268
Views
0
CrossRef citations to date
0
Altmetric
Review

Microbial Interactions and Immunity Response in Oral Candida Species

ORCID Icon & ORCID Icon
Pages 1653-1677 | Received 15 May 2020, Accepted 05 Nov 2020, Published online: 30 Nov 2020

References

  • van der Meer JWM , vande Veerdonk FL , JoostenLAB , KullbergB-J , NeteaMG. Severe Candida spp. infections: new insights into natural immunity. Int. J. Antimicrob. Agents36, S58–S62 (2010).
  • Akpan A , MorganR. Oral candidiasis. Postgrad. Med. J.78(922), 455–459 (2002).
  • Neville BW , DammDD , AllenCM , BouquotJE. Fungal and protozoal diseases. In: Oral and Maxillofacial Pathology.Elsevier, London, 213–221 (2011).
  • Regezi J , SciubbaJ , JordanR. Oral pathology clinical pathologic correlations. In: White Lesions.Elsevier, MO, USA, 98–102 (2008).
  • Lott TJ , HollowayBP , LoganDA , FundygaR , ArnoldJ. Towards understanding the evolution of the human commensal yeast Candida albicans. Microbiology145(5), 1137–1143 (1999).
  • Javed F , KlingsporL , SundinU , AltamashM , KlingeB , EngströmP-E. Periodontal conditions, oral Candida albicans and salivary proteins in type 2 diabetic subjects with emphasis on gender. BMC Oral Health9(1), 12 (2009).
  • Al Mubarak S , RobertAA , BaskaradossJKet al. The prevalence of oral Candida infections in periodontitis patients with type 2 diabetes mellitus. J. Infect. Public Health6(4), 296–301 (2013).
  • Lamey PJ , DarwazaA , FisherBM , SamaranayakeLP , MacfarlaneTW , FrierBM. Secretor status, candidal carriage and candidal infection in patients with diabetes mellitus. J. Oral Pathol.17(7), 354–357 (1988).
  • Mulu A , KassuA , AnagawBet al. Frequent detection of ‘azole’ resistant Candida species among late presenting AIDS patients in northwest Ethiopia. BMC Infect. Dis.13(1), 82 (2013).
  • Goregen M , MilogluO , BuyukkurtMC , CaglayanF , AktasAE. Median rhomboid glossitis: a clinical and microbiological study. Eur. J. Dent.5(4), 367–372 (2011).
  • Arendorf TM , WalkerDM. Tobacco smoking and denture wearing as local aetiological factors in median rhomboid glossitis. Int. J. Oral Surg.13(5), 411–415 (1984).
  • Flaitz CM , NicholsCM , HicksMJ. An overview of the oral manifestations of AIDS-related Kaposi’s sarcoma. Compend. Contin. Educ. Dent.16(2), 136–138, (1995).
  • Salehi B , KregielD , MahadyG , Sharifi-RadJ , MartinsN , RodriguesCF. Management of Streptococcus mutans-Candida spp. oral biofilms’ infections: paving the way for effective clinical interventions. J. Clin. Med.9(2), 517 (2020).
  • Salvatori O , PuriS , TatiS , EdgertonM. Innate immunity and saliva in Candida albicans-mediated oral diseases. J. Dent. Res.95(4), 365–371 (2016).
  • Rodrigues CF , RodriguesM , HenriquesM. Candida sp. infections in patients with diabetes mellitus. J. Clin. Med.8(1), 76 (2019).
  • Samaranayake LP , HughesA , WeetmanDA , MacFarlaneTW. Growth and acid production of Candida species in human saliva supplemented with glucose. J. Oral Pathol.15(5), 251–254 (1986).
  • Samaranayake LP , MacFarlaneTW. Factors affecting the in-vitro adherence of the fungal oral pathogen Candida albicans to epithelial cells of human origin. Arch. Oral Biol.27(10), 869–873 (1982).
  • Balan P , CastelinoRL , FazilAreekat BK. Candida carriage rate and growth characteristics of saliva in diabetes mellitus patients: a case–control study. J. Dent. Res. Dent. Clin. Dent. Prospect.9(4), 274–279 (2015).
  • Mantri SPSSP , ParkhedkarRD , MantriSPSSP. Candida colonisation and the efficacy of chlorhexidine gluconate on soft silicone-lined dentures of diabetic and non-diabetic patients. Gerodontology30(4), 288–295 (2013).
  • Pallavan B , RameshV , DhanasekaranBP , OzaN , InduS , GovindarajanV. Comparison and correlation of candidal colonization in diabetic patients and normal individuals. J. Diabetes Metab. Disord.13(1), 66 (2014).
  • Leite Prado D , PivaRabello M , Martins-FilhoRicardo Saquete P. Identification of Candida species in patients with denture stomatitis and evaluation of susceptibility to miconazole and photodynamic therapy. Rev. Odontol. UNESP.44(1), 12–17 (2015).
  • da Silva Santos Siqueira J , BatistaSA , SilvaAJr , FerreiraMF , AgostiniM , TorresSR. Oral candidiasis in patients admitted to ICU. Rev. Bras. Odontol.71(2), 176–179 (2014).
  • Scalercio M , ValenteT , IsraelMS , RamosME. Denture stomatitis associated with candidiasis: diagnosis and treatment. RGO44, 395–398 (2007).
  • Wang J , OhshimaT , YasunariUet al. The carriage of Candida species on the dorsal surface of the tongue: the correlation with the dental, periodontal and prosthetic status in elderly subjects. Gerodontology23(3), 157–163 (2006).
  • Cardoso MBR , LagoEC. Oral changes in elderly from an association center. Rev. Para. Med. V.24(2), 35–410 (2010).
  • Bianchi CMP de C , BianchiHA , TadanoTet al. Factors related to oral candidiasis in elderly users and non-users of removable dental prostheses. Rev. Inst. Med. Trop. Sao Paulo58(3), 6–10 (2016).
  • Knight L , FletcherJ. Growth of Candida albicans in saliva: stimulation by glucose associated with antibiotics, corticosteroids, and diabetes mellitus. J. Infect. Dis.123(4), 371–377 (1971).
  • Malic S , HillKE , RalphsJRet al. Characterization of Candida albicans infection of an in vitro oral epithelial model using confocal laser scanning microscopy. Oral Microbiol. Immunol.22(3), 188–194 (2007).
  • Darwazeh AM , MacFarlaneTW , McCuishA , LameyPJ. Mixed salivary glucose levels and candidal carriage in patients with diabetes mellitus. J. Oral Pathol. Med.20(6), 280–283 (1991).
  • Fisher BM , LameyPJ , SamaranayakeLP , MacFarlaneTW , FrierBM. Carriage of Candida species in the oral cavity in diabetic patients: relationship to glycaemic control. J. Oral Pathol.16(5), 282–284 (1987).
  • Khovidhunkit SP , SuwantuntulaT , ThaweboonS , MitrirattanakulS , ChomkhakhaiU , KhovidhunkitW. Xerostomia, hyposalivation, and oral microbiota in type 2 diabetic patients: a preliminary study. J. Med. Assoc. Thai.92(9), 1220–1228 (2009).
  • Sudbery P , GowN , BermanJ. The distinct morphogenic states of Candida albicans. Trends Microbiol.12(7), 317–324 (2004).
  • Samaranayake LP , MacfarlaneTW. The effect of dietary carbohydrates on the in-vitro adhesion of Candida albicans to epithelial cells. J. Med. Microbiol.15(4), 511–517 (1982).
  • Hammad MM , DarwazehAMG , IdreesMM. The effect of glycemic control on Candida colonization of the tongue and the subgingival plaque in patients with type II diabetes and periodontitis. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod.116(3), 321–326 (2013).
  • Naik R , AhmedMujib BR , RaajuUR , TelagiN. Assesing oral candidal carriage with mixed salivary glucose levels as non-invasive diagnostic tool in type-2 Diabetics of Davangere, Karnataka, India. J. Clin. Diagnostic Res.8(7), 69–72 (2014).
  • Sashikumar R , KannanR. Salivary glucose levels and oral candidal carriage in type II diabetics. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.109(5), 706–711 (2010).
  • Rodrigues CF , HenriquesM. Oral mucositis caused by Candida glabrata biofilms: failure of the concomitant use of fluconazole and ascorbic acid. Ther. Adv. Infect. Dis.1(8), 1–8 (2017).
  • Geerlings SE , HoepelmanAI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol. Med. Microbiol.26(3–4), 259–265 (1999).
  • Ferguson D . The physiology and biology of saliva. In: Color Atlas and Text of Salivary Gland: Disease, Disorders and Surgery.deBurghNorman J, McGurkM (Eds). Mosby-Wolfe, London, 40–48 (1995).
  • Panchbhai AS , DegwekarSS , BhowteRR. Estimation of salivary glucose, salivary amylase, salivary total protein and salivary flow rate in diabetics in India. J. Oral Sci.52(3), 359–368 (2010).
  • Darwazeh AMG , LameyP-J , SamaranayakeLPet al. The relationship between colonisation, secretor status and in-vitro adhesion of Candida albicans to buccal epithelial cells from diabetics. J. Med. Microbiol.33(1), 43–49 (1990).
  • Dorocka-Bobkowska B , Budtz-JörgensenE , WłochS. Non-insulin-dependent diabetes mellitus as a risk factor for denture stomatitis. J. Oral Pathol. Med.25(8), 411–415 (1996).
  • Reinhart H , MullerG , SobelJD. Specificity and mechanism of in vitro adherence of Candida albicans. Ann. Clin. Lab. Sci.15(5), 406–413 (1985).
  • Feller L , KhammissaRAG , ChandranR , AltiniM , LemmerJ. Oral candidosis in relation to oral immunity. J. Oral Pathol. Med.43(8), 563–9 (2014).
  • Nguyen TNY , MatangkasombutO , RitprajakP. Differential dendritic cell responses to cell wall mannan of Candida albicans, Candida parapsilosis, and Candida dubliniensis. J. Oral Sci.60(4), 557–566 (2018).
  • Bartnicka D , Gonzalez-GonzalezM , SykutJet al. Candida albicans shields the periodontal killer Porphyromonas gingivalis from recognition by the host immune system and supports the bacterial infection of gingival tissue. Int. J. Mol. Sci.21(6), 1984 (2020).
  • Kirchner FR , LittringerK , AltmeierSet al. Persistence of Candida albicans in the oral mucosa induces a curbed inflammatory host response that is independent of immunosuppression. Front. Immunol.10, 330 (2019).
  • Chevalier M , RanqueS , PrêcheurI. Oral fungal-bacterial biofilm models in vitro: a review. Med. Mycol.56(6), 653–667 (2017).
  • Rodrigues ME , GomesF , RodriguesCF. Candida spp./bacteria mixed biofilms. J. Fungi.6(1), 5 (2019).
  • Mane A , KulkarniA , RisbudA. Biofilm production in oral Candida isolates from HIV-positive individuals from Pune, India. Mycoses56(2), 182–186 (2013).
  • De-La-Torre J , QuindósG , Marcos-AriasCet al. Oral Candida colonization in patients with chronic periodontitis. Is there any relationship? Rev. Iberoam. Micol. 35(3), 134–139 (2018).
  • Chaves GM , DinizMG , da Silva-RochaWPet al. Species distribution and virulence factors of Candida spp. isolated from the oral cavity of kidney transplant recipients in Brazil. Mycopathologia175(3–4), 255–63 (2013).
  • Sánchez-Vargas LO , Estrada-BarrazaD , Pozos-GuillenAJ , Rivas-CaceresR. Biofilm formation by oral clinical isolates of Candida species. Arch. Oral Biol.58(10), 1318–1326 (2013).
  • Muadcheingka T , TantivitayakulP. Distribution of Candida albicans and non-albicansCandida species in oral candidiasis patients: correlation between cell surface hydrophobicity and biofilm forming activities. Arch. Oral Biol.60(6), 894–901 (2015).
  • Santiwongkarn P , KachonboonS , ThanyasrisungP , MatangkasombutO. Prevalence of oral Candida carriage in Thai adolescents. J. Investig. Clin. Dent.3(1), 51–55 (2012).
  • Thanyasrisung P , KesakomoP , PipattanagovitP , Youngnak-PiboonratanakitP , PitiphatW , MatangkasombutO. Oral Candida carriage and immune status in Thai human immunodeficiency virus-infected individuals. J. Med. Microbiol.63(Part 5), 753–759 (2014).
  • Caroline de Abreu Brandi T , PortelaMB , LimaPM , CastroGFB de A , MaiaLC , Fonseca-GonçalvesA. Demineralizing potential of dental biofilm added with Candida albicans and Candida parapsilosis isolated from preschool children with and without caries. Microb. Pathog.100, 51–55 (2016).
  • De-la-Torre J , Ortiz-SamperioME , Marcos-AriasCet al. In vitro antifungal susceptibility of oral Candida isolates from patients suffering from caries and chronic periodontitis. Mycopathologia182(5–6), 471–485 (2017).
  • Rodrigues CF , RodriguesM , HenriquesM. Susceptibility of Candida glabrata biofilms to echinocandins: alterations in the matrix composition. Biofouling. ISSN homep, 892–7014 (2018).
  • Rodrigues CF , HenriquesM. Portrait of matrix gene expression in Candida glabrata biofilms with stress induced by different drugs. Genes9(4), 205 (2018).
  • Walker LA , GowNAR , MunroCA. Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob. Agents Chemother.57(1), 146–154 (2013).
  • Netea MG , BrownGD , KullbergBJ , GowNAR. An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol.6(1), 67–78 (2008).
  • Guo L , ShiW. Salivary biomarkers for caries risk assessment. J. Calif. Dent. Assoc.41(2), 107 (2013).
  • O’Donnell LE , MillhouseE , SherryLet al. Polymicrobial Candida biofilms: friends and foe in the oral cavity. FEMS Yeast Res.15(7), fov077 (2015).
  • Nobbs AH , JenkinsonHF. Interkingdom networking within the oral microbiome. Microbes Infect.17(7), 484–492 (2015).
  • Marsh PD . Microbial ecology of dental plaque and its significance in health and disease. Adv. Dent. Res.8(2), 263–271 (1994).
  • Negrini TC , KooH , ArthurRA. Candida–bacterial biofilms and host–microbe interactions in oral diseases. In: Advances in Experimental Medicine and Biology. BelibasakisG.N, HajishengallisG, BostanciNet al.et al. ( Eds)., Springer, 1197, 119–141 (2019). https://doi.org/10.1007/978-3-030-28524-1_10
  • Nett JE . The host’s reply to candida biofilm. Pathog. (Basel, Switzerland)5(1), 33 (2016).
  • Samaranayake LP , KeungLeung W , JinL. Oral mucosal fungal infections. Periodontol. 2000.49(1), 39–59 (2009).
  • Scully C , MonteilR , SpostoMR. Infectious and tropical diseases affecting the human mouth. Periodontol. 2000.18, 47–70 (1998).
  • Stanford TW , Rivera-HidalgoF. Oral mucosal lesions caused by infective microorganisms. II. Fungi and parasites. Periodontol. 2000.21, 125–144 (1999).
  • Tintelnot K , HaaseG , SeiboldMet al. Evaluation of phenotypic markers for selection and identification of Candida dubliniensis. J. Clin. Microbiol.38(4), 1599–1608 (2000).
  • Lasker BA , ElieCM , LottTJet al. Molecular epidemiology of Candida albicans strains isolated from the oropharynx of HIV-positive patients at successive clinic visits. Med. Mycol. (39(4), 341–52 (2001).
  • Sardi JCO , ScorzoniL , BernardiTet al. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol.62(Part 1), 10–24 (2013).
  • Pfaller MA , MesserSA , HollisRJet al. Variation in susceptibility of bloodstream isolates of Candida glabrata to fluconazole according to patient age and geographic location in the United States in 2001 to 2007. J. Clin. Microbiol.47(10), 3185–3190 (2009).
  • Nucci M , Queiroz-TellesF , TobónAM , RestrepoA , ColomboAL. Epidemiology of opportunistic fungal infections in Latin America. Clin. Infect. Dis.51(5), 561–570 (2010).
  • Pires-Gonçalves RH , MirandaET , BaezaLC , MatsumotoMT , ZaiaJE , Mendes-GianniniMJS. Genetic relatedness of commensal strains of Candida albicans carried in the oral cavity of patients’ dental prosthesis users in Brazil. Mycopathologia164, 255–263 (2007).
  • Brook I . Bacterial Interference. Crit. Rev. Microbiol.25(3), 155–172 (1999).
  • He X , McLeanJS , GuoL , LuxR , ShiW. The social structure of microbial community involved in colonization resistance. ISME J.8(3), 564–574 (2014).
  • Roberts FA , DarveauRP. Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis. Periodontol. 2000.69(1), 18–27 (2015).
  • Ley RE , HamadyM , LozuponeCet al. Evolution of mammals and their gut microbes. Science (80-.).320(5883), 1647–1651 (2008).
  • Kraneveld EA , BuijsMJ , BonderMJet al. The relation between oral Candida load and bacterial microbiome profiles in Dutch older adults. PLoS ONE7(8), e42770 (2012).
  • Peters BM , Jabra-RizkMA , ScheperMA , LeidJG , CostertonJW , ShirtliffME. Microbial interactions and differential protein expression in Staphylococcus aureus–Candida albicans dual-species biofilms. FEMS Immunol. Med. Microbiol.59(3), 493–503 (2010).
  • Peters BM , OvchinnikovaES , KromBPet al. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology158(12), 2975–2986 (2012).
  • Beaussart A , HermanP , El-Kirat-ChatelSet al. Single-cell force spectroscopy of the medically important Staphylococcus epidermidis–Candida albicans interaction. Nanoscale5(22), 10894–10900 (2013).
  • Dutton LC , NobbsAH , JepsonKet al. O-Mannosylation in Candida albicans enables development of interkingdom biofilm communities. MBio5(2), e00911–14 (2014).
  • Holmes AR , CannonRD , JenkinsonHF. Interactions of Candida albicans with bacteria and salivary molecules in oral biofilms. J. Ind. Microbiol.15, 208–213 (1995).
  • Bamford C , D’MelloA , NobbsA , DuttonL , VickermanM , AlE. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect. Immun.77, 3696–3704 (2009).
  • Hoyer LL , OhSH , JonesR , CotaE. A proposed mechanism for the interaction between the Candida albicans Als3 adhesin and streptococcal cell wall proteins. Front. Microbiol.5, 564 (2014).
  • McNab R , FordSK , El-SabaenyA , BarbieriB , CookGS , LamontRJ. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J. Bacteriol.185(1), 274–284 (2003).
  • Vendeville A , WinzerK , HeurlierK , TangCM , HardieKR. Making “sense” of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat. Rev. Microbiol.3(5), 383–396 (2005).
  • Jack AA , DanielsDE , JepsonMAet al. Streptococcus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans. Microbiol. (United Kingdom)161(2), 411–421 (2015).
  • Rajendran R , SherryL , LappinDFet al. Extracellular DNA release confers heterogeneity in Candida albicans biofilm formation. BMC Microbiol.14(303), 14 (2014). https://doi.org/10.1186/s12866-014-0303-6
  • Gregoire S , XiaoJ , SilvaBBet al. Role of ghlucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Appl. Environ. Microbiol.77(18), 6357–6367 (2011).
  • O’Donnell LE , RobertsonD , NileCJet al. The oral microbiome of denture wearers is influenced by levels of natural dentition. PLoS ONE10(9), e0137717 (2015).
  • Mezzasalma V , ManfriniE , FerriEet al. Orally administered multispecies probiotic formulations to prevent uro-genital infections: a randomized placebo-controlled pilot study. Arch. Gynecol. Obstet.295(1), 163–172 (2017).
  • Martinez RCR , SeneySL , SummersKL , NomizoA , DeMartinis ECP , ReidG. Effect of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 on the ability of Candida albicans to infect cells and induce inflammation. Microbiol. Immunol.53(9), 487–495 (2009).
  • Jiang Q , StamatovaI , KariK , MeurmanJH. Inhibitory activity in vitro of probiotic lactobacilli against oral Candida under different fermentation conditions. Benef. Microbes.6(3), 361–368 (2015).
  • Orsi CF , SabiaC , ArdizzoniAet al. Inhibitory effects of different lactobacilli on Candida albicans hyphal formation and biofilm development. J. Biol. Regul. Homeost. Agents28(4), 743–52 (2014).
  • Bilhan H , SulunT , ErkoseGet al. The role of Candida albicans hyphae and Lactobacillus in denture-related stomatitis. Clin. Oral Investig.13(4), 363–368 (2009).
  • Mason KL , ErbDownward JR , MasonKD , FalkowskiNR , EatonKA , AlE. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infect. Immun.80, 3371–3380 (2012).
  • Garsin DA , LorenzMC. Candida albicans and Enterococcus faecalis in the gut: synergy in commensalism?Gut Microbes.4(5), 409–15 (2013).
  • Hermann C , HermannJ , MunzelU , RüchelR. Bacterial flora accompanying Candida yeasts in clinical specimens. Mycoses42(11-12), 619–27 (1999).
  • Dongari-Bagtzoglou A , KashlevaH , DwivediP , DiazP , VasilakosJ. Characterization of mucosal Candida albicans biofilms. PLoS ONE4, e7967 (2009).
  • Swidergall M , ErnstAM , ErnstJF. Candida albicans mucin Msb2 is a broad-range protectant against antimicrobial peptides. Antimicrob. Agents Chemother.57(8), 3917–3922 (2013).
  • Rams TE , BabalolaOO , SlotsJ. Subgingival occurrence of enteric rods, yeasts and staphylococci after systemic doxycycline therapy. Oral Microbiol. Immunol.5(3), 166–168 (1990).
  • Sardi J , DuqueC , MarianoF , PeixotoI , HoflingJet al. Candida spp. in periodontal disease: a brief review. J. Oral Sci.52, 177–185 (2010).
  • Grimaudo NJ , NesbittWE. Coaggregation of Candida albicans with oral Fusobacterium species. Oral Microbiol. Immunol.12(3), 168–173 (1997).
  • Jabra-Rizk MA , MeillerTF , JamesCE , ShirtliffME. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob. Agents Chemother.50(4), 1463–1469 (2006).
  • Bandara HMHN , LamOLT , WattRM , JinLJ , SamaranayakeLP. Bacterial lipopolysaccharides variably modulate in vitro biofilm formation of Candida species. J. Med. Microbiol.59(Pt 10), 1225–1234 (2010).
  • Bandara HM , CheungBPK , WattRM , JinLJ , SamaranayakeLP. Secretory products of Escherichia coli biofilm modulate Candida biofilm formation and hyphal development. J. Investig. Clin. Dent.4(3), 186–199 (2013).
  • Bachtiar EW , BachtiarBM , JaroszLMet al. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation. Front. Cell Infect. Microbiol.4(94), (2014).
  • Kurita-Ochiai T , FukushimaK , OchiaiK. Volatile fatty acids, metabolic by-products of periodontopathic bacteria, inhibit lymphocyte proliferation and cytokine production. J. Dent. Res.74(7), 1367–1373 (1995).
  • Huang CB , AlimovaY , MyersTM , EbersoleJL. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch. Oral Biol.56(7), 650–654 (2011).
  • Basic A , DahlénG. Hydrogen sulfide production from subgingival plaque samples. Anaerobe35(Pt A), 21–27 (2015).
  • Noverr MC , HuffnagleGB. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect. Immun.72(11), 6206–6210 (2004).
  • Thein ZM , SamaranayakeYH , SamaranayakeLP. Effect of oral bacteria on growth and survival of Candida albicans biofilms. Arch. Oral Biol.1(8), 672–80 (2006).
  • Nair RG , AnilS , SamaranayakeLP. The effect of oral bacteria on Candida albicans germ-tube formation. APMIS109(2), 147–154 (2001).
  • Nair RG , SamaranayakeLP. The effect of oral commensal bacteria on candidal adhesion to human buccal epithelial cells in vitro. J. Med. Microbiol.45(3), 179–185 (1996).
  • Tamai R , SugamataM , KiyouraY. Candida albicans enhances invasion of human gingival epithelial cells and gingival fibroblasts by Porphyromonas gingivalis. Microb. Pathog.51(4), 250–254 (2011).
  • Slots J , RamsTE , ListgartenMA. Yeasts, enteric rods and pseudomonads in the subgingival flora of severe adult periodontitis. Oral Microbiol. Immunol.3(2), 47–52 (1988).
  • Reynaud AH , Nygaard-ØstbyB , BøygardGK , EribeER , OlsenI , GjermoP. Yeasts in periodontal pockets. J. Clin. Periodontol.28(9), 860–864 (2001).
  • Urzúa B , HermosillaG , GamonalJet al. Yeast diversity in the oral microbiota of subjects with periodontitis: candida albicans and Candida dubliniensis colonize the periodontal pockets. Med. Mycol.46(8), 783–793 (2008).
  • Järvensivu A , HietanenJ , RautemaaR , SorsaT , RichardsonM. Candida yeasts in chronic periodontitis tissues and subgingival microbial biofilms in vivo. Oral Dis.10(2), 106–112 (2004).
  • Ergun S , CekiciA , TopcuogluNet al. Oral status and Candida colonization in patients with Sjögren’s syndrome. Med. Oral Patol. Oral Cir. Bucal.15(2), e310–e315 (2010).
  • Finkel JS , MitchellAP. Genetic control of Candida albicans biofilm development. Nat. Rev. Microbiol.9(2), 109–118 (2011).
  • Dongari-Bagtzoglou A , KashlevaH , DwivediP , DiazP , VasilakosJ. Characterization of mucosal Candida albicans biofilms. PLoS ONE4(11), e7967 (2009).
  • Ramage G , MartinezJP , Lopez-RibotJL. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res.6(7), 979–986 (2006).
  • Dwivedi P , ThompsonA , XieZet al. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLoS ONE6(1), e16218 (2011).
  • Staab JF . Adhesive and mammalian transglutaminase substrate properties of Candida albicansHwp1. Science (80-.).283(5407), 1535–1538 (1999).
  • Luo G , IbrahimAS , SpellbergB , NobileCJ , MitchellAP , FuY. Candida albicans Hyr1p confers resistance to neutrophil killing and is a potential vaccine target. J. Infect. Dis.201(11), 1718–1728 (2010).
  • Nobile CJ , AlE. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog.2(7), e63 (2006).
  • McCall AD , KumarR , EdgertonM. Candida albicans Sfl1/Sfl2 regulatory network drives the formation of pathogenic microcolonies. PLoS Pathog.14(9), e1007316 (2018).
  • Tati S , DavidowP , McCallAet al. Candida glabrata binding to Candida albicans hyphae enables its development in oropharyngeal candidiasis. PLOS Pathog.12(3), e1005522 (2016).
  • Green CB , ChengG , ChandraJ , MukherjeeP , GhannoumMA , HoyerLL. RT-PCR detection of Candida albicansALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology150(2), 267–275 (2004).
  • Chiang LY , SheppardDC , BrunoVM , MitchellAP , EdwardsJE , FillerSG. Candida albicans protein kinase CK2 governs virulence during oropharyngeal candidiasis. Cell. Microbiol.9(1), 233–245 (2007).
  • Peres MA , MacphersonLMD , WeyantRJet al. Oral diseases: a global public health challenge. Lancet394(10194), 249–260 (2019).
  • Olczak-Kowalczyk D , PyrżakB , DąbkowskaMet al. Candida spp. and gingivitis in children with nephrotic syndrome or type 1 diabetes. BMC Oral Health15(1), 57 (2015).
  • Lotfi-Kamran MH , JafariAA , Falah-TaftiA , TavakoliE , FalahzadehMH. Candida colonization on the denture of diabetic and non-diabetic patients. Dent. Res. J. (Isfahan).6(1), 23–27 (2009).
  • Vos T , FlaxmanAD , NaghaviMet al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet380(9859), 2163–2196 (2012).
  • de Carvalho FG , SilvaDS , HeblingJ , SpolidorioLC , SpolidorioMadalena D. Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries. Arch. Oral Biol.51, 1024–1028 (2006).
  • Hwang G , LiuY , KimD , LiY , KrysanDJ , KooH. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo. PLoS Pathog.13(6), e1006407 (2017).
  • Rodrigues CF , BoasD , HaynesK , HenriquesM. The MNN2 gene knockout modulates the antifungal resistance of biofilms of Candida glabrata. Biomolecules8(4), 130 (2018).
  • Yano J , YuA , FidelPLJr , NoverrMC. Transcription factors Efg1 and Bcr1 regulate biofilm formation and virulence during Candida albicans-associated denture stomatitis. PLoS ONE11(7), e0159692 (2016).
  • Kong EF , TsuiC , KucharíkováS , AndesD , Van DijckP , Jabra-RizkMA. Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. MBio7(5), e01365–16 (2016).
  • Falsetta ML , KleinMI , ColonnePMet al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect. Immun.82(5), 1968–1981 (2014).
  • Siqueira JF , RôçacIN. Diversity of endodontic microbiota revisited. J. Dent. Res.88(11), 969–981 (2009).
  • Baumgartner JC , WattsCM , XiaT. Occurrence of Candida albicans in infections of endodontic origin. J. Endod.26(12), 695–698 (2000).
  • Nikawa H , HamadaT , YamamotoT. Denture plaque - past and recent concerns. J. Dent.26(4), 299–304 (1998).
  • Sachdeo A , HaffajeeAD , SocranskySS. Biofilms in the edentulous oral cavity. J. Prosthodont.17(5), 348–356 (2008).
  • Yasui M , RyuM , SakuraiK , IshiharaK. Colonisation of the oral cavity by periodontopathic bacteria in complete denture wearers. Gerodontology29(2), e494–502 (2012).
  • Teles FR , TelesRP , SachdeoAet al. Comparison of microbial changes in early redeveloping biofilms on natural teeth and dentures. J. Periodontol.83(9), 1139–1148 (2012).
  • Redding SW , MarrKA , KirkpatrickWR , CocoBJ , PattersonTF. Candida glabrata sepsis secondary to oral colonization in bone marrow transplantation. Med. Mycol.42(5), 479–481 (2004).
  • Li L , ReddingS , DongariB. Candida glabrata, an emerging oral opportunistic pathogen. J. Dent. Res.86, 204–215 (2007).
  • Coleman D , SullivanD , HarringtonBet al. Molecular and phenotypic analysis of Candida dubliniensis: a recently identified species linked with oral candidosis in HIV-infected and AIDS patients. Oral Dis.3(S1), S96–S101 (1997).
  • Bagg J , SweeneyMP , LewisMAOet al. High prevalence of non-albicans yeasts and detection of anti-fungal resistance in the oral flora of patients with advanced cancer. Palliat. Med.17(6), 477–481 (2003).
  • Mima EGG , VerganiCEE , MachadoALLet al. Comparison of photodynamic therapy versus conventional antifungal therapy for the treatment of denture stomatitis: a randomized clinical trial. Clin. Microbiol. Infect.18(10), E380–E388 (2012).
  • Sanit PV , PavarinaAC , GiampaoloETet al. Candida spp. prevalence in well controlled type 2 diabetic patients with denture stomatitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.111(6), 726–733 (2011).
  • Sanita PV , MachadoAL , PavarinaAC , MassucatoEMS , ColomboAL , VerganiCE. Microwave denture disinfection versus nystatin in treating patients with well-controlled type 2 diabetes and denture stomatitis: a randomized clinical trial. Int. J. Prosthodont.25(3), 232–244 (2012).
  • Silva MM , MimaEG de O , ColomboALet al. Comparison of denture microwave disinfection and conventional antifungal therapy in the treatment of denture stomatitis: a randomized clinical study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.114(4), 469–479 (2012).
  • Melo AS , BizerraFC , FreymüllerE , Arthington-SkaggsBA , ColomboAL. Biofilm production and evaluation of antifungal susceptibility amongst clinical Candida spp. isolates, including strains of the Candida parapsilosis complex. Med. Mycol.49(3), 253–262 (2011).
  • Coco BJ , BaggJ , CrossLJet al. Mixed Candida albicans and Candida glabrata populations associated with the pathogenesis of denture stomatitis. Oral Microbiol. Immunol.23(5), 377–383 (2008).
  • Williams DW , KuriyamaT , SilvaS , MalicS , LewisMAO. Candida biofilms and oral candidosis: treatment and prevention. Periodontol. 2000.55(1), 250–265 (2011).
  • Ramage G , TomsettK , WickesBL , López-RibotJL , ReddingSW. Denture stomatitis: a role for Candida biofilms. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.98, 53–59 (2004).
  • Campos MS , MarchiniL , BernardesLAS , PaulinoLC , NobregaFG. Biofilm microbial communities of denture stomatitis. Oral Microbiol. Immunol.23(5), 419–424 (2008).
  • Baena-Monroy T , Moreno-MaldonadoV , Franco-MartínezF , Aldape-BarriosB , QuindósG , Sánchez-VargasLO. Candida albicans, Staphylococcus aureus and Streptococcus mutans colonization in patients wearing dental prosthesis. Med. Oral Patol. Oral Cir. Bucal.10(Suppl. 1), E27–39 (2005).
  • Douglas LJ . Medical importance of biofilms in Candida infections. Rev. Iberoam. Micol.19(3), 139–143 (2002).
  • Thein ZM , SeneviratneCJ , SamaranayakeYH , SamaranayakeLP. Community lifestyle of Candida in mixed biofilms: a mini review. Mycoses52(6)467–75 (2009).
  • Allison DL , WillemsHME , JayatilakeJAMS , BrunoVM , PetersBM , ShirtliffME. Candida–bacteria interactions: their impact on human disease. In: Virulence Mechanisms of Bacterial Pathogens (5th Edition).KudvaI, CornickN, PlummerPetal. (Eds). ASM Press, DC, USA, 103–136 (2016).
  • de Oliveira Junior NM , MendozaMarin DO , LeiteARP , PeroAC , KleinMI , CompagnoniMA. Influence of the use of complete denture adhesives on microbial adhesion and biofilm formation by single- and mixed-species. PLoS ONE13(10), e0203951 (2018).
  • Gendreau L , LoewyZG. Epidemiology and etiology of denture stomatitis. J. Prosthodont.20(4), 251–60 (2011).
  • Eix EF , NettJE. How biofilm growth affects Candida-host interactions. Front. Microbiol.11, 1437 (2020).
  • Nett JE , MarchilloK , SpiegelCA , AndesDR. Development and validation of an in vivoCandida albicans biofilm denture model. Infect. Immun.78(9), 3650–3659 (2010).
  • Altarawneh S , BencharitS , MendozaLet al. Clinical and histological findings of denture stomatitis as related to intraoral colonization patterns of Candida albicans, salivary flow, and dry mouth. J. Prosthodont.22(1), 13–22 (2013).
  • Byrd WC , Schwartz-BaxterS , CarlsonJ , BarrosS , OffenbacherS , BencharitS. Role of salivary and candidal proteins in denture stomatitis: an exploratory proteomic analysis. Mol. Biosyst.10(9), 2299–2304 (2014).
  • Moyes DL , NaglikJR. Mucosal immunity and Candida albicans infection. Clin. Dev. Immunol.2011 (2011).
  • Kühbacher A , Burger-KentischerA , RuppS. Interaction of Candida species with the skin. Microorganisms5(4), 32 (2017).
  • Dineshshankar J , SivakumarM , KarthikeyanM , UdayakumarP , ShanmugamKT , KesavanG. Immunology of oral candidiasis. J. Pharm. Bioallied Sci.6(5), 9 (2014).
  • Pellon A , SadeghiNasab SD , MoyesDL. New insights in Candida albicans innate immunity at the mucosa: toxins, epithelium, metabolism, and beyond. Front. Cell. Infect. Microbiol.10, 81 (2020).
  • Merkhofer RM , KleinBS. Advances in understanding human genetic variations that influence innate immunity to fungi. Front. Cell. Infect. Microbiol.10, 69 (2020).
  • Hollmig ST , AriizumiK , CruzPD. Recognition of non-self-polysaccharides by C-type lectin receptors dectin-1 and dectin-2. Glycobiology19(6), 568–575 (2009).
  • Kumagai Y , TakeuchiO , AkiraS. Pathogen recognition by innate receptors. J. Infect. Chemother.14(2), 86–92 (2008).
  • Bäckhed F , HornefM. Toll-like receptor 4-mediated signaling by epithelial surfaces: necessity or threat?Microbes Infect.5(11), 951–959 (2003).
  • Hornef MW , BogdanC. The role of epithelial Toll-like receptor expression in host defense and microbial tolerance. J. Endotoxin Res.11(2), 124–128 (2005).
  • Weindl G , NaglikJR , KaeslerSet al. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J. Clin. Invest.117(12), 3664–72 (2007).
  • Brown GD , GordonS. A new receptor for b-glucans. Nature413(6851), 36–37 (2001).
  • Roeder A , KirschningCJ , RupecRA , SchallerM , WeindlG , KortingHC. Toll-like receptors as key mediators in innate antifungal immunity. Med. Mycol.42(6), 485–498 (2004).
  • Jouault T , Ibata-OmbettaS , TakeuchiOet al. Candida albicans phospholipomannan is sensed through toll-like receptors. J. Infect. Dis.188(1), 165–172 (2003).
  • Cassone A , BernardisF , TorososantucciA. An outline of the role of anti-Candida antibodies within the context of passive immunization and protection from Candidiasis. Curr. Mol. Med.5(4), 377–382 (2005).
  • Shankar M , LoTL , TravenA. Natural variation in clinical isolates of Candida albicans modulates neutrophil responses. mSphere5(4), e00501–20 (2020).
  • Ho J , WickramasingheDN , NikouS-A , HubeB , RichardsonJP , NaglikJR. Candidalysin is a potent trigger of alarmin and antimicrobial peptide release in epithelial cells. Cells9(3), 699 (2020).
  • Schönherr FA , SparberF , KirchnerFRet al. The intraspecies diversity of C. albicans triggers qualitatively and temporally distinct host responses that determine the balance between commensalism and pathogenicity. Mucosal Immunol.10(5), 1335–1350 (2017).
  • Moyes DL , RunglallM , MurcianoCet al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe.8(3), 225–235 (2010).
  • Shen H , YuY , ChenS-Met al. Dectin-1 facilitates IL-18 production for the generation of protective antibodies against Candida albicans. Front. Microbiol.11, 1648 (2020).
  • Gantner BN , SimmonsRM , UnderhillDM. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J.24(6), 1277–1286 (2005).
  • Childers DS , AvelarGM , BainJMet al. Epitope shaving promotes fungal immune evasion. MBio11(4), 1–13 (2020).
  • Taff HT , NettJE , ZarnowskiRet al. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog.8(8), e1002848 (2012).
  • Xiao J , KleinMI , FalsettaMLet al. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog.8(4), e1002623 (2012).
  • Nelson RD , ShibataN , PodzorskiRP , HerronMJ. Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action. Clin. Microbiol. Rev.4(1), 1–19 (1991).
  • Alam FF , MustafaAS , KhanZU. Comparative evaluation of (1, 3)-β-D-glucan, mannan and anti-mannan antibodies, and Candida species-specific snPCR in patients with candidemia. BMC Infect. Dis.7(103), 7 (2007).
  • Netea MG . Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J. Clin. Invest.116(6), 1642–1650 (2006).
  • Rizzetto L , KukaM , DeFilippo Cet al. Differential IL-17 production and mannan recognition contribute to fungal pathogenicity and commensalism. J. Immunol.184(8), 4258–4268 (2010).
  • Saijo S , IkedaS , YamabeKet al. Dectin-2 recognition of α-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity32(5), 681–691 (2010).
  • Cambi A , NeteaMG , Mora-MontesHMet al. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J. Biol. Chem.283(29), 20590–20599 (2008).
  • Ueno K , OkawaraA , YamagoeSet al. The mannan of Candida albicans lacking β-1,2-linked oligomannosides increases the production of inflammatory cytokines by dendritic cells. Med. Mycol.51(4), 385–395 (2013).
  • Fradin C , PoulainD , JouaultT. β-1,2-linked oligomannosides from Candida albicans bind to a 32-kilodalton macrophage membrane protein homologous to the mammalian lectin galectin-3. Infect. Immun.68(8), 4391–4398 (2000).
  • Ližičárová I , MatulováM , CapekP , MachováE. Human pathogen Candida dubliniensis: a cell wall mannan with a high content of β-1,2-linked mannose residues. Carbohydr. Polym.70(1), 89–100 (2007).
  • de Carvalho Dias K , BarbugliPA , de PattoFet al. Soluble factors from biofilm of Candida albicans and Staphylococcus aureus promote cell death and inflammatory response. BMC Microbiol.17(1), 146 (2017).
  • Inchingolo F , MartelliFS , IsaccoCGet al. Chronic periodontitis and immunity, towards the implementation of a personalized medicine: a translational research on gene single nucleotide polymorphisms (SNPs) linked to chronic oral dysbiosis in 96 caucasian patients. Biomedicines8(5), 115 (2020).
  • Alvarez-Rueda N , RougesC , TouahriA , Misme-AucouturierB , AlbassierM , LePape P. In vitro immune responses of human PBMCs against Candida albicans reveals fungal and leucocyte phenotypes associated with fungal persistence. Sci. Rep.10(1), 1–16 (2020).
  • Lomeli-Martinez SM , Valentin-GomézE , Varela-HernándezJJet al. Candida spp. determination and Th1/Th2 mixed cytokine profile in oral samples from HIV+ patients with chronic periodontitis. Front. Immunol.10, 1465 (2019).
  • Pavlova A , SharafutdinovI. Recognition of Candida albicans and role of innate type 17 immunity in oral candidiasis. Microorganisms8(9), 1340 (2020).
  • Willment J , MarshallSJ A , ReidDet al. The human b-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur. J. Immunol.35(5), 1539–1547 (2005).
  • Austermeier S , KasperL , WestmanJ , GresnigtMS. I want to break free – macrophage strategies to recognize and kill Candida albicans, and fungal counter-strategies to escape. Curr. Opin. Microbiol.58, 15–23 (2020).
  • Offenbacher S , BarrosSP , BencharitSet al. Differential mucosal gene expression patterns in Candida-associated, chronic oral denture stomatitis. J. Prosthodont.28(2), 202–208 (2018). https://doi.org/10.1111/jopr.13007
  • Chen J , HeR , SunWet al. TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response. Nat. Commun.11(1), 1–16 (2020).
  • Vila T , SultanAS , Montelongo-JaureguiD , Jabra-RizkMA. Oral candidiasis: a disease of opportunity. J. Fungi.6(1), 15 (2020).
  • Gaffen SL , MoutsopoulosNM. Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity. Sci. Immunol.5(43), eaau4594 (2020).
  • Lanzavecchia A , SallustoF. The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics. Curr. Opin. Immunol.13(3), 291–298 (2001).
  • Conti HR , ShenF , NayyarNet al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med.206(2), 299–311 (2009).
  • Pirofski L , CasadevallA. Rethinking T cell immunity in oropharyngeal candidiasis. J. Exp. Med.206(2), 269–273 (2009).
  • de Repentigny L , GoupilM , JolicoeurP. Oropharyngeal candidiasis in HIV infection: analysis of impaired mucosal immune response to Candida albicans in mice expressing the HIV-1 transgene. Pathogens.4(2), 406–421 (2015).
  • Gaffen SL , Hernández-SantosN , PetersonAC. IL-17 signaling in host defense against Candida albicans. Immunol. Res.50(2–3), 181–187 (2011).
  • Khader SA , GaffenSL , KollsJK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol.2(5), 403–411 (2009).
  • Cua DJ , TatoCM. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol.10(7), 479–489 (2010).
  • Gladiator A , WanglerN , Trautwein-WeidnerK , LeibundGut-LandmannS. Cutting edge: IL-17 secreting innate lymphoid cells are essential for host defense against fungal infection. J. Immunol.190(2), 521–525 (2012).
  • Gao Y , LiangG , WangQet al. Different host immunological response to C. albicans by human oral and vaginal epithelial cells. Mycopathologia184(1), 1–12 (2019).
  • Swidergall M , SolisNV , LionakisMS , FillerSG. EphA2 is an epithelial cell pattern recognition receptor for fungal β-glucans. Nat. Microbiol.3(1), 53–61 (2018).
  • Verma A , GaffenS , SwidergallM. Innate immunity to mucosal Candida infections. J. Fungi.3(4), 60 (2017).
  • Swidergall M , SolisNV , WangZet al. EphA2 is a neutrophil receptor for Candida albicans that stimulates antifungal activity during oropharyngeal infection. Cell Rep.28(2), 423–433.e5 (2019).
  • Onishi RM , GaffenSL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology129(3), 311–321 (2010).
  • Liang SC , TanX-Y , LuxenbergDPet al. Interleukin IL-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med.203(10), 2271–2279 (2006).
  • Casaroto AR , da SilvaRA , SalmeronSet al. Candida albicans-cell interactions activate innate immune defense in human palate epithelial primary cells via nitric oxide (NO) and β-defensin 2 (hBD-2). Cells8(7), 707 (2019).
  • Tucey TM , VermaJ , OlivierFABet al. Metabolic competition between host and pathogen dictates inflammasome responses to fungal infection. PLOS Pathog.16(8), e1008695 (2020).
  • Huang F , SongY , ChenWet al. Effects of Candida albicans infection on defense effector secretion by human oral mucosal epithelial cells. Arch. Oral Biol.103, 55–61 (2019).
  • Gringhuis SI , WeversBA , KapteinTMet al. Selective C-rel activation via Malt1 controls anti-fungal TH-17 immunity by dectin-1 and dectin-2. PLoS Pathog.7(1), e1001259 (2011).
  • Samaranayake LP , FidelPL , NaglikJR , AlE. Fungal infections associated with HIV infection. Oral Dis.8, 151–160 (2002).
  • Wells JM , RossiO , MeijerinkM , van BaarlenP. Epithelial crosstalk at the microbiota-mucosal interface. Proc. Natl Acad. Sci.108(Suppl. 1), 4607–4614 (2010).
  • Mathews M , JiaHP , GuthmillerJMet al. Production of beta-defensin antimicrobial peptides by the oral mucosa and salivary glands. Infect. Immun.67(6), 2740–2745 (1999).
  • Guilhelmelli F , VilelaN , AlbuquerqueP , Derengowskida SL , Silva-PereiraI , KyawCM. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front. Microbiol.4(353), 4 (2013).
  • Dale BA , KrisanaprakornkitS. Defensin antimicrobial peptides in the oral cavity. J. Oral Pathol. Med.30(6), 321–327 (2001).
  • Nilsson MF , SandstedtB , SørensenO , WeberG , BorregaardN , Ståhle-BäckdahlM. The human cationic antimicrobial protein hCAP18, a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect. Immun.67(5), 2561–2566 (1999).
  • Wang G , LiX , WangZ. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res.44(D1), D1087–D1093 (2015).
  • Hans M , HansVM. Epithelial antimicrobial peptides: guardian of the oral cavity. Int. J. Pept.2014, 1–13 (2014).
  • Koshlukova SE , LloydTL , AraujoMWB , EdgertonM. Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J. Biol. Chem.274(27), 18872–18879 (1999).
  • McCullough MJ , RossBC , ReadePC. Candida albicans: a review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. Int. J. Oral Maxillofac. Surg.25(2), 136–144 (1996).
  • Ganz T . Epithelia: not just physical barriers: Figure 1. Proc. Natl Acad. Sci.99(6), 3357–3358 (2002).
  • Millán RS , ElguezabalN , RegúlezP , MoraguesMD , QuindósG , PontónJ. Effect of salivary secretory IgA on the adhesion of Candida albicans to polystyrene. Microbiology146(9), 2105–2112 (2000).
  • Holmes AR , BandaraBMK , CannonRD. Saliva promotes Candida albicans adherence to human epithelial cells. J. Dent. Res.81(1), 28–32 (2002).
  • de Repentigny L , AumontF , BernardK , BelhumeurP. Characterization of binding of Candida albicans to small intestinal mucin and its role in adherence to mucosal epithelial cells. Infect. Immun.68(6), 3172–3179 (2000).
  • Kavanaugh NL , ZhangAQ , NobileCJ , JohnsonAD , RibbeckK. Mucins suppress virulence traits of Candida albicans. MBio5(6), e01911–14 (2014).
  • Valle Arevalo A , NobileCJ. Interactions of microorganisms with host mucins: a focus on Candida albicans. FEMS Microbiol. Rev.44(5), 645–654 (2020).
  • Edgerton M , KoshlukovaS. Salivary histatin 5 and its similarities to the other antimicrobial proteins in human saliva. Adv. Dent. Res.14, 16–21 (2000).
  • Oppenheim F . Salivary histidine-rich proteins. In: Human Saliva: Clinical Chemistry and Microbiology.TenovuoJ (Ed.). CRC Press, FL, USA, 151–160 (1989).
  • Puri S , EdgertonM. How does it kill?: understanding the candidacidal mechanism of salivary histatin 5. Eukaryot. Cell.13(8), 958–964 (2014).
  • Rodrigues CF , SilvaS , HenriquesM. Candida glabrata: a review of its features and resistance. Eur. J. Clin. Microbiol. Infect. Dis.33, 673–688 (2014).
  • Li XS , ReddyMS , BaevD , EdgertonM. Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. J. Biol. Chem.278(31), 28553–28561 (2003).
  • Gyurko C , LendenmannU , HelmerhorstEJ , TroxlerRF , OppenheimFG. Killing of Candida albicans by histatin 5: cellular uptake and energy requirement. Antonie Van Leeuwenhoek.79(3/4), 297–309 (2001).
  • Mochon AB , LiuH. The antimicrobial peptide histatin-5 causes a spatially restricted disruption on the Candida albicans surface, allowing rapid entry of the peptide into the cytoplasm. PLoS Pathog.4(10), e1000190 (2008).
  • Helmerhorst EJ , TroxlerRF , OppenheimFG. The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc. Natl Acad. Sci.98(25), 14637–14642 (2001).
  • Swidergall M , ErnstJF. Interplay between Candida albicans and the antimicrobial peptide armory. Eukaryot. Cell.13(8), 950–957 (2014).
  • Sohnle PG , HahnBL , SanthanagopalanV. Inhibition of Candida albicans growth by calprotectin in the absence of direct contact with the organisms. J. Infect. Dis.174(6), 1369–1371 (1996).
  • Urban CF , ErmertD , SchmidMet al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog.5(10), e1000639 (2009).
  • Okutomi T , TanakaT , YuiSet al. Anti-Candida activity of cal protect in in combination with neutrophils or lactoferrin. Microbiol. Immunol.42(11), 789–793 (1998).
  • Yano J , LillyE , BarousseM , FidelPL. Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida Vaginitis. Infect. Immun.78(12), 5126–5137 (2010).
  • Yano J , KollsJK , HappelKI , WormleyF , WozniakKL , FidelPL. The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17-pathway. PLoS ONE7(9), e46311 (2012).
  • Bianchi ME . DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol.81(1), 1–5 (2006).
  • Chan JK , RothJ , OppenheimJJet al. Alarmins: awaiting a clinical response. J. Clin. Invest.122(8), 2711–2719 (2012).
  • Driemel O , MurzikU , EscherNet al. Protein profiling of oral brush biopsies: s100A8 and S100A9 can differentiate between normal, premalignant, and tumor cells. Proteomics Clin. Appl.1(5), 486–493 (2007).
  • Bertheloot D , LatzE. HMGB1, IL-1a, IL-33 and S100 proteins: dual-function alarmins. Cell. Mol. Immunol.14(1), 43–64 (2016).
  • Zhu W , FillerSG. Interactions of Candida albicans with epithelial cells. Cell. Microbiol.12(3), 273–282 (2010).
  • Cayrol C , GirardJ-P. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr. Opin. Immunol.31, 31–37 (2014).
  • Peters BM , YanoJ , NoverrMC , FidelPL. Candida vaginitis: when opportunism knocks, the host responds. PLoS Pathog.10(4), e1003965 (2014).
  • Eversole LR , ReichartPA , FicarraG , Schmidt-WesthausenA , RomagnoliP , PimpinelliN. Oral keratinocyte immune responses in HIV-associated candidiasis. Oral Surgery, Oral Med. Oral Pathol. Oral Radiol. Endodontology.84(4), 372–380 (1997).
  • Dongari-Bagtzoglou A , VillarCC , KashlevaH. Candida albicans-infected oral epithelial cells augment the anti-fungal activity of human neutrophilsin vitro. Med. Mycol.43(6), 545–549 (2005).
  • Netea MG , MardiL. Innate immune mechanisms for recognition and uptake of Candida species. Trends Immunol.31(9), 346–353 (2010).
  • Schaller M , SanderCA , KortingHC , MailhammerR , GrasslG , HubeB. Infection of human oral epithelia with Candida species induces cytokine expression correlated to the degree of virulence. J. Invest. Dermatol.118(4), 652–657 (2002).
  • Ye P , RodriguezFH , KanalySet al. Requirement of interleukin 17 receptor signaling for lung Cxc chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med.194(4), 519–528 (2001).
  • Hebecker B , NaglikJR , HubeB , JacobsenID. Pathogenicity mechanisms and host response during oral Candida albicans infections. Expert Rev. Anti Infect. Ther.12(7), 867–79 (2014).
  • Solis NV , SwidergallM , BrunoVM , GaffenSL , FillerSG. The Aryl hydrocarbon receptor governs epithelial cell invasion during oropharyngeal candidiasis. MBio8(2), e00025–172017).
  • Steele C , FidelPL. Cytokine and chemokine production by human oral and vaginal epithelial cells in response to Candida albicans. Infect. Immun.70(2), 577–583 (2002).
  • Moyes DL , WilsonD , RichardsonJPet al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature532(7597), 64–68 (2016).
  • Murciano C , MoyesDL , RunglallMet al. Candida albicans cell wall glycosylation may be indirectly required for activation of epithelial cell proinflammatory responses. Infect. Immun.79(12), 4902–4911 (2011).
  • Mencacci A , DelSero G , CenciEet al. Endogenous interleukin 4 is required for development of protective CD4 + nT helper type 1 cell responses to Candida albicans. J. Exp. Med.187(3), 307–317 (1998).
  • Scully C , EI-KabirM , SamaranayakeLP. Candida and oral candidosis: a review. Crit. Rev. Oral Biol. Med.5(2), 125–157 (1994).
  • Vismara D , LombardiG , PiccolellaE , ColizziV. Dissociation between interleukin-1 and interleukin-2 production in proliferative response to microbial antigens: restorative effect of exogenous interleukin-2. Infect. Immun.49(2), 298–304 (1985).
  • Altmeier S , ToskaA , SparberF , TeijeiraA , HalinC , LeibundGut-Landmann S. IL-1 coordinates the neutrophil response to C. albicans in the oral mucosa. PLoS Pathog.12(9), e1005882 (2016).
  • Sitheeque MAM , SamaranayakeLP. Chronic hyperplastic candidosis/candidiasis (Candidal leukoplakia). Crit. Rev. Oral Biol. Med.14(4), 253–267 (2003).
  • Jontell M , ScheyniusA , OhmanS-C , MagnussonB. Expression of Class {II} transplantation antigens by epithelial cells in oral candidosis, oral lichen planus and gingivitis. J. Oral Pathol. Med.15(9), 484–488 (1986).
  • Zhu W , PhanQT , BoontheungP , SolisNV , LooJA , FillerSG. EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by Candida albicans during oropharyngeal infection. Proc. Natl Acad. Sci.109(35), 14194–14199 (2012).
  • Phan QT , MyersCL , FuYet al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol.5(3), e64 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.