3,933
Views
0
CrossRef citations to date
0
Altmetric
Review

Drug Repurposing Against SARS-CoV-1, SARS-CoV-2 and MERS-CoV

ORCID Icon, , , , , & ORCID Icon show all
Pages 1341-1370 | Received 21 Jan 2021, Accepted 08 Oct 2021, Published online: 10 Nov 2021

References

  • Wishart DS , FeunangYD, GuoACet al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res.46(D1), D1074–D1082 (2018).
  • Lundin A , DijkmanR, BergstromTet al. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the Middle East respiratory syndrome virus. PLoS Pathog.10(5), e1004166 (2014).
  • Pizzorno A , PadeyB, DuboisJet al. In vitro evaluation of antiviral activity of single and combined repurposable drugs against SARS-CoV-2. Antiviral Res.181, 104878 (2020).
  • Sheahan TP , SimsAC, ZhouSet al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med.12(541), eabb5883 (2020).
  • Yuan S , YinX, MengXet al. Clofazimine is a broad-spectrum coronavirus inhibitor that antagonizes SARS-CoV-2 replication in primary human cell culture and hamsters. Res. Sq. doi:10.21203/rs.3.rs-86169/v1 (2020) ( Epub ahead of print).
  • Brunaugh AD , SeoH, WarnkenZet al. Broad-spectrum, patient-adaptable inhaled niclosamide-lysozyme particles are efficacious against coronaviruses in lethal murine infection models. bioRxiv. doi:https://doi.org/10.1101/2020.09.24.310490 (2020) ( Epub ahead of print).
  • Smee DF , HurstBL, EvansWJet al. Evaluation of cell viability dyes in antiviral assays with RNA viruses that exhibit different cytopathogenic properties. J. Virol. Methods.246, 51–57 (2017).
  • Gordon DE , JangGM, BouhaddouMet al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature583(7816), 459–468 (2020).
  • Li X , YuJ, ZhangZet al. Network bioinformatics analysis provides insight into drug repurposing for COVID-2019. Preprints doi:10.20944/preprints202003.0286.v1 (2020) ( Epub ahead of print).
  • Nabirotchkin S , PeluffoA, BouazizJ, CohenD. Focusing on the unfolded protein response and autophagy related pathways to reposition common approved drugs against pathways to reposition common approved drugs against COVID-19. Preprints doi:10.20944/preprints202003.0302.v1 (2020) ( Epub ahead of print).
  • Gordon CJ , TchesnokovEP, WoolnerEet al. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem.295(20), 6785–6797 (2020).
  • Lo MK , AlbarinoCG, PerryJKet al. Remdesivir targets a structurally analogous region of the Ebola virus and SARS-CoV-2 polymerases. Proc. Natl. Acad. Sci. USA117(43), 26946–26954 (2020).
  • Tchesnokov EP , FengJY, PorterDP, GotteM. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses11(4), 326 (2019).
  • Agostini ML , AndresEL, SimsACet al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio.9(2), e00221–18 (2018).
  • Sheahan TP , SimsAC, GrahamRLet al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med.9(396), eaal3653 (2017).
  • Bojkova D , McGreigJE, McLaughlinKMet al. SARS-CoV-2 and SARS-CoV differ in their cell tropism and drug sensitivity profiles. bioRxiv doi:https://doi.org/10.1101/2020.04.03.024257 (2020) ( Epub ahead of print).
  • Sheahan TP , SimsAC, LeistSRet al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun.11(1), 222 (2020).
  • Sheahan TP , SimsAC, GrahamRLet al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med.9(396), eaal3653 (2017).
  • Choy KT , WongAY, KaewpreedeePet al. Remdesivir, iopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res.178, 104786 (2020).
  • Jeon S , KoM, LeeJet al. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother.64(7), e00819–20 (2020).
  • Wang M , CaoR, ZhangLet al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res.30(3), 269–271 (2020).
  • Touret F , GillesM, BarralKet al. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci. Rep.10(1), 13093 (2020).
  • Riva L , YuanS, YinXet al. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature586(7827), 113–119 (2020).
  • Pruijssers AJ , GeorgeAS, SchaferAet al. Remdesivir inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice. Cell Rep.32(3), 107940 (2020).
  • Mirabelli C , WotringJW, ZhangCJet al. Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19. bioRxiv doi:https://doi.org/10.1101/2020.05.27.117184 (2020) ( Epub ahead of print).
  • Bakowski MA , BeutlerN, ChenEet al. Oral drug repositioning candidates and synergistic remdesivir combinations for the prophylaxis and treatment of COVID-19. bioRxiv doi:https://doi.org/10.1101/2020.06.16.153403 (2020) ( Epub ahead of print).
  • Bouhaddou M , MemonD, MeyerBet al. The global phosphorylation landscape of SARS-CoV-2 infection. Cell182(3), 685–712 (2020).
  • Chen CZ , ShinnP, ItkinZet al. Drug repurposing screen for compounds inhibiting the cytopathic effect of SARS-CoV-2. bioRxiv doi:https://doi.org/10.1101/2020.08.18.255877 (2020) ( Epub ahead of print).
  • Dittmar M , LeeJS, WhigKet al. Drug repurposing screens reveal FDA approved drugs active against SARS-Cov-2. bioRxiv doi:https://doi.org/10.1101/2020.06.19.161042 (2020) ( Epub ahead of print).
  • Drayman N , JonesKA, AziziSAet al. Drug repurposing screen identifies masitinib as a 3CLpro inhibitor that blocks replication of SARS-CoV-2 in vitro. bioRxiv doi:10.1101/2020.08.31.274639 (2020) ( Epub ahead of print).
  • Bernhard E , DenisaB, AndreaZet al. Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection. Res. Sq. doi:10.21203/rs.3.rs-23951/v1 (2020) ( Epub ahead of print).
  • Gorshkov K , ChenCZ, BostwickRet al. The SARS-CoV-2 cytopathic effect is blocked with autophagy modulators. bioRxiv doi:10.1101/2020.05.16.091520 (2020) ( Epub ahead of print).
  • Halfon P , BestionE, ZandiKet al. GNS561 exhibits potent in vitro antiviral activity against SARS-CoV-2 through autophagy inhibition. bioRxiv doi:https://doi.org/10.1101/2020.10.06.327635 (2020) ( Epub ahead of print).
  • Hattori SI , Higshi-KuwataN, RaghavaiahJet al. GRL-0920, an indole chloropyridinyl ester, completely blocks SARS-CoV-2 infection. mBio11(4), doi:https://doi.org/10.1128/mBio.01833-20 (2020).
  • Holwerda M , VΓÇÖkovskiP, WiderM, ThielV, DijkmanR. Identification of five antiviral compounds from the pandemic response box targeting SARS-CoV-2. bioRxiv doi:https://doi.org/10.1101/2020.05.17.100404 (2020) ( Epub ahead of print).
  • Ko M , JeonS, RyuWS, KimS. Comparative analysis of antiviral efficacy of FDA-approved drugs against SARS-CoV-2 in human lung cells. J. Med. Virol.93(3), 1403–1408 (2020).
  • Li Y , CaoL, LiGet al. Remdesivir metabolite GS-441524 effectively inhibits SARS-CoV-2 infection in mice models. bioRxiv doi:https://doi.org/10.1101/2020.10.26.353300 (2020) ( Epub ahead of print).
  • Liu S , LienCZ, SelvarajP, WangTT. Evaluation of 19 antiviral drugs against SARS-CoV-2 Infection. bioRxiv doi:https://doi.org/10.1101/2020.04.29.067983 (2020) ( Epub ahead of print).
  • De MS , BojkovaD, CinatlJet al. Lack of antiviral activity of darunavir against SARS-CoV-2. Int. J. Infect. Dis.97, 7–10 (2020).
  • Olaleye OA , KaurM, OnyenakaCC. Ambroxol hydrochloride inhibits the interaction between severe acute respiratory syndrome coronavirus 2 spike protein's receptor binding domain and recombinant human ACE2. bioRxiv doi:10.1101/2020.09.13.295691 (2020) ( Epub ahead of print).
  • Olaleye OA , KaurM, OnyenakaC, AdebusuyiT. Discovery of clioquinol and analogs as novel inhibitors of severe acute respiratory syndrome coronavirus 2 infection, ACE2 and A. bioRxiv doi:10.1101/2020.08.14.250480 (2020) ( Epub ahead of print).
  • Schooley RT , CarlinAF, BeadleJRet al. Rethinking remdesivir: synthesis of lipid prodrugs that substantially enhance anti-coronavirus activity. bioRxiv doi:10.1101/2020.08.26.269159 (2020) ( Epub ahead of print).
  • de VM , MohamedAS, PrescottRAet al. Comparative study of a 3CL (pro) inhibitor and remdesivir against both major SARS-CoV-2 clades in human airway models. bioRxiv doi:https://doi.org/10.1101/2020.08.28.272880 (2020) ( Epub ahead of print).
  • Yin W , LuanX, LiZet al. Structural basis for repurposing a 100-years-old drug suramin for treating COVID-19. bioRxiv doi:https://doi.org/10.1101/2020.10.06.328336 (2020) ( Epub ahead of print).
  • Krüger J , GroßR, ConzelmannCet al. Remdesivir but not famotidine inhibits SARS-CoV-2 replication in human pluripotent stem cell-derived intestinal organoids. bioRxiv doi:https://doi.org/10.1101/2020.06.10.144816 (2020) ( Epub ahead of print).
  • Pruijssers AJ , GeorgeAS, SchaferAet al. Remdesivir potently inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice. bioRxiv doi:10.1101/2020.04.27.064279 (2020) ( Epub ahead of print).
  • Humeniuk R , MathiasA, CaoHet al. Safety, tolerability, and pharmacokinetics of remdesivir, an antiviral for treatment of COVID-19, in healthy subjects. Clin. Transl. Sci.13(5), 896–906 (2020).
  • Pizzorno A , PadeyB, JulienTet al. Characterization and treatment of SARS-CoV-2 in nasal and bronchial human airway epithelia. Cell Rep. Med.1(4), 100059 (2020).
  • Pizzorno A , PadeyB, DuboisJet al. In vitro evaluation of antiviral activity of single and combined repurposable drugs against SARS-CoV-2. Antiviral Res.181, 104878 (2020).
  • Pizzorno A , TerrierO, Nicolasde LCet al. Repurposing of drugs as novel influenza inhibitors from clinical gene expression infection signatures. Front. Immunol.10, 60 (2019).
  • Elfiky AA . Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci.253, 117592 (2020).
  • Hall DC Jr , JiHF. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med. Infect. Dis.35, 101646 (2020).
  • El-hoshoudy AN . Investigating the potential antiviral activity drugs against SARS-CoV-2 by molecular docking simulation. J. Mol. Liq.318, 113968 (2020).
  • Chitranshi N , GuptaVK, RajputRet al. Evolving geographic diversity in SARS- and in silico analysis of replicating enzyme 3CL(pro) targeting repurposed drug candidates. J. Transl. Med.18(1), 278 (2020).
  • Beigel JH , TomashekKM, DoddLE. Remdesivir for the treatment of Covid-19 – preliminary report. reply. N. Engl. J. Med.383(10), 994 (2020).
  • Beigel JH , TomashekKM, DoddLEet al. Remdesivir for the treatment of Covid-19 – final report. N. Engl. J. Med.383(19), 1813–1826 (2020).
  • Pan H , PetoR, Henao-RestrepoAMet al. Repurposed antiviral drugs for Covid-19 – iInterim WHO solidarity trial results. N. Engl. J. Med.384(6), 497–511 (2021).
  • Driouich JSL , CochinM, LingasGet al. Favipiravir antiviral efficacy against SARS-CoV-2 in a hamster model. bioRxiv doi:https://doi.org/10.1101/2020.07.07.191775 (2020) ( Epub ahead of print).
  • Shannon A , SeliskoB, LeNTTet al. Favipiravir strikes the SARS-CoV-2 at its achilles heel, the RNA polymerase. bioRxiv doi:10.1101/2020.05.15.098731 (2020) ( Epub ahead of print).
  • Ohashi H , WatashiK, SasoWet al. Multidrug treatment with nelfinavir and cepharanthine against COVID-19. bioRxiv doi:https://doi.org/10.1101/2020.04.14.039925 (2020) ( Epub ahead of print).
  • Zandi K , AmblardF, MusallKet al. Repurposing nucleoside analogs for human coronaviruses. Antimicrob. Agents Chemother.65(1), e01652–20 (2020).
  • Hassanipour S , Arab-ZozaniM, AmaniBet al. The efficacy and safety of favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials. Sci. Rep.11(1), 11022 (2021).
  • Day CW , BaricR, CaiSXet al. A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology395(2), 210–222 (2009).
  • Barnard DL , HubbardVD, BurtonJet al. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and beta-D-N4-hydroxycytidine. Antivir. Chem. Chemother.15(1), 15–22 (2004).
  • Chen F , ChanKH, JiangYet al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J. Clin. Virol.31(1), 69–75 (2004).
  • Morgenstern B , MichaelisM, BaerPC, DoerrHW, CinatlJJr. Ribavirin and interferon-beta synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochem. Biophys. Res. Commun.326(4), 905–908 (2005).
  • Cinatl J , MorgensternB, BauerGet al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet361(9374), 2045–2046 (2003).
  • Saijo M , MorikawaS, FukushiSet al. Inhibitory effect of mizoribine and ribavirin on the replication of severe acute respiratory syndrome (SARS)-associated coronavirus. Antiviral Res.66(2–3), 159–163 (2005).
  • Sacramento CQ , Fintelman-RodriguesN, TemerozoJRet al. The in vitro antiviral activity of the antihepatitis C virus (HCV) drugs daclatasvir and sofosbuvir against SARS-CoV-2. bioRxiv doi:https://doi.org/10.1101/2020.06.15.153411 (2020) ( Epub ahead of print).
  • Sadeghi A , AliAsgari A, NorouziAet al. Sofosbuvir and daclatasvir compared with standard of care in the treatment of patients admitted to hospital with moderate or severe coronavirus infection (COVID-19): a randomized controlled trial. J. Antimicrob. Chemother.75(11), 3379–3385 (2020).
  • Roozbeh F , SaeediM, Alizadeh-NavaeiRet al. Sofosbuvir and daclatasvir for the treatment of COVID-19 outpatients: a double-blind, randomized controlled trial. J. Antimicrob. Chemother.76(3), 753–757 (2021).
  • Kouznetsova VL , ZhangA, TatineniM, MillerMA, TsigelnyIF. Potential COVID-19 papain-like protease PL(pro) inhibitors: repurposing FDA-approved drugs. PeerJ.8, e9965 (2020).
  • Liu S , LienCZ, SelvarajP, WangTT. Evaluation of 19 antiviral drugs against SARS-CoV-2 infection. bioRxiv doi:https://doi.org/10.1101/2020.04.29.067983 (2020) ( Epub ahead of print).
  • Eleftheriou P , AmanatidouD, PetrouA, GeronikakiA. In silico evaluation of the effectivity of approved protease inhibitors against the main protease of the novel SARS-CoV-2 virus. Molecules25(11), 2529 (2020).
  • Das S , SarmahS, LyndemS, SinghaRA. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn.39(9), 3347–3357 (2020).
  • Hakmi M , BourichaEM, KandoussiI, HartiJE, IbrahimiA. Repurposing of known anti-virals as potential inhibitors for SARS-CoV-2 main protease using molecular docking analysis. Bioinformation16(4), 301–306 (2020).
  • Peele KA , PotlaDurthi C, SrihansaTet al. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: a computational study. Inform. Med. Unlocked19, 100345 (2020).
  • Cao B , WangY, WenDet al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med.382(19), 1787–1799 (2020).
  • Horby PW , MafhamM, BellJLet al. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (recovery): a randomised, controlled, open-label, platform trial. Lancet396(10259), 1345–1352 (2020).
  • Fintelman-Rodrigues N , SacramentoCQ, RibeiroLCet al. Atazanavir, alone or in combination with ritonavir, inhibits SARS-CoV-2 replication and proinflammatory cytokine production. Antimicrob. Agents Chemother.64(10), e00825–20 (2020).
  • Yamamoto N , MatsuyamaS, HoshinoT, YamamotoN. Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro. bioRxiv doi:https://doi.org/10.1101/2020.04.06.026476 (2020) ( Epub ahead of print).
  • Yamamoto N , YangR, YoshinakaYet al. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem. Biophys. Res. Commun.318(3), 719–725 (2004).
  • Huynh T , WangH, LuanB. In silico exploration of the molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2ΓÇÖs main protease. J. Phys. Chem. Lett.11(11), 4413–4420 (2020).
  • Musarrat F , ChouljenkoV, DahalAet al. The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections. J. Med. Virol.92(10), 2087–2095 (2020).
  • Elfiky A , IbrahimNS. Anti-SARS and anti-HCV drugs repurposing against the papain-like protease of the newly emerged coronavirus (2019-nCoV). Research Square doi:10.21203/rs.2.23280/v1 (2020) ( Epub ahead of print).
  • Chen J , XiaL, LiuLet al. Antiviral activity and safety of darunavir/cobicistat for the treatment of COVID-19. Open Forum Infect. Dis.7(7), ofaa241 (2020).
  • Milic J , NovellaA, MeschiariMet al. Darunavir/cobicistat is associated with negative outcomes in HIV-negative patients with severe COVID-19 pneumonia. AIDS Res. Hum. Retroviruses37(4), 283–291 (2021).
  • Zhang L , LinD, SunXet al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science368(6489), 409–412 (2020).
  • Vankadari N . Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int. J. Antimicrob. Agents56(2), 105998 (2020).
  • Wang X , CaoR, ZhangHet al. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov.6, 28 (2020).
  • Lian N , XieH, LinSet al. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clin. Microbiol. Infect.26(7), 917–921 (2020).
  • Huang D , YuH, WangTet al. Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. J. Med. Virol.93(1), 481–490 (2021).
  • Dyall J , ColemanCM, HartBJet al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother.58(8), 4885–4893 (2014).
  • de Wilde AH , JochmansD, PosthumaCCet al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob. Agents Chemother.58(8), 4875–4884 (2014).
  • Vincent MJ , BergeronE, BenjannetSet al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J.2, 69 (2005).
  • Keyaerts E , VijgenL, MaesP, NeytsJ, VanRM. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun.323(1), 264–268 (2004).
  • Shen L , NiuJ, WangCet al. High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J. Virol.93(12), e00023–19 (2019).
  • Weston S , ColemanCM, HauptRet al. Broad anti-coronavirus activity of food and drug administration-approved drugs against SARS-CoV-2 In vitro and SARS-CoV in vivo. J. Virol.94(21), e01218–20 (2020).
  • Gendrot M , AndreaniJ, DuflotIet al. Methylene blue inhibits replication of SARS-CoV-2 in vitro. Int. J. Antimicrob. Agents56(6), 106202 (2020).
  • Liu J , CaoR, XuMet al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov.6, 16 (2020).
  • Servonnet A , DelacourH, ThefenneH, GardetV. Les intoxications aiguës à la chloroquine: aspects cliniques et analytiques. Annales De Toxicologie Analytique.17(2), 87–94 (2005).
  • Popert AJ . Chloroquine: a review. Rheumatol. Rehabil.15(3), 235–238 (1976).
  • Yao X , YeF, ZhangMet al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis.71(15), 732–739 (2020).
  • Rainsford KD , ParkeAL, Clifford-RashotteM, KeanWF. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology23(5), 231–269 (2015).
  • Chhonker SY , SleightholmRL, LiJ, OupickýD, MurryDJ. Simultaneous quantitation of hydroxychloroquine and its metabolites in mouse blood and tissues using LC–ESI–MS/MS: an application for pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.1072, 320–327 (2018).
  • Maisonnasse P , GuedjJ, ContrerasVet al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature585(7826), 584–587 (2020).
  • Turk V , StokaV, VasiljevaOet al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim. Biophys. Acta1824(1), 68–88 (2012).
  • Fantini J , DiSC, ChahinianH, YahiN. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int. J. Antimicrob. Agents55(5), 105960 (2020).
  • Arya R , DasA, RasharV, KumarP. Potential inhibitors against papain-like protease of novel coronavirus (SARS-CoV-2) from FDA approved drugs. ChemRxiv doi:10.26434/chemrxiv.11860011.v2 (2020) ( Epub ahead of print).
  • Gao J , TianZ, YangX. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends14(1), 72–73 (2020).
  • Gautret P , LagierJC, ParolaPet al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents56(1), 105949 (2020).
  • Ladapo JA , McKinnonJE, McCulloughPA, RischHA. Randomized controlled trials of early ambulatory hydroxychloroquine in the prevention of COVID-19 infection, hospitalization, and death: meta-analysis. medRxiv doi:https://doi.org/10.1101/2020.09.30.20204693 (2020) ( Epub ahead of print).
  • Eze P , MezueKN, NdukaCU, ObianyoI, EgbucheO. Efficacy and safety of chloroquine and hydroxychloroquine for treatment of COVID-19 patients-a systematic review and meta-analysis of randomized controlled trials. Am. J. Cardiovasc. Dis.11(1), 93–107 (2021).
  • Bignardi PR , VengrusCS, AquinoBM, CerciNA. Use of hydroxychloroquine and chloroquine in patients with COVID-19: a meta-analysis of randomized clinical trials. Pathog. Glob. Health115(3), 139–150 (2021).
  • Lewis K , ChaudhuriD, AlshamsiFet al. The efficacy and safety of hydroxychloroquine for COVID-19 prophylaxis: a systematic review and meta-analysis of randomized trials. PLoS ONE16(1), e0244778 (2021).
  • Boulware DR , PullenMF, BangdiwalaASet al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N. Engl. J. Med.383(6), 517–525 (2020).
  • Watanabe M . Efficacy of hydroxychloroquine as prophylaxis for Covid-19. arXiv arXiv:2007.09477 (2020) ( Epub ahead of print).
  • Wiseman DM , KoryP, MazzuccoD, RameshMS, ZervosM. Treatment and prevention of early disease before and after exposure to COVID-19 using hydroxychloroquine: a protocol for exploratory re-analysis of age and time-nuanced effects: update based on initial dataset review. medRxiv doi:https://doi.org/10.1101/2020.08.19.20178376 (2020) ( Epub ahead of print).
  • Hernandez AV , RomanYM, PasupuletiV, BarbozaJJ, WhiteCM. Hydroxychloroquine or chloroquine for treatment or prophylaxis of COVID-19: a living systematic review. Ann. Intern. Med.173(4), 287–296 (2020).
  • Barnard DL , DayCW, BaileyKet al. Evaluation of immunomodulators, interferons and known in vitro SARS-coV inhibitors for inhibition of SARS-coV replication in BALB/c mice. Antivir. Chem. Chemother.17(5), 275–284 (2006).
  • Navaratnam V , RamanathanS, WahabMSet al. Tolerability and pharmacokinetics of non-fixed and fixed combinations of artesunate and amodiaquine in Malaysian healthy normal volunteers. Eur. J. Clin. Pharmacol.65(8), 809–821 (2009).
  • Winstanley PA , EdwardsG, CurtisCGet al. Tissue distribution and excretion of amodiaquine in the rat. J. Pharm. Pharmacol.40(5), 343–349 (1988).
  • Gorshkov K , ChenCZ, BostwickRet al. The SARS-CoV-2 cytopathic effect is blocked with autophagy modulators. bioRxiv doi:10.1101/2020.05.16.091520 (2020) ( Epub ahead of print).
  • Fan HH , WangLQ, LiuWLet al. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin. Med. J. (Engl).133(9), 1051–1056 (2020).
  • Wernsdorfer WH , NoedlH, Rendi-WagnerPet al. Gender-specific distribution of mefloquine in the blood following the administration of therapeutic doses. Malar. J.12, 443 (2013).
  • Jones R , KunsmanG, LevineB, SmithM, StahlC. Mefloquine distribution in postmortem cases. Forensic Sci. Int.68(1), 29–32 (1994).
  • Bae JY , LeeGE, ParkHet al. Pyronaridine and artesunate are potential antiviral drugs against COVID-19 and influenza. bioRxiv doi:https://doi.org/10.1101/2020.07.28.225102 (2020) ( Epub ahead of print).
  • Morris CA , DuekerSR, LohstrohPNet al. Mass balance and metabolism of the antimalarial pyronaridine in healthy volunteers. Eur. J. Drug Metab. Pharmacokinet.40(1), 75–86 (2015).
  • Park SH , PradeepK. Absorption, distribution, excretion, and pharmacokinetics of 14C-pyronaridine tetraphosphate in male and female Sprague-Dawley rats. J. Biomed. Biotechnol.2010, 590707 (2010).
  • Gendrot M , AndreaniJ, BoxbergerMet al. Antimalarial drugs inhibit the replication of SARS-CoV-2: an in vitro evaluation. Travel Med. Infect. Dis.37, 101873 (2020).
  • Adehin A , IgbinobaSI, SoyinkaJOet al. Pharmacokinetic parameters of quinine in healthy subjects and in patients with uncomplicated malaria in Nigeria: analysis of data using a population approach. Curr. Ther. Res. Clin. Exp.91, 33–38 (2019).
  • Minchin RF , IlettKF. Comparative uptake of quinine and quinidine in rat lung. J. Pharm. Pharmacol.33(7), 464–466 (1981).
  • Chen Y , YangW, HuangLet al. Inhibition of severe acute respiratory syndrome coronavirus 2 main protease by tafenoquine. bioRxiv doi:https://doi.org/10.1101/2020.08.14.250258 (2020) ( Epub ahead of print).
  • Dow GS , LuttickA, FennerJet al. Tafenoquine inhibits replication of SARS-Cov-2 at pharmacologically relevant concentrations in vitro. bioRxiv doi:https://doi.org/10.1101/2020.07.12.199059 (2020) ( Epub ahead of print).
  • Cao R , HuH, LiYet al. Anti-SARS-CoV-2 potential of artemisinins in vitro. ACS Infect. Dis.6(9), 2524–2531 (2020).
  • Gilmore K , ZhouY, RamirezSet al. In vitro efficacy of artemisinin-based treatments against SARS-CoV-2. bioRxiv doi:https://doi.org/10.1101/2020.10.05.326637 (2020) ( Epub ahead of print).
  • Suputtamongkol Y , NewtonPN, AngusBet al. A comparison of oral artesunate and artemether antimalarial bioactivities in acute falciparum malaria. Br. J. Clin Pharmacol.52(6), 655–661 (2001).
  • Batty KT , ThuLT, DavisTMet al. A pharmacokinetic and pharmacodynamic study of intravenous vs oral artesunate in uncomplicated falciparum malaria. Br. J. Clin. Pharmacol.45(2), 123–129 (1998).
  • Gendrot M , DuflotI, BoxbergerMet al. Antimalarial artemisinin-based combination therapies (ACT) and COVID-19 in Africa: in vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate. Int. J. Infect. Dis.99, 437–440 (2020).
  • Rossignol JF . Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral Res.110, 94–103 (2014).
  • Balderas-Acata JI , BuenoRíos-Rogríguez EP, Pérez-BecerrilFet al. Bioavailability of two oral-suspension formulations of a single dose of nitazoxanide 500mg: an open-label, randomized-sequence, two-period crossover, comparison in healthy fasted Mexican adult volunteers. J. Bioequivalence Bioavailab.3(3), 43–47 (2011).
  • Blum VF , CimermanS, HunterJRet al. Nitazoxanide superiority to placebo to treat moderate COVID-19 - a pilot prove of concept randomized double-blind clinical trial. EClinicalMedicine37, 100981 (2021).
  • Weinbach EC , GarbusJ. Mechanism of action of reagents that uncouple oxidative phosphorylation. Nature221(5185), 1016–1018 (1969).
  • Chen W , MookRAJr, PremontRT, WangJ. Niclosamide: beyond an antihelminthic drug. Cell Signal41, 89–96 (2018).
  • Kao JC , HuangFuWC, TsaiTTet al. The antiparasitic drug niclosamide inhibits dengue virus infection by interfering with endosomal acidification independent of mTOR. PLoS Negl. Trop. Dis.12(8), e0006715 (2018).
  • Wen CC , KuoYH, JanJTet al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem.50(17), 4087–4095 (2007).
  • Wu CJ , JanJT, ChenCMet al. Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob. Agents Chemother.48(7), 2693–2696 (2004).
  • Gassen NC , PapiesJ, BajajTet al. Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics. bioRxiv doi:https://doi.org/10.1101/2020.04.15.997254 (2020).
  • Sales-Medina DF , FerreiraLRP, RomeraLnMDet al. Discovery of clinically approved drugs capable of inhibiting SARS-CoV-2 in vitro infection using a phenotypic screening strategy and network-analysis to predict their potential to treat covid-19. bioRxiv doi:https://doi.org/10.1101/2020.07.09.196337 (2020) ( Epub ahead of print).
  • Lehrer S , RheinsteinPH. Ivermectin docks to the SARS-CoV-2 spike receptor-binding domain attached to ACE2. In Vivo34(5), 3023–3026 (2020).
  • Bryant A , LawrieTA, DowswellTet al. Ivermectin for prevention and treatment of COVID-19 infection: a systematic review, meta-analysis, and trial sequential analysis to inform clinical guidelines. Am. J. Ther.28(4), e434–e460 (2021).
  • Akinboye E , BakareO. Biological activities of emetine. Open Nat. Prod. J.24(1), 8–15 (2011).
  • Low JSY , CaiyunChen K, WuKX, Mah-LeeNg M, HannChu JJ. Antiviral activity of emetine dihydrochloride against dengue virus infection. J. Antivir. Antiretrovir.1(1), 62–71 (2009).
  • Bleasel MD , PetersonGM. Emetine, ipecac, ipecac alkaloids and analogs as potential antiviral agents for coronaviruses. Pharmaceuticals (Basel)13(3), 51 (2020).
  • Yang S , XuM, LeeEMet al. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discov.4, 31 (2018).
  • Deng L , DaiP, CiroAet al. Identification of novel antipoxviral agents: mitoxantrone inhibits vaccinia virus replication by blocking virion assembly. J. Virol.81(24), 13392–13402 (2007).
  • Riva L , YuanS, YinXet al. A aarge-scale drug repositioning survey for SARS-CoV-2 antivirals. bioRxiv doi:10.1101/2020.04.16.044016 (2020) ( Epub ahead of print).
  • Hosseini FS , AmanlouM. Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: virtual screening, molecular docking, and molecular dynamics simulation study. Life Sci.258, 118205 (2020).
  • McMullan BJ , MostaghimM. Prescribing azithromycin. Aust. Prescr.38(3), 87–89 (2015).
  • Andreani J , LeBM, DuflotIet al. In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microb. Pathog.145, 104228 (2020).
  • Braz HLB , SilveiraJADM, MarinhoADet al. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Int. J. Antimicrob. Agents56(3), 106119 (2020).
  • Fantini J , ChahinianH, YahiN. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: what molecular dynamics studies of virus-host interactions reveal. Int. J. Antimicrob. Agents56(2), 106020 (2020).
  • Gendrot M , AndreaniJ, JardotPet al. In vitro antiviral activity of doxycycline against SARS-CoV-2. Molecules25(21), 5064 (2020).
  • Welling PG , KochPA, LauCC, CraigWA. Bioavailability of tetracycline and doxycycline in fasted and nonfasted subjects. Antimicrob. Agents Chemother.11(3), 462–469 (1977).
  • Craig WA , WellingPG. Protein binding of antimicrobials: clinical pharmacokinetic and therapeutic implications. Clin. Pharmacokinet.2(4), 252–268 (1977).
  • Blanchard P , RudhardtM, FabreJ. Behaviour of doxycycline in the tissues. Chemotherapy21(Suppl. 1), 8–18 (1975).
  • Sachdeva C , WadhwaA, KumariAet al. In silico potential of approved antimalarial drugs for repurposing against COVID-19. OMICS24(10), 568–580 (2020).
  • Bharadwaj S , LeeKE, DwivediVD, KangSG. Computational insights into tetracyclines as inhibitors against SARS-CoV-2 M(pro) via combinatorial molecular simulation calculations. Life Sci.257, 118080 (2020).
  • Sencanski M , PerovicV, PajovicSBet al. Drug repurposing for candidate SARS-CoV-2 main protease inhibitors by a novel in silico method. Molecules25(17), 3830 (2020).
  • Zhou N , PanT, ZhangJet al. Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of Ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). J. Biol. Chem.291(17), 9218–9232 (2016).
  • Tripathi PK , UpadhyayS, SinghMet al. Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2. Int. J. Biol. Macromol.164, 2622–2631 (2020).
  • Zhang J , MaX, YuFet al. Teicoplanin potently blocks the cell entry of 2019-nCoV. bioRxiv doi:https://doi.org/10.1101/2020.02.05.935387 (2020) ( Epub ahead of print).
  • Belouzard S , MachelartA, SencioVet al. Large scale screening discovers clofoctol as an inhibitor of SARS-CoV-2 replication that reduces COVID-19-like pathology. bioRxiv doi:https://doi.org/10.1101/2021.06.30.450483 (2021) ( Epub ahead of print).
  • Barnard DL , DayCW, BaileyKet al. Is the anti-psychotic, 10-(3-(dimethylamino)propyl)phenothiazine (promazine), a potential drug with which to treat SARS infections? Lack of efficacy of promazine on SARS-CoV replication in a mouse model. Antiviral Res.79(2), 105–113 (2008).
  • Cong Y , HartBJ, GrossRet al. MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells. PLoS ONE13(3), e0194868 (2018).
  • Zhu H , ChenZC, SakamuruSet al. Mining of high throughput screening database reveals AP-1 and autophagy pathways as potential targets for COVID-19 therapeutics. arXiv arXiv:2007.12242 (2020) ( Epub ahead of print).
  • Coleman CM , SiskJM, MingoRMet al. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion. J. Virol.90(19), 8924–8933 (2016).
  • Garcia G , SharmaA, RamaiahAet al. Antiviral drug screen of kinase inhibitors identifies cellular signaling pathways critical for SARS-CoV-2 replication. bioRxiv doi:https://doi.org/10.1101/2020.06.24.150326 (2020) ( Epub ahead of print).
  • Xiao X , WangC, ChangDet al. Identification of potent and safe antiviral therapeutic candidates against SARS-CoV-2. bioRxiv doi:https://doi.org/10.1101/2020.07.06.188953 (2020) ( Epub ahead of print).
  • Ruan Z , LiuC, GuoYet al. SARS-CoV-2 and SARS-CoV: virtual screening of potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). J. Med. Virol.93(1), 389–400 (2020).
  • Wei TZ , WangH, WuXQet al. In silico screening of potential spike glycoprotein inhibitors of SARS-CoV-2 with drug repurposing strategy. Chin. J. Integr. Med.26(9), 663–669 (2020).
  • Kato F , MatsuyamaS, KawaseMet al. Antiviral activities of mycophenolic acid and IMD-0354 against SARS-CoV-2. Microbiol. Immunol.64(9), 635–639 (2020).
  • Chan JF , ChanKH, KaoRYet al. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J. Infect.67(6), 606–616 (2013).
  • Ko M , ChangSY, ByunSYet al. Screening of FDA-approved drugs using a MERS-CoV clinical isolate from South Korea identifies potential therapeutic options for COVID-19. bioRxiv doi:https://doi.org/10.1101/2020.02.25.965582 (2020) ( Epub ahead of print).
  • Cho J , LeeYJ, KimJHet al. Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19. Sci. Rep.10(1), 16200 (2020).
  • Zhang YN , ZhangQY, LiXDet al. Gemcitabine, lycorine and oxysophoridine inhibit novel coronavirus (SARS-CoV-2) in cell culture. Emerg. Microbes Infect.9(1), 1170–1173 (2020).
  • Swaim CD , PerngYC, ZhaoXet al. 6-Thioguanine blocks SARS-CoV-2 replication by inhibition of PLpro protease activities. bioRxiv doi:10.1101/2020.07.01.183020 (2020) ( Epub ahead of print).
  • Straus MR , BidonM, TangT, WhittakerGR, DanielS. FDA approved calcium channel blockers inhibit SARS-CoV-2 infectivity in epithelial lung cells. bioRxiv doi:https://doi.org/10.1101/2020.07.21.214577 (2020) ( Epub ahead of print).
  • Hoagland DA , ClarkeDJB, MøllerRet al. Modulating the transcriptional landscape of SARS-CoV-2 as an effective method for developing antiviral compounds. bioRxiv doi:https://doi.org/10.1101/2020.07.12.199687 (2020) ( Epub ahead of print).
  • Tree JA , TurnbullJE, ButtigiegKRet al. Unfractionated heparin inhibits live wild-type SARS-CoV-2 cell infectivity at therapeutically relevant concentrations. Br. J. Pharmacol.178(3), 626–635 (2020).
  • Ayerbe L , RiscoC, AyisS. The association between treatment with heparin and survival in patients with Covid-19. J. Thromb. Thrombolysis50(2), 298–301 (2020).
  • Shi C , WangC, WangHet al. The potential of low molecular weight heparin to mitigate cytokine storm in severe COVID-19 patients: a retrospective cohort study. Clin. Transl. Sci.13(6), 1087–1095 (2020).
  • Ko M , JeonS, RyuWS, KimS. Comparative analysis of antiviral efficacy of FDA-approved drugs against SARS-CoV-2 in human lung cells. J. Med. Virol.93(3), 1403–1408 (2020).
  • Yamamoto M , KisoM, Sakai-TagawaYet al. The anticoagulant nafamostat potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. Viruses12(6), 629 (2020).
  • Gunst JD , StaerkeNB, PahusMHet al. Efficacy of the TMPRSS2 inhibitor camostat mesilate in patients hospitalized with Covid-19-a double-blind randomized controlled trial. EClinicalMedicine35, 100849 (2021).
  • Rothan HA , StoneS, NatekarJet al. The FDA-approved gold drug auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells8. bioRxiv doi:https://doi.org/10.1101/2020.04.14.041228 (2020) ( Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.