination of genetically diverse NDM-1, -5, -7 producing-Gram-negative pathogens isolated from pediatric patients in Pakistan. Future Microbiol.14(8), 691–704 (2019).
  • Qamar MU , NahidF , WalshTR , KamranR , ZahraR. Prevalence and clinical burden of NDM-1 positive infections in pediatric and neonatal patients in Pakistan. Pediatr. Infect. Dis. J.34(4), 452–454 (2015).
  • Qamar MU , SaleemS , TolemanMAet al. In vitro and in vivo activity of Manuka honey against NDM-1-producing Klebsiella pneumoniae ST11. Future Microbiol.13(1), 13–26 (2018).
  • Tagliabue A , RappuoliR. Changing priorities in vaccinology: antibiotic resistance moving to the top. Front. Immunol.9, 1068–1068 (2018).
  • CDC . Biggest Threats and Data (2019). www.cdc.gov/drugresistance/biggest-threats.html
  • Laxminarayan R , DuseA , WattalCet al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis.13(12), 1057–1098 (2013).
  • Hannan A , QamarMU , UsmanM , WaheedKAI , RaufK. Multidrug resistant microorganisms causing neonatal septicemia: in a tertiary care hospital Lahore, Pakistan. Afr. J. Microbiol. Res.7(19), 1896–1902 (2013).
  • Saleem AF , AhmedI , MirF , AliSR , ZaidiAK. Pan-resistant Acinetobacter infection in neonates in Karachi, Pakistan. J. Infect. Dev. Ctries.4(1), 30–37 (2009).
  • Khan E , IrfanS , SultanBA , NasirA , HasanR. Dissemination and spread of New Delhi metallo-beta-lactamase-1 superbugs in hospital settings. J. Pak. Med. Assoc.66(8), 999–1004 (2016).
  • de Kraker MEA , StewardsonAJ , HarbarthS. Will 10 million people die a year due to antimicrobial resistance by 2050?PLoS Med.13(11), e1002184–e1002184 (2016).
  • Codjoe FS , DonkorES. Carbapenem resistance: a review. Med. Sci. (Basel)6(1), 1 (2017).
  • Thomson KS . Extended-spectrum-beta-lactamase, AmpC, and Carbapenemase issues. J. Clin. Microbiol.48(4), 1019–1025 (2010).
  • van Duin D , DoiY. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence.8(4), 460–469 (2017).
  • Naas T , OueslatiS , BonninRAet al. Beta-lactamase database (BLDB) – structure and function. J. Enzyme Inhib. Med. Chem.32(1), 917–919 (2017).
  • Yong D , TolemanMA , GiskeCGet al. Characterization of a new metallo beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother.53(12), 5046–5054 (2009).
  • Johnson AP , WoodfordN. Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J. Med. Microbiol.62(Pt 4), 499–513 (2013).
  • Kumarasamy KK , TolemanMA , WalshTRet al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis.10(9), 597–602 (2010).
  • Pillai DR , McGeerA , LowDE. New Delhi metallo-β-lactamase-1 in Enterobacteriaceae: emerging resistance. CMAJ.183(1), 59–64 (2011).
  • Rahman M , ShuklaSK , PrasadKNet al. Prevalence and molecular characterisation of New Delhi metallo-β-lactamases NDM-1, NDM-5, NDM-6 and NDM-7 in multidrug-resistant Enterobacteriaceae from India. Int. J. Antimicrob. Agents44(1), 30–37 (2014).
  • Berrazeg M , DieneS , MedjahedLet al. New Delhi Metallo-beta-lactamase around the world: an eReview using Google Maps. Euro Surveill.19(20), 20809 (2014).
  • Walsh TR , WeeksJ , LivermoreDM , TolemanMA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect. Dis.11(5), 355–362 (2011).
  • Feng H , LiuX , WangS , FlemingJ , WangD-C , LiuW. The mechanism of NDM-1-catalyzed carbapenem hydrolysis is distinct from that of penicillin or cephalosporin hydrolysis. Nat. Commun.8(1), 2242 (2017).
  • Liang Z , LiL , WangYet al. Molecular basis of NDM-1, a new antibiotic resistance determinant. PLoS ONE6(8), e23606–e23606 (2011).
  • Lisa M-N , PalaciosAR , AithaMet al. A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases. Nat. Commun.8(1), 538 (2017).
  • Toleman MA , SpencerJ , JonesL , WalshTR. blaNDM-1 is a chimera likely constructed in Acinetobacter baumannii.Antimicrob. Agents Chemother.56(5), 2773–2776 (2012).
  • Jones LS , TolemanMA , WeeksJL , HoweRA , WalshTR , KumarasamyKK. Plasmid carriage of bla NDM-1 in clinical Acinetobacter baumannii isolates from India. Antimicrob. Agents Chemother.58(7), 4211–4213 (2014).
  • González LJ , BahrG , NakashigeTG , NolanEM , BonomoRA , VilaAJ. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat. Chem. Biol.12(7), 516–522 (2016).
  • Bahr G , Vitor-HorenL , BethelCR , BonomoRA , GonzálezLJ , VilaAJ. Clinical evolution of New Delhi metallo-β-lactamase (NDM) optimizes resistance under Zn(II) deprivation. Antimicrob. Agents Chemother.62(1), e01849–01817 (2017).
  • Roy S , ViswanathanR , SinghAK , DasP , BasuS. Sepsis in neonates due to imipenem-resistant Klebsiella pneumoniae producing NDM-1 in India. J. Antimicrob. Chemother.66(6), 1411–1413 (2011).
  • Seema K , RanjanSen M , UpadhyayS , BhattacharjeeA. Dissemination of the New Delhi metallo-β-lactamase-1 (NDM-1) among Enterobacteriaceae in a tertiary referral hospital in north India. J. Antimicrob. Chemother.66(7), 1646–1647 (2011).
  • Castanheira M , DeshpandeLM , FarrellSE , ShetyeS , ShahN , JonesRN. Update on the prevalence and genetic characterization of NDM-1-producing Enterobacteriaceae in Indian hospitals during 2010. Diagn. Microbiol. Infect. Dis.75(2), 210–213 (2013).
  • Kumarasamy K , KalyanasundaramA. Emergence of Klebsiella pneumoniae isolate co-producing NDM-1 with KPC-2 from India. J. Antimicrob. Chemother.67(1), 243–244 (2012).
  • Karthikeyan K , ThirunarayanMA , KrishnanP. Coexistence of blaOXA-23 with blaNDM-1 and armA in clinical isolates of Acinetobacter baumannii from India. J. Antimicrob. Chemother.65(10), 2253–2254 (2010).
  • Grover SS , DodaA , GuptaNet al. New Delhi metallo-β-lactamase-type carbapenemases producing Escherichia coli isolates from hospitalized patients: a pilot study. Indian J. Med. Res.146(1), 105–110 (2017).
  • Khan AU , MaryamL , ZarrilliR. Structure, genetics and worldwide spread of New Delhi metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol.17(1), 101 (2017).
  • Mukherjee S , BhattacharjeeA , NahaSet al. Molecular characterization of NDM-1-producing Klebsiella pneumoniae ST29, ST347, ST1224, and ST2558 causing sepsis in neonates in a tertiary care hospital of North-East India. Infect. Genet. Evol.69, 166–175 (2019).
  • Mittal G , GaindR , KumarDet al. Risk factors for fecal carriage of carbapenemase producing Enterobacteriaceae among intensive care unit patients from a tertiary care center in India. BMC Microbiol.16(1), 138–138 (2016).
  • Batra P , DwivediM , SherwalBL , DuttaR , GuptaS. NDM-1 Infection and colonisation in critically ill patients from Delhi: a glimpse of the community scenario. Indian J. Med. Microbiol.34(1), 120–121 (2016).
  • Nahid F , KhanAA , RehmanS , ZahraR. Prevalence of metallo-β-lactamase NDM-1-producing multi-drug resistant bacteria at two Pakistani hospitals and implications for public health. J. Infect. Public Health.6(6), 487–493 (2013).
  • Sartor AL , RazaMW , AbbasiSAet al. Molecular epidemiology of NDM-1-producing Enterobacteriaceae and Acinetobacter baumannii isolates from Pakistan. Antimicrob. Agents Chemother.58(9), 5589–5593 (2014).
  • Peirano G , SchreckenbergerPC , PitoutJDD. Characteristics of NDM-1-producing Escherichia coli isolates that belong to the successful and virulent clone ST131. Antimicrob. Agents Chemother.55(6), 2986–2988 (2011).
  • Borgia S , LastovetskaO , RichardsonDet al. Outbreak of Carbapenem-resistant enterobacteriaceae containing blaNDM-1, Ontario, Canada. Clin. Infect. Dis.55(11), e109–e117 (2012).
  • Peirano G , PillaiDR , Pitondo-SilvaA , RichardsonD , PitoutJDD. The characteristics of NDM-producing Klebsiella pneumoniae from Canada. Diagn. Microbiol. Infect. Dis.71(2), 106–109 (2011).
  • Mulvey MR , GrantJM , PlewesK , RoscoeD , BoydDA. New Delhi metallo-β-lactamase in Klebsiella pneumoniae and Escherichia coli, Canada. Emerg. Infect. Dis.17(1), 103–106 (2011).
  • Teo J , NganG , BalmM , JureenR , KrishnanP , LinR. Molecular characterization of NDM-1 producing Enterobacteriaceae isolates in Singapore hospitals. Western Pac. Surveill. Response J.3(1), 19–24 (2012).
  • Chew KL , LinRTP , TeoJWP. Klebsiella pneumoniae in Singapore: hypervirulent infections and the carbapenemase threat. Front. Cell Infect. Microbiol.7, 515–515 (2017).
  • Lachish T , ElimelechM , ArieliN , AdlerA , RolainJ-M , AssousMV. Emergence of New Delhi metallo-β-lactamase in Jerusalem, Israel. Int. J. Antimicrob. Agents.40(6), 566–567 (2012).
  • Mirovic V , TomanovicB , LepsanovicZ , JovcicB , KojicM. Isolation of Klebsiella pneumoniae producing NDM-1 metallo-β-lactamase from the urine of an outpatient baby boy receiving antibiotic prophylaxis. Antimicrob. Agents Chemother.56(11), 6062–6063 (2012).
  • Rimrang B , ChanawongA , LulitanondAet al. Emergence of NDM-1- and IMP-14a-producing Enterobacteriaceae in Thailand. J. Antimicrob. Chemother.67(11), 2626–2630 (2012).
  • Netikul T , KiratisinP. Genetic characterization of carbapenem-resistant enterobacteriaceae and the spread of carbapenem-resistant Klebsiella pneumonia ST340 at a University Hospital in Thailand. PLoS One.10(9), e0139116–e0139116 (2015).
  • Poirel L , RevathiG , BernabeuS , NordmannP. Detection of NDM-1-producing Klebsiella pneumoniae in Kenya. Antimicrob. Agents Chemother.55(2), 934–936 (2011).
  • Revathi G , SiuLK , LuP-L , HuangL-Y. First report of NDM-1-producing Acinetobacter baumannii in East Africa. Int. J. Infect. Dis.17(12), e1255–e1258 (2013).
  • McGann P , MililloM , CliffordRJet al. Detection of New Delhi metallo-β-lactamase (encoded by blaNDM-1) in Acinetobacter schindleri during routine surveillance. J. Clin. Microbiol.51(6), 1942–1944 (2013).
  • Khan ER , AungMS , PaulSKet al. Prevalence and molecular epidemiology of clinical isolates of Escherichia coli and Klebsiella pneumoniae harboring extended-spectrum beta-lactamase and carbapenemase genes in Bangladesh. Microb. Drug Resist.24(10), 1568–1579 (2018).
  • Islam MA , IslamM , HasanRet al. Environmental spread of New Delhi metallo-β-lactamase-1-producing multidrug-resistant bacteria in Dhaka, Bangladesh. Appl. Environ. Microbiol.83(15), e00793–00717 (2017).
  • Islam MA , TalukdarPK , HoqueAet al. Emergence of multidrug-resistant NDM-1-producing Gram-negative bacteria in Bangladesh. Eur. J. Clin. Microbiol. Infect. Dis.31(10), 2593–2600 (2012).
  • Toleman MA , BugertJJ , NizamSA. Extensively drug-resistant New Delhi metallo-β-lactamase-encoding bacteria in the environment, Dhaka, Bangladesh, 2012. Emerg. Infect. Dis.21(6), 1027–1030 (2015).
  • Refath F , ShamsuzzamanSM , KaziZulfiquer M. Isolation and molecular characterization of New Delhi metallo-beta-lactamase-1 producing superbug in Bangladesh. J Infect Dev Ctries.7(3), 161–8 (2013).
  • Liu Z , GuY , LiXet al. Identification and characterization of NDM-1-producing hypervirulent (hypermucoviscous) Klebsiella pneumoniae in China. Ann. Lab. Med.39(2), 167–175 (2019).
  • Zou M-X , WuJ-M , LiJet al. NDM-1-producing Klebsiella pneumoniae in mainland China. Zhongguo Dang Dai Er Ke Za Zhi.14(8), 616–621 (2012).
  • Zhang X , LiX , WangMet al. Outbreak of NDM-1-producing Klebsiella pneumoniae causing neonatal infection in a teaching hospital in mainland China. Antimicrob. Agents Chemother.59(7), 4349–4351 (2015).
  • Bi R , KongZ , QianHet al. High prevalence of bla (NDM) variants among carbapenem-resistant Escherichia coli in northern Jiangsu province, China. Front. Microbiol.9, 2704–2704 (2018).
  • Zhou G , GuoS , LuoYet al. NDM-1-producing strains, family Enterobacteriaceae, in hospital, Beijing, China. Emerg. Infect. Dis.20(2), 340–342 (2014).
  • Kaase M , NordmannP , WichelhausTA , GatermannSG , BonninRA , PoirelL. NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. J. Antimicrob. Chemother.66(6), 1260–1262 (2011).
  • Espinal P , FugazzaG , LópezYet al. Dissemination of an NDM-2-producing Acinetobacter baumannii clone in an Israeli rehabilitation center. Antimicrob. Agents Chemother.55(11), 5396–5398 (2011).
  • Espinal P , PoirelL , CarmeliYet al. Spread of NDM-2-producing Acinetobacter baumannii in the Middle East. J. Antimicrob. Chemother.68(8), 1928–1930 (2013).
  • Ghazawi A , SonnevendÁ , BonninRAet al. NDM-2 carbapenemase-producing Acinetobacter baumannii in the United Arab Emirates. Clin. Microbiol. Infect.18(2), E34–E36 (2012).
  • Ismail SJ , MahmoudSS. First detection of New Delhi metallo-beta-lactamases variants (NDM-1, NDM-2) among Pseudomonas aeruginosa isolated from Iraqi hospitals. Iran J. Microbiol.10(2), 98–103 (2018).
  • Sjolander I , HansenF , ElmanamaAet al. Detection of NDM-2-producing Acinetobacter baumannii and VIM-producing Pseudomonas aeruginosa in Palestine. J. Glob. Antimicrob. Resist.2(2), 93–97 (2014).
  • Tada T , Miyoshi-AkiyamaT , ShimadaK , KirikaeT. Biochemical analysis of metallo-β-Lactamase NDM-3 from a multidrug-resistant Escherichia coli strain isolated in Japan. Antimicrob. Agents Chemother.58(6), 3538–3540 (2014).
  • Hu X , XuX , WangXet al. Diversity of New Delhi metallo-beta-lactamase-producing bacteria in China. Int. J. Infect. Dis.55, 92–95 (2017).
  • Qamar MU , WalshTR , TolemanMA , SaleemS , JahanS. First identification of clinical isolate of a novel “NDM-4” producing Escherichia coli ST405 from urine sample in Pakistan. Braz. J. Microbiol.49(4), 949–950 (2018).
  • Papagiannitsis CC , StudentovaV , ChudackovaEet al. Identification of a New Delhi metallo-beta-lactamase-4 (NDM-4)-producing Enterobacter cloacae from a Czech patient previously hospitalized in Sri Lanka. Folia Microbiol. (Praha).58(6), 547–549 (2013).
  • Ahmad N , AliSM , KhanAU. Detection of New Delhi metallo-beta-lactamase variants NDM-4, NDM-5, and NDM-7 in Enterobacter aerogenes Isolated from a neonatal intensive care unit of a North India hospital: a first report. Microb. Drug Resist.24(2), 161–165 (2018).
  • Khan AU , BegAZ , VermaPK. Draft genome sequence of the first NDM-4-producing Escherichia coli strain (AK1), isolated from sewage water of a north Indian hospital. Genome Announc.5(50), e01366–17 (2017).
  • Coppo E , DelBono V , VenturaFet al. Identification of a New Delhi metallo-beta-lactamase-4 (NDM-4)-producing Escherichia coli in Italy. BMC Microbiol.14, 148 (2014).
  • Le L , TranLK , Le-HaTDet al. Coexistence of plasmid-mediated MCR-1 And bla NDM-4 genes in a Klebsiella pneumoniae clinical strain in Vietnam. Infect. Drug Resist.12, 3703–3707 (2019).
  • Nordmann P , BoulangerAE , PoirelL. NDM-4 metallo-beta-lactamase with increased carbapenemase activity from Escherichia coli. Antimicrob. Agents Chemother.56(4), 2184–2186 (2012).
  • Khalifa HO , SolimanAM , AhmedAM , ShimamotoT , ShimamotoT. NDM-4- and NDM-5-producing Klebsiella pneumoniae coinfection in a 6-month-old infant. Antimicrob. Agents Chemother.60(7), 4416–4417 (2016).
  • Kim JS , HongCK , ParkSHet al. Emergence of NDM-4 and OXA-181 carbapenemase-producing Klebsiella pneumoniae. J. Glob. Antimicrob. Resist.20, 332–333 (2020).
  • Tian D , WangB , ZhangHet al. Dissemination of the bla NDM-5 gene via IncX3-type plasmid among Enterobacteriaceae in children. mSphere.5(1), (2020).
  • Liu Z , XiaoX , LiuY , LiR , WangZ. Recombination of NDM-5-producing plasmids mediated by IS26 among Escherichia coli. Int. J. Antimicrob. Agents.55(1), 105815 (2020).
  • Xu L , WangP , ChengJ , QinS , XieW. Characterization of a novel bla NDM-5-harboring IncFII plasmid and an MCR-1-bearing IncI2 plasmid in a single Escherichia coli ST167 clinical isolate. Infect. Drug Resist.12, 511–519 (2019).
  • Kong Z , CaiR , ChengCet al. First reported nosocomial outbreak Of NDM-5-producing Klebsiella pneumoniae In a neonatal unit in China. Infect. Drug Resist.12, 3557–3566 (2019).
  • Sun L , XuJ , HeF. Draft genome sequence of an NDM-5, CTX-M-15 and OXA-1 co-producing Escherichia coli ST167 clinical strain isolated from a urine sample. J. Glob. Antimicrob Resist.14, 284–286 (2018).
  • Flerlage T , Brazeltonde Cardenas JN , GarnerCDet al. Multiple NDM-5-expressing Escherichia coli isolates from an immunocompromised pediatric host. Open Forum Infect. Dis.7(2), 1–7 (2020).
  • Hasassri ME , BoyceTG , NorganAPet al. Correction for Hasassri et al. An immunocompromised child with bloodstream infection caused by two Escherichia coli Strains, one harboring NDM-5 and the other harboring OXA-48-like carbapenemase. Antimicrob. Agents Chemother.60(8), 5108 (2016).
  • Baek JY , ChoSY , KimSHet al. Plasmid analysis of Escherichia coli isolates from South Korea co-producing NDM-5 and OXA-181 carbapenemases. Plasmid.104, 102417 (2019).
  • Yousfi M , MairiA , BakourSet al. First report of NDM-5-producing Escherichia coli ST1284 isolated from dog in Bejaia, Algeria. New Microbes New Infect.8, 17–18 (2015).
  • Giufre M , ErricoG , AccogliMet al. Emergence of NDM-5-producing Escherichia coli sequence type 167 clone in Italy. Int. J. Antimicrob. Agents.52(1), 76–81 (2018).
  • Nukui Y , AyibiekeA , TaniguchiMet al. Whole-genome analysis of EC129, an NDM-5-, CTX-M-14-, OXA-10- and MCR-1-co-producing Escherichia coli ST167 strain isolated from Japan. J. Glob. Antimicrob. Resist.18, 148–150 (2019).
  • Bahramian A , ShariatiA , AzimiTet al. First report of New Delhi metallo-beta-lactamase-6 (NDM-6) among Klebsiella pneumoniae ST147 strains isolated from dialysis patients in Iran. Infect. Genet. Evol.69, 142–145 (2019).
  • Ali A , GuptaD , SrivastavaG , SharmaA , KhanAU. Molecular and computational approaches to understand resistance of New Delhi metallo beta-lactamase variants (NDM-1, NDM-4, NDM-5, NDM-6, NDM-7)-producing strains against carbapenems. J. Biomol. Struct. Dyn.37(8), 2061–2071 (2019).
  • Cuzon G , BonninRA , NordmannP. First identification of novel NDM carbapenemase, NDM-7, in Escherichia coli in France. PLoS One.8(4), e61322 (2013).
  • Gottig S , HamprechtAG , ChristS , KempfVA , WichelhausTA. Detection of NDM-7 in Germany, a new variant of the New Delhi metallo-beta-lactamase with increased carbapenemase activity. J. Antimicrob. Chemother.68(8), 1737–1740 (2013).
  • Lazaro-Perona F , Sarria-VisaA , Ruiz-CarrascosoG , MingoranceJ , Garcia-RodriguezJ , Gomez-GilR. Klebsiella pneumoniae co-producing NDM-7 and OXA-48 carbapenemases isolated from a patient with prolonged hospitalisation. Int. J. Antimicrob. Agents.49(1), 112–113 (2017).
  • Seara N , OteoJ , CarrilloRet al. Interhospital spread of NDM-7-producing Klebsiella pneumoniae belonging to ST437 in Spain. Int. J. Antimicrob. Agents.46(2), 169–173 (2015).
  • Xu J , HeF. Characterization of a NDM-7 carbapenemase-producing Escherichia coli ST410 clinical strain isolated from a urinary tract infection in China. Infect. Drug Resist.12, 1555–1564 (2019).
  • Wang LH , LiuPP , WeiDDet al. Clinical isolates of uropathogenic Escherichia coli ST131 producing NDM-7 metallo-beta-lactamase in China. Int. J. Antimicrob. Agents.48(1), 41–45 (2016).
  • Hao Y , ShaoC , BaiY , JinY. Genotypic and phenotypic characterization of IncX3 plasmid carrying bla NDM-7 in Escherichia coli sequence type 167 isolated from a patient with urinary tract infection. Front. Microbiol.9, 2468 (2018).
  • Hammerum AM , LittauerP , HansenF. Detection of Klebsiella pneumoniae co-producing NDM-7 and OXA-181, Escherichia coli producing NDM-5 and Acinetobacter baumannii producing OXA-23 in a single patient. Int. J. Antimicrob. Agents.46(5), 597–598 (2015).
  • Nuesch-Inderbinen M , ZurfluhK , StevensMJA , StephanR. Complete and assembled genome sequence of an NDM-9- and CTX-M-15-producing Klebsiella pneumoniae ST147 wastewater isolate from Switzerland. J. Glob. Antimicrob. Resist.13, 53–54 (2018).
  • Wang X , LiH , ZhaoCet al. Novel NDM-9 metallo-beta-lactamase identified from a ST107 Klebsiella pneumoniae strain isolated in China. Int. J. Antimicrob. Agents.44(1), 90–91 (2014).
  • Liu BT , SongFJ , ZouM , HaoZH , ShanH. Emergence of colistin resistance gene MCR-1 in Cronobacter sakazakii producing NDM-9 and in Escherichia coli from the same animal. Antimicrob. Agents Chemother.61(2), e01444–16 (2017).
  • Lai CC , ChuangYC , ChenCC , TangHJ. Coexistence of MCR-1 and NDM-9 in a clinical carbapenem-resistant Escherichia coli isolate. Int. J. Antimicrob. Agents.49(4), 517–518 (2017).
  • Di DY , JangJ , UnnoT , HurHG. Emergence of Klebsiella variicola positive for NDM-9, a variant of New Delhi metallo-beta-lactamase, in an urban river in South Korea. J. Antimicrob. Chemother.72(4), 1063–1067 (2017).
  • Khajuria A , PraharajAK , KumarM , GroverN. Presence of a novel variant NDM-10, of the New Delhi metallo-beta-lactamase in a Klebsiella pneumoniae isolate. Indian J. Med. Microbiol.34(1), 121–123 (2016).
  • Rahman M , MukhopadhyayC , RaiRPet al. Novel variant NDM-11 and other NDM-1 variants in multidrug-resistant Escherichia coli from south India. J. Glob. Antimicrob. Resist.14, 154–157 (2018).
  • Tada T , ShresthaB , Miyoshi-AkiyamaTet al. NDM-12, a novel New Delhi metallo-beta-lactamase variant from a carbapenem-resistant Escherichia coli clinical isolate in Nepal. Antimicrob. Agents Chemother.58(10), 6302–6305 (2014).
  • Shrestha B , TadaT , Miyoshi-AkiyamaTet al. Identification of a novel NDM variant, NDM-13, from a multidrug-resistant Escherichia coli clinical isolate in Nepal. Antimicrob. Agents Chemother.59(9), 5847–5850 (2015).
  • Kim JS , JinYH , ParkSHet al. Emergence of a multidrug-resistant clinical isolate of Escherichia coli ST8499 strain producing NDM-13 carbapenemase in the Republic of Korea. Diagn. Microbiol. Infect. Dis.94(4), 410–412 (2019).
  • Zou D , HuangY , ZhaoXet al. A novel New Delhi metallo-beta-lactamase variant, NDM-14, isolated in a Chinese Hospital possesses increased enzymatic activity against carbapenems. Antimicrob. Agents Chemother.59(4), 2450–2453 (2015).
  • Mitra S , MukherjeeS , NahaS , ChattopadhyayP , DuttaS , BasuS. Evaluation of co-transfer of plasmid-mediated fluoroquinolone resistance genes and blaNDM gene in Enterobacteriaceae causing neonatal septicaemia. Antimicrob. Resist. Infect. Control8(1), 46 (2019).
  • Li X , MuX , ZhangPet al. Detection and characterization of a clinical Escherichia coli ST3204 strain coproducing NDM-16 and MCR-1. Infect. Drug Resist.11, 1189–1195 (2018).
  • Liu Z , WangY , WalshTRet al. Plasmid-mediated novel bla(NDM-17) gene encoding a carbapenemase with enhanced activity in a sequence type 48 Escherichia coli strain. Antimicrob. Agents Chemother.61(5), e02233–02216 (2017).
  • Ntshobeni NB , AllamM , IsmailA , AmoakoDG , EssackSY , CheniaHY. Draft genome sequence of Providencia rettgeri APW139_S1, an NDM-18-producing clinical strain originating from hospital effluent in South Africa. Microbiol. Resour. Announc.8(21), e00259–19 (2019).
  • Mancini S , KellerPM , GreinerM , BrudererV , ImkampF. Detection of NDM-19, a novel variant of the New Delhi metallo-beta-lactamase with increased carbapenemase activity under zinc-limited conditions, in Switzerland. Diagn. Microbiol. Infect. Dis.95(3), 114851 (2019).
  • Liu Z , LiJ , WangXet al. Novel variant of New Delhi metallo-beta-lactamase, NDM-20, in Escherichia coli. Front. Microbiol.9, 248 (2018).
  • Liu L , FengY , McNallyA , ZongZY. bla (NDM-21), a new variant of bla(NDM) in an Escherichia coli clinical isolate carrying bla(CTX-M-55) and rmtB. J. Antimicrob. Chemother.73(9), 2336–2339 (2018).
  • Logan LK , WeinsteinRA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J. Infect. Dis.215(suppl_1), S28–S36 (2017).
  • McDermott H , MorrisD , McArdleEet al. Isolation of NDM-1-producing Klebsiella pnemoniae in Ireland, July 2011. Euro Surveill.17(7), 20087 (2012).
  • Walsh TR , TolemanMA. The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response. J. Antimicrob. Chemoth.67(1), 1–3 (2011).
  • Wailan AM , SartorAL , ZowawiHM , PerryJD , PatersonDL , SidjabatHE. Genetic contexts of blaNDM-1 in patients carrying multiple NDM-producing strains. Antimicrob. Agents Chemother.59(12), 7405–7410 (2015).
  • Patel G , BonomoRA. “Stormy waters ahead”: global emergence of carbapenemases. Front. Microbiol.4, 48–48 (2013).
  • Poirel L , DortetL , BernabeuS , NordmannP. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob. Agents Chemother.55(11), 5403–5407 (2011).
  • Tamma PD , SimnerPJ. Phenotypic detection of carbapenemase-producing organisms from clinical isolates. J. Clin. Microbiol.56(11), e01140–01118 (2018).
  • Wareham DW , AbdulMomin MHF. Rapid detection of carbapenemases in Enterobacteriaceae: evaluation of the resist-3 O.K.N. (OXA-48, KPC, NDM) lateral flow multiplexed assay. J. Clin. Microbiol.55(4), 1223–1225 (2017).
  • Hamprecht A , VehreschildJJ , SeifertH , SalehA. Rapid detection of NDM, KPC and OXA-48 carbapenemases directly from positive blood cultures using a new multiplex immunochromatographic assay. PLoS One.13(9), e0204157 (2018).
  • Weinstein MP , LewisJS , BobenchikAMet al. M100 Performance Standards for Antimicrobial Susceptibility Testing. Clinical Laboratory Standards Institute, 1–332 (2020).
  • The European Committee on Antimicrobial Susceptibility Testing . Breakpoint tables for interpretation of MICs and zone diameters, version 10.0 (2020). www.eucast.org/clinical_breakpoints/
  • Dortet L , PoirelL , NordmannP. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed. Res. Int.2014, 249856–249856 (2014).
  • Girlich D , PoirelL , NordmannP. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J. Clin. Microbiol.50(2), 477–479 (2012).
  • Pasteran F , GonzalezLJ , AlbornozE , BahrG , VilaAJ , CorsoA. Triton Hodge test: improved protocol for modified hodge test for enhanced detection of NDM and other carbapenemase producers. J. Clin. Microbiol.54(3), 640–649 (2016).
  • Poirel L , NordmannP. Rapidec carba NP test for rapid detection of carbapenemase producers. J. Clin. Microbiol.53(9), 3003–3008 (2015).
  • Yu J , LiuJ , LiYet al. Rapid detection of carbapenemase activity of Enterobacteriaceae isolated from positive blood cultures by MALDI-TOF MS. Ann. Clin. Microbiol. Antimicrob.17(1), 22 (2018).
  • Walsh TR , BolmströmA , QwärnströmA , GalesA. Evaluation of a new Etest for detecting metallo-β-lactamases in routine clinical testing. J. Clin. Microbiol.40(8), 2755–2759 (2002).
  • Hansen F , HammerumAM , SkovR , HaldorsenB , SundsfjordA , SamuelsenO. Evaluation of the total MBL confirm kit (ROSCO) for detection of metallo-β-lactamases in Pseudomonas aeruginosa and Acinetobacter baumannii. Diagn. Microbiol. Infect. Dis.79(4), 486–488 (2014).
  • Al Tamimi M , Al SalamahA , AlKhulaifi M , Al AjlanH. Comparison of phenotypic and PCR methods for detection of carbapenemases production by Enterobacteriaceae. Saudi J. Biol. Sci.24(1), 155–161 (2017).
  • Subirats J , RoyoE , BalcázarJL , BorregoCM. Real-time PCR assays for the detection and quantification of carbapenemase genes (bla (KPC), bla (NDM), and bla (OXA-48)) in environmental samples. Environ. Sci. Pollut. Res.24(7), 6710–6714 (2017).
  • Cuzon G , NaasT , BogaertsP , GlupczynskiY , NordmannP. Evaluation of a DNA microarray for the rapid detection of extended-spectrum β-lactamases (TEM, SHV and CTX-M), plasmid-mediated cephalosporinases (CMY-2-like, DHA, FOX, ACC-1, ACT/MIR and CMY-1-like/MOX) and carbapenemases (KPC, OXA-48, VIM, IMP and NDM). J. Antimicrob. Chemother.67(8), 1865–1869 (2012).
  • Peyclit L , BaronSA , RolainJ-M. Drug repurposing to fight colistin and carbapenem-resistant bacteria. Front. Cell Infect. Microbiol.9(193), (2019).
  • Rogers BA , SidjabatHE , SilveyAet al. Treatment options for New Delhi metallo-beta-lactamase-harboring Enterobacteriaceae. Microb. Drug Resist. (Larchmont, N.Y.).19(2), 100–103 (2013).
  • Poirel L , JayolA , NordmannP. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev.30(2), 557–596 (2017).
  • Dalfino L , PuntilloF , MoscaAet al. High-dose, extended-interval colistin administration in critically ill patients: is this the right dosing strategy? A preliminary study. Clin. Infect. Dis.54(12), 1720–1726 (2012).
  • Peterson LR . A review of tigecycline – the first glycylcycline. Int. J. Antimicrob. Agents.32, S215–S222 (2008).
  • Falagas ME , VouloumanouEK , SamonisG , VardakasKZ. Fosfomycin. Clin. Microbiol. Rev.29(2), 321–347 (2016).
  • Dijkmans AC , ZacaríasNVO , BurggraafJet al. Fosfomycin: pharmacological, clinical and future perspectives. Antibiotics (Basel).6(4), 24 (2017).
  • King AM , Reid-YuSA , WangWet al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature.510(7506), 503–506 (2014).
  • Kalan L , WrightGD. Antibiotic adjuvants: multicomponent anti-infective strategies. Expert Rev. Mol. Med.13, e5–e5 (2011).
  • MacVane SH , CrandonJL , NicholsWW , NicolauDP. Unexpected in vivo activity of ceftazidime alone and in combination with avibactam against New Delhi metallo-β-lactamase-producing Enterobacteriaceae in a murine thigh infection model. Antimicrob. Agents Chemother.58(11), 7007–7009 (2014).
  • Honore PM , JacobsR , LochySet al. Acute respiratory muscle weakness and apnea in a critically ill patient induced by colistin neurotoxicity: key potential role of hemoadsorption elimination during continuous venovenous hemofiltration. Int. J. Nephrol. Renovasc. Dis.6, 107–111 (2013).
  • Mushtaq S , IrfanS , SarmaJBet al. Phylogenetic diversity of Escherichia coli strains producing NDM-type carbapenemases. J. Antimicrob. Chemother.66(9), 2002–2005 (2011).
  • Woodford N , TurtonJF , LivermoreDM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev.35(5), 736–755 (2011).
  • Wang Y , WuC , ZhangQet al. Identification of New Delhi metallo-β-lactamase 1 in Acinetobacter lwoffii of food animal origin. PLoS One.7(5), e37152–e37152 (2012).
  • Umair M , MohsinM , AliQet al. Prevalence and genetic relatedness of extended spectrum-β-lactamase-producing Escherichia coli among humans, cattle, and poultry in Pakistan. Microb. Drug Resist.25(9), 1374–1381 (2019).
  • Yu J , TanK , RongZet al. Nosocomial outbreak of KPC-2- and NDM-1-producing Klebsiella pneumoniae in a neonatal ward: a retrospective study. BMC Infect. Dis.16(1), 563–563 (2016).
  • Zhang X , LiX , WangMet al. Outbreak of NDM-1-producing Klebsiella pneumoniae causing neonatal infection in a teaching hospital in mainland China. Antimicrob. Agents Chemother.59(7), 4349–4351 (2015).
  • Zheng R , ZhangQ , GuoYet al. Outbreak of plasmid-mediated NDM-1-producing Klebsiella pneumoniae ST105 among neonatal patients in Yunnan, China. Ann. Clin. Microbiol. Antimicrob.15, 10–10 (2016).
  • Ho P-L , LiZ , LaiEL , ChiuSS , ChengVCC. Emergence of NDM-1-producing Enterobacteriaceae in China. J. Antimicrob. Chemoth.67(6), 1553–1555 (2012).
  • Zhu J , SunL , DingBet al. Outbreak of NDM-1-producing Klebsiella pneumoniae ST76 and ST37 isolates in neonates. Eur. J. Clin. Microbiol. Infect. Dis.35(4), 611–618 (2016).
  • Jin Y , ShaoC , LiJ , FanH , BaiY , WangY. Outbreak of multidrug resistant NDM-1-producing Klebsiella pneumoniae from a neonatal unit in Shandong Province, China. PLoS One.10(3), e0119571–e0119571 (2015).
  • Salloum T , ArabaghianH , AlousiS , AbboudE , TokajianS. Genome sequencing and comparative analysis of an NDM-1-producing Klebsiella pneumoniae ST15 isolated from a refugee patient. Pathog. Glob. Health.111(4), 166–175 (2017).
  • Green DA , SrinivasN , WatzN , TenoverFC , AmievaM , BanaeiN. A pediatric case of New Delhi metallo-β-lactamase-1-producing Enterobacteriaceae in the United States. Pediatr. Infect. Dis. J.32(11), 1291–1294 (2013).
  • Pannaraj PS , BardJD , CeriniC , WeissmanSJ. Pediatric carbapenem-resistant Enterobacteriaceae in Los Angeles, California, a high-prevalence region in the United States. Pediatr. Infect. Dis. J.34(1), 11–16 (2015).
  • Chereau F , HerindrainyP , GarinBet al. Colonization of extended-spectrum-β-lactamase- and NDM-1-producing Enterobacteriaceae among pregnant women in the community in a low-income country: a potential reservoir for transmission of multiresistant Enterobacteriaceae to neonates. Antimicrob. Agents Chemother.59(6), 3652–3655 (2015).
  • Barrios H , Silva-SanchezJ , Reyna-FloresFet al. Detection of a NDM-1-producing Klebsiella pneumoniae (ST22) clinical isolate at a pediatric hospital in Mexico. Pediatr. Infect. Dis. J.33(3), 335–335 (2014).
  • Drew RJ , TurtonJF , HillRLRet al. Emergence of carbapenem-resistant Enterobacteriaceae in a UK paediatric hospital. J. Hosp. Infect.84(4), 300–304 (2013).
  • Datta S , RoyS , ChatterjeeSet al. A five-year experience of carbapenem resistance in Enterobacteriaceae causing neonatal septicaemia: predominance of NDM-1. PLoS One9(11), e112101–e112101 (2014).
  • Datta S , MitraS , ChattopadhyayP , SomT , MukherjeeS , BasuS. Spread and exchange of bla (NDM-1) in hospitalized neonates: role of mobilizable genetic elements. Eur. J. Clin. Microbiol. Infect. Dis.36(2), 255–265 (2017).
  • Jamal WY , AlbertMJ , RotimiVO. High prevalence of New Delhi metallo-β-lactamase-1 (NDM-1) producers among Carbapenem-Resistant Enterobacteriaceae in Kuwait. PLoS One11(3), e0152638–e0152638 (2016).
  • Hasassri ME , BoyceTG , NorganAPet al. An Immunocompromised child with bloodstream infection caused by two Escherichia coli strains, one harboring NDM-5 and the other harboring OXA-48-like carbapenemase. Antimicrob. Agents Chemother.60(6), 3270–3275 (2016).
  • Birgy A , DoitC , Mariani-KurkdjianPet al. Early detection of colonization by VIM-1-producing Klebsiella pneumoniae and NDM-1-producing Escherichia coli in two children returning to France. J. Clin. Microbiol.49(8), 3085–3087 (2011).
  • Novovic K , VasiljevicZ , KuzmanovicMet al. Novel E. coli ST5123 Containing bla(NDM-1) carried by IncF plasmid isolated from a pediatric patient in Serbia. Microb. Drug Resist. (Larchmont, N.Y.).22(8), 707–711 (2016).
  • Karaaslan A , SoysalA , AltinkanatGelmez G , KepenekliKadayifci E , SöyletirG , BakirM. Molecular characterization and risk factors for carbapenem-resistant Gram-negative bacilli colonization in children: emergence of NDM-producing Acinetobacter baumannii in a newborn intensive care unit in Turkey. J. Hosp. Infect.92(1), 67–72 (2016).
  • Bhattacharya D , DeyS , KadamSet al. Isolation of NDM-1-producing multidrug-resistant Pseudomonas putida from a paediatric case of acute gastroenteritis, India. New Microbes New Infect.5, 5–9 (2015).
  • Huang J , WangM , DingHet al. New Delhi metallo-β-lactamase-1 in carbapenem-resistant Salmonella strain, China. Emerg. Infect. Dis.19(12), 2049–2051 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.