3,680
Views
12
CrossRef citations to date
0
Altmetric
Review

Drug-Based Therapeutic Strategies for COVID-19-Infected Patients and Their Challenges

, ORCID Icon, , , , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1415-1451 | Received 29 Apr 2021, Accepted 12 Oct 2021, Published online: 23 Nov 2021

References

  • Bavinger JC , ShanthaJG, YehS. Ebola, COVID-19, and emerging infectious disease: lessons learned and future preparedness. Curr. Opin. Ophthalmol.31(5), 416–422 (2020).
  • Roychoudhury S , DasA, SenguptaPet al. Viral pandemics of the last four decades: pathophysiology, health impacts and perspectives. Int. J. Environ. Res. Public Health17(24), 9411 (2020).
  • Paules CI , MarstonHD, FauciAS. Coronavirus infections – more than just the common cold. JAMA323(8), 707–708 (2020).
  • Ghasemiyeh P , Borhani-HaghighiA, KarimzadehIet al. Major neurologic adverse drug reactions, potential drug–drug interactions and pharmacokinetic aspects of drugs used in COVID-19 patients with stroke: a narrative review. Ther. Clin. Risk Manag.16, 595 (2020).
  • Tarus B , BertrandH, ZeddaG, DiPrimo C, QuideauS, Slama-SchwokA. Structure-based design of novel naproxen derivatives targeting monomeric nucleoprotein of influenza A virus. J. Biomol. Struct. Dyn.33(9), 1899–1912 (2015).
  • Padhi AK , TripathiT. Targeted design of drug binding sites in the main protease of SARS-CoV-2 reveals potential signatures of adaptation. Biochem. Biophys. Res. Commun.555, 147–153 (2021).
  • Padhi AK , TripathiT. Can SARS-CoV-2 accumulate mutations in the S-protein to increase pathogenicity?ACS Pharmacol. Transl. Sci.3(5), 1023–1026 (2020).
  • Mahmoud DB , ShituZ, MostafaA. Drug repurposing of nitazoxanide: can it be an effective therapy for COVID-19?J. Genet. Eng. Biotechnol.18(1), 1–10 (2020).
  • Struyf T , DeeksJJ, DinnesJet al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease. Cochrane Database Syst. Rev.7(7), CD013665 (2020).
  • Pardi N , HoganMJ, PorterFW, WeissmanD. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discovery17(4), 261–279 (2018).
  • Turner JS , O'halloranJA, KalaidinaEet al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature596(7870), 109–113 (2021).
  • Lundstrom K . Viral vectors for COVID-19 vaccine development. Viruses13(2), 317 (2021).
  • Kalita P , PadhiAK, ZhangKYJ, TripathiT. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microb. Pathog.145, 104236 (2020).
  • World Health Organization . COVID-19 vaccines (2021). http://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines
  • Kordzadeh-Kermani E , KhaliliH, KarimzadehI. Pathogenesis, clinical manifestations and complications of coronavirus disease 2019 (COVID-19). Future Microbiol.15(13), 1287–1305 (2020).
  • Hoehl S , RabenauH, BergerAet al. Evidence of SARS-CoV-2 infection in returning travelers from Wuhan, China. N. Engl. J. Med.382(13), 1278–1280 (2020).
  • Billah MA , MiahMM, KhanMN. Reproductive number of coronavirus: a systematic review and meta-analysis based on global level evidence. PLoS ONE15(11), e0242128 (2020).
  • Wang M , CaoR, ZhangLet al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res.30(3), 269–271 (2020).
  • Yang SN , AtkinsonSC, WangCet al. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Res.177, 104760 (2020).
  • Meo SA , Al-KhlaiwiT, UsmaniAM, MeoAS, KlonoffDC, HoangTD. Biological and epidemiological trends in the prevalence and mortality due to outbreaks of novel coronavirus COVID-19. J. King Saud. Univ. Sci.32(4), 2495–2499 (2020).
  • Rothan HA , ByrareddySN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun.109, 102433 (2020).
  • Smith RD . Responding to global infectious disease outbreaks: lessons from SARS on the role of risk perception, communication and management. Soc. Sci. Med.63(12), 3113–3123 (2006).
  • Bai HX , HsiehB, XiongZet al. Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology296(2), e46–e54 (2020).
  • De Groot RJ , BakerSC, BaricRSet al. Commentary: Middle East Respiratory Syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group. J. Virol.87(14), 7790–7792 (2013).
  • Mubarak A , AlturaikiW, HemidaMG. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): infection, immunological response, and vaccine development. J. Immunol. Res.2019, 6491738 (2019).
  • Ghasemiyeh P , Mohammadi-SamaniS. The necessity of early anti-inflammatory therapy initiation in cases with mild-to-moderate COVID-19: a personal experience from an attending pharmacist and his resident. Acta Bio-medica: Atenei Parmensis92(3), e2021250–e2021250 (2021).
  • Hui DS , AzharEI, MadaniTAet al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan, China. J. Glob. Infect. Dis.91, 264–266 (2020).
  • Clerkin KJ , FriedJA, RaikhelkarJet al. COVID-19 and cardiovascular disease. Circulation141(20), 1648–1655 (2020).
  • Guo T , FanY, ChenMet al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol.5(7), 811–818 (2020).
  • Mao L , JinH, WangMet al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol.77(6), 683–690 (2020).
  • Filatov A , SharmaP, HindiF, EspinosaPS. Neurological complications of coronavirus disease (COVID-19): encephalopathy. Cureus12(3), e7352 (2020).
  • Wu P , DuanF, LuoCet al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol.138(5), 575–578 (2020).
  • Galván Casas C , CatalaA, CarreteroHernández Get al. Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. Br. J. Dermatol.183(1), 71–77 (2020).
  • Diaz-Guimaraens B , Dominguez-SantasM, Suarez-ValleAet al. Petechial skin rash associated with severe acute respiratory syndrome coronavirus 2 infection. JAMA Dermatol.156(7), 820–822 (2020).
  • Zu ZY , JiangMD, XuPPet al. Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology296(2), e15–e25 (2020).
  • Lippi G , PlebaniM. Laboratory abnormalities in patients with COVID-2019 infection. Clin. Chem. Lab. Med.58(7), 1131–1134 (2020).
  • Bai Y , YaoL, WeiTet al. Presumed asymptomatic carrier transmission of COVID-19. JAMA323(14), 1406–1407 (2020).
  • Sallard E , LescureF-X, YazdanpanahYet al. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res.178, 104791 (2020).
  • Huang C , WangY, LiXet al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet395(10223), 497–506 (2020).
  • Tillett RL , SevinskyJR, HartleyPDet al. Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect. Dis.21(1), 52–58 (2021).
  • Iwasaki A . What reinfections mean for COVID-19. Lancet Infect. Dis.21(1), 3–5 (2021).
  • Farjadian F , GhasemiA, GohariO, RoointanA, KarimiM, HamblinMR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine14(1), 93–126 (2019).
  • Farjadian F , RoointanA, Mohammadi-SamaniS, HosseiniM. Mesoporous silica nanoparticles: synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chem. Eng. J.359, 684–705 (2019).
  • Farjadian F , MoghoofeiM, MirkianiSet al. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work? Biotechnol. Adv. 36(4), 968–985 (2018).
  • Ahmadi S , RabieeN, BagherzadehMet al. Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today34, 100914 (2020).
  • Entezar-Almahdi E , Mohammadi-SamaniS, TayebiL, FarjadianF. Recent advances in designing 5-fluorouracil delivery systems: a stepping stone in the safe treatment of colorectal cancer. Int. J. Nanomed.15, 5445–5458 (2020).
  • Akbarian M , YousefiR, FarjadianF, UverskyVN. Insulin fibrillation: toward strategies for attenuating the process. Chem. Commun.56(77), 11354–11373 (2020).
  • Hosseini M , FarjadianF, MakhloufASH. Smart stimuli-responsive nano-sized hosts for drug delivery. In:Industrial Applications for Intelligent Polymers and Coatings. HosseiniM, MakhloufASH (Eds). Springer, Cham, Switzerland, doi:https://doi.org/10.1007/978-3-319-26893-4_1 (2016).
  • Du Y-X , ChenX-P. Favipiravir: pharmacokinetics and concerns about clinical trials for 2019-nCoV infection. Clin. Pharmacol. Ther.108(2), 242–247 (2020).
  • Furuta Y , GowenBB, TakahashiK, ShirakiK, SmeeDF, BarnardDL. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res.100(2), 446–454 (2013).
  • Oestereich L , LüdtkeA, WurrS, RiegerT, Muñoz-FontelaC, GüntherS. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res.105, 17–21 (2014).
  • Padhi AK , DandapatJ, UverskyVN, TripathiT. Structural proteomics-driven targeted design of favipiravir-binding site in the RdRp of SARS-CoV-2 unravels susceptible hotspots and resistance mutations. Preprints doi:10.1002/1873-3468.14182 (2021) ( Epub ahead of print).
  • Cai Q , YangM, LiuDet al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering6(10), 1192–1198 (2020).
  • Chen C , HuangJ, ChengZet al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. MedRxiv doi:https://doi.org/10.1101/2020.03.17.20037432 (2020) ( Epub ahead of print).
  • Corbett AH , LimML, KashubaAD. Kaletra (lopinavir/ritonavir). Ann. Pharmacother.36(7–8), 1193–1203 (2002).
  • Cvetkovic RS , GoaKL. Lopinavir/ritonavir. Drugs63(8), 769–802 (2003).
  • Cao B , WangY, WenDet al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N. Engl. J. Med.382, 1788–1799 (2020).
  • Agostini ML , AndresEL, SimsACet al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio9(2), e00221–18 (2018).
  • De Wit E , FeldmannF, CroninJet al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl Acad. Sci. USA117(12), 6771–6776 (2020).
  • Joe P , AshutoshMS, GajapathirajuC, AsmitaG. The journey of remdesivir: from Ebola to COVID-19. Drugs Context9, 4–14 (2020).
  • Savarino A , DiTrani L, DonatelliI, CaudaR, CassoneA. New insights into the antiviral effects of chloroquine. Lancet Infect. Dis.6(2), 67–69 (2006).
  • Padhi AK , ShuklaR, SaudagarP, TripathiT. High-throughput rational design of the remdesivir binding site in the RdRp of SARS-CoV-2: implications for potential resistance. iScience24(1), 101992 (2021).
  • Grein J , OhmagariN, ShinDet al. Compassionate use of remdesivir for patients with severe COVID-19. N. Engl. J. Med.382(24), 2327–2336 (2020).
  • Beigel JH , TomashekKM, DoddLEet al. Remdesivir for the treatment of COVID-19 – preliminary report. N. Engl. J. Med.383(19), 1813–1836 (2020).
  • Goldman JD , LyeDC, HuiDSet al. Remdesivir for 5 or 10 days in patients with severe COVID-19. N. Engl. J. Med.383(19), 1827–1837 (2020).
  • Proskurnina EV , IzmailovDY, SozarukovaMM, ZhuravlevaTA, LenevaIA, PoromovAA. Antioxidant potential of antiviral drug umifenovir. Molecules25(7), 1577 (2020).
  • Villalaín J . Membranotropic effects of arbidol, a broad anti-viral molecule, on phospholipid model membranes. J. Phys. Chem. B.114(25), 8544–8554 (2010).
  • Lian N , XieH, LinS, HuangJ, ZhaoJ, LinQ. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clin. Microbiol. Infect.26(7), 917–921 (2020).
  • Zhu Z , LuZ, XuTet al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J. Infect.81(1), e21–e23 (2020).
  • Gautret P , LagierJ-C, ParolaPet al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents56(1), 105949 (2020).
  • Borba MGS , ValFFA, SampaioVSet al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw.3(4), e208857 (2020).
  • Arshad S , KilgoreP, ChaudhryZSet al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int. J. Infect. Dis.97, 396–403 (2020).
  • Padhi AK , SealA, KhanJM, AhamedM, TripathiT. Unraveling the mechanism of arbidol binding and inhibition of SARS-CoV-2: insights from atomistic simulations. Eur. J. Pharmacol.894, 173836 (2021).
  • Liu J , CaoR, XuMet al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov.6(1), 1–4 (2020).
  • Kouznetsova J , SunW, Martínez-RomeroCet al. Identification of 53 compounds that block Ebola virus-like particle entry via a repurposing screen of approved drugs. Emerg. Microbes Infect.3(1), 1–7 (2014).
  • Andreani J , LeBideau M, DuflotIet al. In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microb. Pathog.145, 104228 (2020).
  • Kanoh S , RubinBK. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin. Microbiol. Rev.23(3), 590–615 (2010).
  • Lee N , WongC-K, ChanMCet al. Anti-inflammatory effects of adjunctive macrolide treatment in adults hospitalized with influenza: a randomized controlled trial. Antiviral Res.144, 48–56 (2017).
  • Lim J , JeonS, ShinH-Yet al. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J. Korean Med. Sci.35(6), e79 (2020).
  • Rochwerg B , AgarwalA, ZengLet al. Remdesivir for severe COVID-19: a clinical practice guideline. BMJ370, m2924 (2020).
  • Damle B , VourvahisM, WangE, LeaneyJ, CorriganB. Clinical pharmacology perspectives on the antiviral activity of azithromycin and use in COVID-19. Clin. Pharmacol. Ther.108(2), 201–211 (2020).
  • Cortegiani A , IngogliaG, IppolitoM, GiarratanoA, EinavS. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care57, 279–283 (2020).
  • Wang K , ChenW, ZhangZet al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther.5(1), 1–10 (2020).
  • Kaptein SJ , JacobsS, LangendriesLet al. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity. Proc. Natl Acad. Sci. USA117(43), 26955–26965 (2020).
  • Sayad B , SobhaniM, KhodarahmiR. Sofosbuvir as repurposed antiviral drug against COVID-19: why were we convinced to evaluate the drug in a registered/approved clinical trial?Arch. Med. Res.51(6), 577–581 (2020).
  • Vankadari N . Arbidol: a potential antiviral drug for the treatment of SARS-CoV-2 by blocking the trimerization of viral spike glycoprotein?Int. J. Antimicrob. Agents56(2), 105998 (2020).
  • Cortegiani A , IngogliaG, IppolitoM, GiarratanoA, EinavS. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care57, 279–283 (2020).
  • Sultana J , CutroneoPM, CrisafulliS, PuglisiG, CaramoriG, TrifiròG. Azithromycin in COVID-19 patients: pharmacological mechanism, clinical evidence and prescribing guidelines. Drug Saf.43(8), 691–698 (2020).
  • Anderson VR , CurranMP. Nitazoxanide. Drugs67(13), 1947–1967 (2007).
  • Rossignol J-F . Nitazoxanide, a new drug candidate for the treatment of Middle East Respiratory Syndrome coronavirus. J. Infect. Public Health9(3), 227–230 (2016).
  • Kelleni M . Nitazoxanide/azithromycin combination for COVID-19: a suggested new protocol for COVID-19 early management. Pharmacol. Res.157, 104874 (2020).
  • Yavuz S , ÜnalS. Antiviral treatment of COVID-19. Turk. J. Med. Sci.50(SI-1), 611–619 (2020).
  • Calderón JM , ZerónHM, PadmanabhanS. Treatment with hydroxychloroquine vs hydroxychloroquine + nitazoxanide in COVID-19 patients with risk factors for poor prognosis: a structured summary of a study protocol for a randomised controlled trial. Trials21(1), 1–3 (2020).
  • Tay M , FraserJE, ChanWet al. Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor ivermectin. Antiviral Res.99(3), 301–306 (2013).
  • Wagstaff KM , SivakumaranH, HeatonSM, HarrichD, JansDA. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem. J.443(3), 851–856 (2012).
  • Varghese FS , KaukinenP, GläskerSet al. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antiviral Res.126, 117–124 (2016).
  • Barrows NJ , CamposRK, PowellSTet al. A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe20(2), 259–270 (2016).
  • Caly L , DruceJD, CattonMG, JansDA, WagstaffKM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res.178, 104787 (2020).
  • Guzzo CA , FurtekCI, PorrasAGet al. Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. J. Clin. Pharmacol.42(10), 1122–1133 (2002).
  • Menez C , SutraJ-F, PrichardR, LespineA. Relative neurotoxicity of ivermectin and moxidectin in Mdr1ab (-/-) mice and effects on mammalian GABA (A) channel activity. PLoS Negl. Trop. Dis.6(11), e1883 (2012).
  • Lepist E-I , PhanTK, RoyAet al. Cobicistat boosts the intestinal absorption of transport substrates, including HIV protease inhibitors and GS-7340, in vitro. Antimicrob. Agents Chemother.56(10), 5409–5413 (2012).
  • Drewe J , GutmannH, FrickerG, TörökM, BeglingerC, HuwylerJ. HIV protease inhibitor ritonavir: a more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC 833. Biochem. Pharmacol.57(10), 1147–1152 (1999).
  • Patrì A , FabbrociniG. Hydroxychloroquine and ivermectin: a synergistic combination for COVID-19 chemoprophylaxis and treatment?J. Am. Acad. Dermatol.82(6), e221 (2020).
  • Nouchi A , MonselG, Lafon-DesmursBet al. Epstein–Barr virus-related acute genital ulcer successfully treated with colchicine. Acta Derm. Vener.98(1–2), 134–135 (2018).
  • Arrieta O , Rodriguez-DiazJL, Rosas-CamargoVet al. Colchicine delays the development of hepatocellular carcinoma in patients with hepatitis virus-related liver cirrhosis. Cancer107(8), 1852–1858 (2006).
  • Floreani A , LobelloS, BrunettoM, AneloniV, ChiaramonteM. Colchicine in chronic hepatitis B: a pilot study. Aliment. Pharmacol. Ther.12(7), 653–656 (1998).
  • Boulis NM , WillmarthNE, SongDK, FeldmanEL, ImperialeMJ. Intraneural colchicine inhibition of adenoviral and adeno-associated viral vector remote spinal cord gene delivery. J. Neurosurg.52(2), 381–387 (2003).
  • Bosem M , HarrisR, AthertonS. Optic nerve involvement in viral spread in herpes simplex virus type 1 retinitis. Invest. Ophthalmol. Vis. Sci.31(9), 1683–1689 (1990).
  • Leung YY , HuiLLY, KrausVB. Colchicine – update on mechanisms of action and therapeutic uses. Semin. Arthritis Rheum.45(3), 341–350 (2015).
  • Akalin E , AzziY, BartashRet al. COVID-19 and kidney transplantation. N. Engl. J. Med.382(25), 2475–2477 (2020).
  • Mehta P , McauleyDF, BrownMet al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet395(10229), 1033 (2020).
  • Kuba K , ImaiY, RaoSet al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med.11(8), 875–879 (2005).
  • Becatti M , EmmiG, SilvestriEet al. Neutrophil activation promotes fibrinogen oxidation and thrombus formation in Behçet disease. Circulation133(3), 302–311 (2016).
  • Tardif J-C , KouzS, WatersDDet al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med.381(26), 2497–2505 (2019).
  • Toniati P , PivaS, CattaliniMet al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: a single center study of 100 patients in Brescia, Italy. Autoimmun. Rev.19(7), 102568 (2020).
  • Piantoni S , ColomboE, AiròPet al. The rationale for the use of colchicine in COVID-19: comments on the letter by Cumhur Cure M et al. Clin. Rheumatol.39(8), 2489–2490 (2020).
  • Cure MC , KucukA, CureE. Colchicine may not be effective in COVID-19 infection; it may even be harmful?Clin. Rheumatol.39(7), 2101–2102 (2020).
  • Fang L , KarakiulakisG, RothM. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?Lancet Respir. Med.8(4), e21 (2020).
  • Ip A , ParikhK, ParrilloJEet al. Hypertension and renin-angiotensin-aldosterone system inhibitors in patients with COVID-19. medRxiv doi:https://doi.org/10.1101/2020.04.24.20077388 (2020) ( Epub ahead of print).
  • Moore N , CarletonB, BlinP, Bosco-LevyP, DrozC. Does ibuprofen worsen COVID-19?Drug Saf.43, 611–614 (2020).
  • Trifirò G , CrisafulliS, AndòG, RacagniG, DragoF. Should patients receiving ACE inhibitors or angiotensin receptor blockers be switched to other antihypertensive drugs to prevent or improve prognosis of novel coronavirus disease 2019 (COVID-19)?Drug Saf.43, 507–509 (2020).
  • Kuster GM , PfisterO, BurkardTet al. SARS-CoV2: should inhibitors of the renin–angiotensin system be withdrawn in patients with COVID-19? Eur. Heart J. 41(19), 1801–1803 (2020).
  • Capuano A , ScaglioneF, BerrinoLet al. Official statement of the section of clinical pharmacology of Italian Society of Pharmacology on non-steroidal anti-inflammatory drugs (NSAIDs) and the increased risk of complications during infections. Pharm. Adv.2(10), 36118 (2020).
  • Castro VM , RossRA, McbrideSM, PerlisRH. Identifying common pharmacotherapies associated with reduced COVID-19 morbidity using electronic health records. medRxiv doi:https://doi.org/10.1101/2020.04.11.20061994 (2020) ( Epub ahead of print).
  • Dilly S , FotsoFotso AL, LejalNet al. From naproxen repurposing to naproxen analogues and their antiviral activity against influenza A virus. J. Med. Chem.61(16), 7202–7217 (2018).
  • Lejal N , TruchetS, BechorEet al. Turning off NADPH oxidase-2 by impeding p67phox activation in infected mouse macrophages reduced viral entry and inflammation. Biochim. Biophys. Acta. Gen. Sub.1862(6), 1263–1275 (2018).
  • Terrier O , DillyS, PizzornoM-Aet al. Broad-spectrum antiviral activity of naproxen: from influenza A to SARS-CoV-2 coronavirus. bioRxiv doi:https://doi.org/10.1101/2020.04.30.069922 (2020) ( Epub ahead of print).
  • Lejal N , TarusB, BouguyonEet al. Structure-based discovery of the novel antiviral properties of naproxen against the nucleoprotein of influenza A virus. Antimicrob. Agents Chemother.57(5), 2231–2242 (2013).
  • Berk M , MalhiGS, GrayLJ, DeanOM. The promise of N-acetylcysteine in neuropsychiatry. Trend. Pharmacol. Sci.34(3), 167–177 (2013).
  • De Flora S , BalanskyR, LaMaestra S. Rationale for the use of N-acetylcysteine in both prevention and adjuvant therapy of COVID-19. FASEB J.34(10), 13185–13193 (2020).
  • Aslamkhan AG , HanY-H, YangX-P, ZalupsRK, PritchardJB. Human renal organic anion transporter 1-dependent uptake and toxicity of mercuric-thiol conjugates in Madin-Darby canine kidney cells. Mol. Pharmacol.63(3), 590–596 (2003).
  • Nasi A , McardleS, GaudernackGet al. Reactive oxygen species as an initiator of toxic innate immune responses in retort to SARS-CoV-2 in an ageing population, consider N-acetylcysteine as early therapeutic intervention. Toxicol. Rep.7, 768–771 (2020).
  • Polonikov A . Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients. ACS Infect. Dis.6(7), 1558–1562 (2020).
  • Gulati K , RaiN, ChaudharyS, RayA. Nutraceuticals in respiratory disorders. In: Nutraceuticals. GuptaRC (Ed.). Elsevier, 75–86 (2016).
  • Pospıšilová M , PolášekM, JoklV. Determination of ambroxol or bromhexine in pharmaceuticals by capillary isotachophoresis. J. Pharmaceut. Biomed. Anal.24(3), 421–428 (2001).
  • Tripathi K . Essentials of medical pharmacology. JP Medical Ltd (2013).
  • Brogan T , RyleyH, HuttH, NealeL. The effect of bromhexine on sputum from patients with chronic bronchitis and asthma. Br. J. Dis. Chest68, 28–34 (1974).
  • Christensen F , KjerJ, RyskjaerS, Arseth-HansenP. Bromhexine in chronic bronchitis. Br. Med. J.4(5727), 117 (1970).
  • Deretic V , TimminsGS. Enhancement of lung levels of antibiotics by ambroxol and bromhexine. Expert Opin. Drug Metab. Toxicol.15(3), 213–218 (2019).
  • Shen LW , MaoHJ, WuYL, TanakaY, ZhangW. TMPRSS2: a potential target for treatment of influenza virus and coronavirus infections. Biochimie142, 1–10 (2017).
  • Maggio R , CorsiniGU. Repurposing the mucolytic cough suppressant and TMPRSS2 protease inhibitor bromhexine for the prevention and management of SARS-CoV-2 infection. Pharmacol. Res.157, 104837 (2020).
  • Tay MZ , PohCM, RéniaL, MacaryPA, NgLF. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol.20, 363–374 (2020).
  • Mcgonagle D , O'donnellJS, SharifK, EmeryP, BridgewoodC. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol.2(7), e437–e445 (2020).
  • King A , VailA, O'learyCet al. Anakinra in COVID-19: important considerations for clinical trials. Lancet Rheumatol.2(7), e437–e445 (2020).
  • Owji H , NegahdaripourM, HajighahramaniN. Immunotherapeutic approaches to curtail COVID-19. Int. Immunpharmacol.88, 106924 (2020).
  • Huet T , BeaussierH, VoisinOet al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol.2(7), e393–e400 (2020).
  • Aouba A , BaldolliA, GeffrayLet al. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: case series. Ann. Rheum. Dis.79(10), 1381–1382 (2020).
  • Cavalli G , DeLuca G, CampochiaroCet al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol.2(6), e325–e331 (2020).
  • Ji P , ChenJ, GoldingAet al. Immunomodulatory therapeutic proteins in COVID-19: current clinical development and clinical pharmacology considerations. J. Clin. Pharmacol.60(10), 1275–1293 (2020).
  • Österlund P , VeckmanV, SirénJet al. Gene expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected human myeloid dendritic cells. J. Virol.79(15), 9608–9617 (2005).
  • Lin F-C , YoungHA. Interferons: success in anti-viral immunotherapy. Cytokine Growth Factor Rev.25(4), 369–376 (2014).
  • Dastan F , NadjiSA, SaffaeiAet al. Subcutaneous administration of interferon beta-1a for COVID-19: a non-controlled prospective trial. Int. Immunopharmacol.85, 106688 (2020).
  • Bagheri A , MoezziSMI, MosaddeghiPet al. Interferon-inducer antivirals: potential candidates to combat COVID-19. Int. Immunopharmacol.91, 107245 (2021).
  • Pérez-Olmeda M , NúñezM, RomeroMet al. Pegylated IFN-α2b plus ribavirin as therapy for chronic hepatitis C in HIV-infected patients. AIDS17(7), 1023–1028 (2003).
  • Sokal EM , ConjeevaramHS, RobertsEAet al. Interferon alfa therapy for chronic hepatitis B in children: a multinational randomized controlled trial. Gastroenterology114(5), 988–995 (1998).
  • Jakimovski D , KolbC, RamanathanM, ZivadinovR, Weinstock-GuttmanB. Interferon β for multiple sclerosis. Cold Spring Harb. Perspect. Med.8(11), a032003 (2018).
  • Quesada JR , ReubenJ, ManningJT, HershEM, GuttermanJU. Alpha interferon for induction of remission in hairy-cell leukemia. N. Engl. J. Med.310(1), 15–18 (1984).
  • Wheatley K , IvesN, EggermontAet al. Interferon-α as adjuvant therapy for melanoma: an individual patient data meta-analysis of randomised trials. J. Clin. Oncol.25(Suppl. 18), 8526–8526 (2007).
  • Bunn PA Jr , IhdeDC, FoonKA. The role of recombinant interferon alfa-2a in the therapy of cutaneous t-cell lymphomas. Cancer57(S8), 1689–1695 (1986).
  • Hung IF-N , LungK-C, TsoEY-Ket al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet395(10238), 1695–1704 (2020).
  • Isidori A , ArnaldiG, BoscaroMet al. COVID-19 infection and glucocorticoids: update from the Italian Society of Endocrinology Expert Opinion on steroid replacement in adrenal insufficiency. J. Endocrinol. Invest.43(8), 1141–1147 (2020).
  • Shi Y , WangY, ShaoCet al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ.27(5), 1451–1454 (2020).
  • Rassy D , BárcenaB, Pérez-OsorioINet al. Intranasal methylprednisolone effectively reduces neuroinflammation in mice with experimental autoimmune encephalitis. J. Neuropathol. Exp. Neur.79(2), 226–237 (2020).
  • Zha L , LiS, PanLet al. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Med. J. Aust.212(9), 416–420 (2020).
  • Ho C-M , HoS-T, WangJ-J, TsaiS-K, ChaiC-Y. Dexamethasone has a central antiemetic mechanism in decerebrated cats. Anesth. Analg.99(3), 734–739 (2004).
  • Giles AJ , HutchinsonM-KN, SonnemannHMet al. Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy. J. Immunother. Cancer6(1), 1–13 (2018).
  • Theoharides T , ContiP. Dexamethasone for COVID-19? Not so fast. J. Biol. Regul. Homeost. Agents34(3), 10.23812 (2020).
  • Johnson RM , VinetzJM. Dexamethasone in the management of COVID-19. Br. Med. J.370, m2648 (2020).
  • Horby P , LimWS, EmbersonJRet al. Dexamethasone in hospitalized patients with COVID-19 – preliminary report. N. Engl. J. Med.384(8), 693–704 (2020).
  • Gallagher C . The mechanism of action of hydrocortisone on mitochondrial metabolism. Biochem. J.74(1), 38–43 (1960).
  • Pudrith C , KimYH, MartinDet al. Effect of topical treatment of various glucocorticoids on lipopolysaccharide induced otitis media with effusion in chinchilla. Int. J. Pediatr. Otorhinolaryngol.74(11), 1273–1275 (2010).
  • Prete A , TaylorAE, BancosIet al. Prevention of adrenal crisis: cortisol responses to major stress compared to stress dose hydrocortisone delivery. J. Clin. Endocrinol. Metab.105(7), 2262–2274 (2020).
  • Almeida MQ , MendoncaBB. Adrenal insufficiency and glucocorticoid use during the COVID-19 pandemic. Clinics75, e2022 (2020).
  • Reynolds NA , PerryCM, KeatingGM. Budesonide/formoterol. Drugs64(4), 431–441 (2004).
  • Health NIO . Global Initiative for Asthma. Global strategy for asthma management and prevention. NHLBI/WHO work shop report (1995).
  • Halpin DM , SinghD, HadfieldRM. Inhaled corticosteroids and COVID-19: a systematic review and clinical perspective. Eur. Respir. J.55(5), 2001009 (2020).
  • Wu Z , McgooganJM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA323(13), 1239–1242 (2020).
  • Szafranski W , CukierA, RamirezAet al. Efficacy and safety of budesonide/formoterol in the management of chronic obstructive pulmonary disease. Eur. Respir. J.21(1), 74–81 (2003).
  • Yang M , ZhangY, ChenH, LinJ, ZengJ, XuZ. Inhaled corticosteroids and risk of upper respiratory tract infection in patients with asthma: a meta-analysis. Infection47(3), 377–385 (2019).
  • Lipworth B , KuoCR, LipworthS, ChanR. Inhaled corticosteroids and COVID-19. Am. J. Respir. Crit. Care Med.202(6), 899–900 (2020).
  • Ingwersen J , AktasO, KueryP, KieseierB, BoykoA, HartungH-P. Fingolimod in multiple sclerosis: mechanisms of action and clinical efficacy. Clin. Immunol.142(1), 15–24 (2012).
  • Sanders JM , MonogueML, JodlowskiTZ, CutrellJB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA323(18), 1824–1836 (2020).
  • Fox RI , HerrmannML, FrangouCGet al. Mechanism of action for leflunomide in rheumatoid arthritis. Clin. Immunol.93(3), 198–208 (1999).
  • Xiao K , HouF, HuangX, LiB, QianZR, XieL. Mesenchymal stem cells: current clinical progress in ARDS and COVID-19. Stem Cell Res. Ther.11(1), 305 (2020).
  • Amirshahrokhi K . Anti-inflammatory effect of thalidomide in paraquat-induced pulmonary injury in mice. Int. Immunopharmacol.17(2), 210–215 (2013).
  • Dong X , LiX, LiM, ChenM, FanQ, WeiW. Antiinflammation and antioxidant effects of thalidomide on pulmonary fibrosis in mice and human lung fibroblasts. Inflammation40(6), 1836–1846 (2017).
  • Dastan F , TabarsiP, MarjaniMet al. Thalidomide against coronavirus disease 2019 (COVID-19): a medicine with a thousand faces. Iran J. Pharmaceut. Res.19(1), 1–2 (2020).
  • Zhu H , ShiX, JuD, HuangH, WeiW, DongX. Anti-inflammatory effect of thalidomide on H1N1 influenza virus-induced pulmonary injury in mice. Inflammation37(6), 2091–2098 (2014).
  • Peng H , GongT, HuangXet al. A synergistic role of convalescent plasma and mesenchymal stem cells in the treatment of severely ill COVID-19 patients: a clinical case report. Stem Cell Res. Ther.11(1), 1–6 (2020).
  • Sebba A . Tocilizumab: the first interleukin-6-receptor inhibitor. Am. J. Health-Syst. Pharm.65(15), 1413–1418 (2008).
  • Khiali S , KhaniE, Entezari-MalekiT. A comprehensive review of tocilizumab in COVID-19 acute respiratory distress syndrome. J. Clin. Pharmacol.60(9), 1131–1146 (2020).
  • Alzghari SK , AcuñaVS. Supportive treatment with tocilizumab for COVID-19: a systematic review. J. Clin. Virol.127, 104380 (2020).
  • Jain S , SharmaSK. Rational use of tocilizumab in COVID-19. Ann. Rheum. Dis. Doi:10.1136/annrheumdis-2020-218519. (2020) ( Epub ahead of print).
  • Fajgenbaum DC , JuneCH. Cytokine storm. N. Engl. J. Med.383(23), 2255–2273 (2020).
  • Fu B , XuX, WeiH. Why tocilizumab could be an effective treatment for severe COVID-19?J. Transl. Med.18(1), 164 (2020).
  • Xu X , HanM, LiTet al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl Acad. Sci.117(20), 10970–10975 (2020).
  • Zhang S , LiL, ShenA, ChenY, QiZ. Rational use of tocilizumab in the treatment of novel coronavirus pneumonia. Clin. Drug Invest.40(6), 511–518 (2020).
  • Samaee H , MohsenzadeganM, AlaS, MaroufiSS, MoradimajdP. Tocilizumab for treatment patients with COVID-19: recommended medication for novel disease. Int. Immunopharmacol.89, 107018 (2020).
  • Scott LJ . Sarilumab: first global approval. Drugs77(6), 705–712 (2017).
  • Della-Torre E , CampochiaroC, CavalliGet al. Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: an open-label cohort study. Ann. Rheum. Dis.79(10), 1277–1285 (2020).
  • Crisafulli S , IsgròV, LaCorte L, AtzeniF, TrifiròG. Potential role of anti-interleukin (IL)-6 drugs in the treatment of COVID-19: rationale, clinical evidence and risks. BioDrugs34(4), 415–422 (2020).
  • Hu S , LiangS, GuoHet al. Comparison of the inhibition mechanisms of adalimumab and infliximab in treating tumor necrosis factor α-associated diseases from a molecular view. J. Biolog. Chem.288(38), 27059–27067 (2013).
  • Wang D , ChenW, LiHet al. Folate-receptor mediated pH/reduction-responsive biomimetic nanoparticles for dually activated multi-stage anticancer drug delivery. Int. J. Pharmaceut.585, 119456 (2020).
  • Rizk JG , Kalantar-ZadehK, MehraMR, LavieCJ, RizkY, ForthalDN. Pharmaco-immunomodulatory therapy in COVID-19. Drugs80, 1267–1292 (2020).
  • Tursi A , AngaranoG, MonnoLet al. COVID-19 infection in Crohn's disease under treatment with adalimumab. Gut69(7), 1364–1365 (2020).
  • Rosa SGV , SantosWC. Clinical trials on drug repositioning for COVID-19 treatment. Rev. Panam. Salud. Pública.44, e40 (2020).
  • Scavone C , BruscoS, BertiniMet al. Current pharmacological treatments for COVID-19: what's next? Br. J. Pharmacol. 177(21), 4813–4824 (2020).
  • Medford A , MillarA. Vascular endothelial growth factor (VEGF) in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): paradox or paradigm?Thorax61(7), 621–626 (2006).
  • Ellis LM . Mechanisms of action of bevacizumab as a component of therapy for metastatic colorectal cancer. Presented at: Semin. Oncol.33, S1–S7 (2006).
  • Lee JW , SicreDe Fontbrune F, WongLee Lee Let al. Ravulizumab (ALXN1210) vs eculizumab in adult patients with PNH naive to complement inhibitors: the 301 study. Blood133(6), 530–539 (2019).
  • Gavriilaki E , BrodskyRA. Severe COVID-19 infection and thrombotic microangiopathy: success doesn't come easily. Br. J. Haematol.189(6), e227–e230 (2020).
  • Java A , ApicelliAJ, LiszewskiMKet al. The complement system in COVID-19: friend and foe? JCI Insight 5(15), e140711 (2020).
  • Jodele S , KöhlJ. Tackling COVID-19 infection through complement-targeted immunotherapy. Br. J. Pharmacol.178(14), 2832–2848 (2020).
  • Smith K , PaceA, OrtizS, KazaniS, RottinghausS. A phase 3 open-label, randomized, controlled study to evaluate the efficacy and safety of intravenously administered ravulizumab compared with best supportive care in patients with COVID-19 severe pneumonia, acute lung injury, or acute respiratory distress syndrome: a structured summary of a study protocol for a randomised controlled trial. Trials21(1), 1–4 (2020).
  • Crotti C , AgapeE, BeccioliniA, BiggioggeroM, FavalliEG. Targeting granulocyte-monocyte colony-stimulating factor signaling in rheumatoid arthritis: future prospects. Drugs79(16), 1741–1755 (2019).
  • Bonaventura A , VecchiéA, WangTSet al. Targeting GM-CSF in COVID-19 pneumonia: rationale and strategies. Front. Immunol.11, 1625 (2020).
  • Lang FM , LeeKM-C, TeijaroJR, BecherB, HamiltonJA. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat. Rev. Immunol.20(8), 507–514 (2020).
  • Temesgen Z , AssiM, ShwetaFet al. GM-CSF neutralization with lenzilumab in severe COVID-19 pneumonia: a case–control study. Mayo Clin. Proc.95(11), 2382–2394 (2020).
  • Connors JM , LevyJH. COVID-19 and its implications for thrombosis and anticoagulation. Blood J. Am. Soc. Hematol.135(23), 2033–2040 (2020).
  • Subramaniam S , JurkK, HobohmLet al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood129(16), 2291–2302 (2017).
  • Iba T , LevyJ. Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J. Thromb. Haemost.16(2), 231–241 (2018).
  • Iba T , LevyJ. Derangement of the endothelial glycocalyx in sepsis. J. Thromb. Haemost.17(2), 283–294 (2019).
  • Hirsh J , AnandSS, HalperinJL, FusterV. Mechanism of action and pharmacology of unfractionated heparin. Arterioscler. Thromb. Vasc. Biol.21(7), 1094–1096 (2001).
  • Marone EM , RinaldiLF. Upsurge of deep venous thrombosis in patients affected by COVID-19: preliminary data and possible explanations. J. Vasc. Surg. Venous Lymphat. Disord.8(4), 694–695 (2020).
  • Demelo-Rodríguez P , Cervilla-MuñozE, Ordieres-OrtegaLet al. Incidence of asymptomatic deep vein thrombosis in patients with COVID-19 pneumonia and elevated D-dimer levels. Thromb. Res.192, 23–26 (2020).
  • Chen S , ZhangD, ZhengT, YuY, JiangJ. DVT incidence and risk factors in critically ill patients with COVID-19. J. Thromb.51(1), 33–39 (2020).
  • Liu J , LiJ, ArnoldK, PawlinskiR, KeyNS. Using heparin molecules to manage COVID-2019. Res. Pract. Thromb. Haemost.4(4), 518–523 (2020).
  • Thachil J . The versatile heparin in COVID-19. J. Thromb. Haemost.18(5), 1020–1022 (2020).
  • Iba T , HashiguchiN, NagaokaI, TabeY, KadotaK, SatoK. Heparins attenuated histone-mediated cytotoxicity in vitro and improved the survival in a rat model of histone-induced organ dysfunction. Intensive Care Med. Exp.3(1), 36 (2015).
  • Samama MM . The mechanism of action of rivaroxaban – an oral, direct Factor Xa inhibitor – compared with other anticoagulants. Thromb. Res.127(6), 497–504 (2011).
  • Di Tano G , MoschiniL, LoffiM, TestaS, DanziGB. Late pulmonary embolism after COVID-19 pneumonia despite adequate rivaroxaban treatment. Eur. J. Case Rep. Intern. Med.7(7), 001790 (2020).
  • Cattaneo M , BertinatoEM, BirocchiSet al. Pulmonary embolism or pulmonary thrombosis in COVID-19? Is the recommendation to use high-dose heparin for thromboprophylaxis justified? Thromb. Haemost. 120(8), 1230–1232 (2020).
  • Pannucci CJ , FlemingKI, HoloydaK, MoultonL, PrazakAM, VargheseTKJr. Enoxaparin 40 mg per day is inadequate for venous thromboembolism prophylaxis after thoracic surgical procedure. Ann. Thorac. Surg.106(2), 404–411 (2018).
  • Brotons C , BenamouzigR, FilipiakKJ, LimmrothV, BorghiC. A systematic review of aspirin in primary prevention: is it time for a new approach?Am. J. Cardiovasc. Drugs15(2), 113–133 (2015).
  • Mekaj YH , DaciFT, MekajAY. New insights into the mechanisms of action of aspirin and its use in the prevention and treatment of arterial and venous thromboembolism. Ther. Clin. Risk Manag.11, 1449 (2015).
  • Mohamed-Hussein AA , AlyKM, IbrahimM. Should aspirin be used for prophylaxis of COVID-19-induced coagulopathy?Med. Hypotheses144, 109975 (2020).
  • Eisenhut M , ShinJI. Pathways in the pathophysiology of coronavirus 19 lung disease accessible to prevention and treatment. Front. Physiol.11, 872 (2020).
  • Erlich JM , TalmorDS, Cartin-CebaR, GajicO, KorDJ. Prehospitalization antiplatelet therapy is associated with a reduced incidence of acute lung injury: a population-based cohort study. Chest139(2), 289–295 (2011).
  • Kor DJ , ErlichJ, GongMNet al. Association of pre-hospitalization aspirin therapy and acute lung injury: results of a multicenter international observational study of at-risk patients. Crit. Care Med.39(11), 2393 (2011).
  • O'neal HR Jr , KoyamaT, KoehlerEAet al. Prehospital statin and aspirin use and the prevalence of severe sepsis and acute lung injury/acute respiratory distress syndrome. Crit. Care Med.39(6), 1343–1350 (2011).
  • Davies JT , DelfinoSF, FeinbergCEet al. Current and emerging uses of statins in clinical therapeutics: a review. Lipid Insights9, LPI. S37450 (2016).
  • Stancu C , SimaA. Statins: mechanism of action and effects. J. Cell Mol. Med.5(4), 378–387 (2001).
  • Olszewska-Parasiewicz J , SzarpakŁ, RogulaSet al. Statins in COVID-19 therapy. Life11(6), 565 (2021).
  • Rodrigues-Diez RR , Tejera-MuñozA, Marquez-ExpositoLet al. Statins: could an old friend help in the fight against COVID-19? Br. J. Pharmacol. 177(21), 4873–4886 (2020).
  • Plosker GL , Lyseng-WilliamsonKA. Clopidogrel. Drugs67(4), 613–646 (2007).
  • Yu H-R , WeiY-Y, MaJ-G, GengX-Y. Beneficial effects of combined administration of clopidogrel and aspirin on the levels of proinflammatory cytokines, cardiac function, and prognosis in ST-segment elevation myocardial infarction: a comparative study. Medicine97(45), e13010 (2018).
  • Jiang X-L , SamantS, LeskoLJ, SchmidtS. Clinical pharmacokinetics and pharmacodynamics of clopidogrel. Clin. Pharmacokinet.54(2), 147–166 (2015).
  • Bikdeli B , MadhavanMV, JimenezDet al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J. Am. Coll. Cardiol.75(23), 2950–2973 (2020).
  • Ranucci M , BallottaA, DiDedda Uet al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J. Thromb. Haemost.18(7), 1747–1751 (2020).
  • Viecca M , RadovanovicD, ForleoGB, SantusP. Enhanced platelet inhibition treatment improves hypoxemia in patients with severe COVID-19 and hypercoagulability. A case control, proof of concept study. Pharmacol. Res.158, 104950 (2020).
  • Iqbal N , IqbalN. Imatinib: a breakthrough of targeted therapy in cancer. Chemother. Res. Pract.2014, 9 (2014).
  • Radford IR . Imatinib. Novartis. Curr. Opin. Investig. Drugs3(3), 492–499 (2002).
  • Iram H , IramF, HusainA. A review on imatinib: a wonder drug in oncology. Adv. Biomed. Pharm.3, 227–244 (2016).
  • Morales-Ortega A , Bernal-BelloD, Llarena-BarrosoCet al. Imatinib for COVID-19: a case report. Clin. Immunol.218, 108518 (2020).
  • Rizzo AN , SammaniS, EsquincaAEet al. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol.309(11), L1294–L1304 (2015).
  • Herman SE , MontravetaA, NiemannCUet al. The Bruton tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia. Clin. Cancer Res.23(11), 2831–2841 (2017).
  • Wu M , JiJ-J, ZhongLet al. Thymosin α1 therapy in critically ill patients with COVID-19: a multicenter retrospective cohort study. Int. Immunopharmacol.88, 106873 (2020).
  • Isaac K , MatoAR. Acalabrutinib and its therapeutic potential in the treatment of chronic lymphocytic leukemia: a short review on emerging data. Cancer Manag. Res.12, 2079 (2020).
  • Gorham J , MoreauA, CorazzaFet al. Interleukine-6 in critically ill COVID-19 patients: a retrospective analysis. PLoS ONE15(12), e0244628 (2020).
  • Roschewski M , LionakisMS, SharmanJPet al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci. Immunol.5(48), eabd0110 (2020).
  • Mcgee MC , AugustA, HuangW. BTK/ITK dual inhibitors: modulating immunopathology and lymphopenia for COVID-19 therapy. J. Leukoc. Biol.109(1), 49–53 (2021).
  • Talpaz M , KiladjianJ-J. Fedratinib, a newly approved treatment for patients with myeloproliferative neoplasm-associated myelofibrosis. Leukemia35, 1–17 (2021).
  • Mullally A , HoodJ, HarrisonC, MesaR. Fedratinib in myelofibrosis. Blood Adv.4(8), 1792–1800 (2020).
  • Stebbing J , PhelanA, GriffinIet al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis.20(4), 400–402 (2020).
  • Rojas M , RodriguezY, MonsalveDMet al. Convalescent plasma in COVID-19: possible mechanisms of action. Autoimmun. Rev.19(7), 102554 (2020).
  • Roback JD , GuarnerJ. Convalescent plasma to treat COVID-19: possibilities and challenges. JAMA323(16), 1561–1562 (2020).
  • Gharbharan A , JordansCC, GeurtsvankesselCet al. Effects of potent neutralizing antibodies from convalescent plasma in patients hospitalized for severe SARS-CoV-2 infection. Nat. Commun.12(1), 1–12 (2021).
  • Hegerova L , GooleyTA, SweerusKAet al. Use of convalescent plasma in hospitalized patients with COVID-19: case series. Blood J. Am. Soc. Hematol.136(6), 759–762 (2020).
  • Tanne JH . COVID-19: FDA approves use of convalescent plasma to treat critically ill patients. BMJ368, m1256 (2020).
  • Shao Z , FengY, ZhongLet al. Clinical efficacy of intravenous immunoglobulin therapy in critical patients with COVID-19: a multicenter retrospective cohort study. Clin. Transl. Immunol.9(10), e1192 (2020).
  • Abdolahi N , KahehE, GolshaRet al. Letter to the editor: efficacy of different methods of combination regimen administrations including dexamethasone, intravenous immunoglobulin, and interferon-beta to treat critically ill COVID-19 patients: a structured summary of a study protocol for a randomized controlled trial. Trials21(1), 549 (2020).
  • Cao W , LiuX, BaiTet al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect. Dis.7(3), ofaa102 (2020).
  • Ghasemiyeh P , Mohammadi-SamaniS. COVID-19 outbreak: challenges in pharmacotherapy based on pharmacokinetic and pharmacodynamic aspects of drug therapy in patients with moderate to severe infection. Heart & Lung49(6), 763–773 (2020).
  • Carr AC . A new clinical trial to test high-dose vitamin C in patients with COVID-19. Crit. Care24(1), 133 (2020).
  • Liu F , ZhuY, ZhangJ, LiY, PengZ. Intravenous high-dose vitamin C for the treatment of severe COVID-19: study protocol for a multicentre randomised controlled trial. BMJ Open10(7), e039519 (2020).
  • Colunga Biancatelli RML , BerrillM, CatravasJD, MarikPE. Quercetin and vitamin c: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol.11, 1451 (2020).
  • Cheng RZ . Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)?Med. Drug Discov.5, 100028 (2020).
  • Abobaker A . Can iron chelation as an adjunct treatment of COVID-19 improve the clinical outcome?Eur. J. Clin. Pharmacol.76(11), 1619–1620 (2020).
  • Ghasemiyeh P , Mohammadi-SamaniS. Iron chelating agents: promising supportive therapies in severe cases of COVID-19. Trends Pharmaceut. Sci.6(2), 65–66 (2020).
  • Colafrancesco S , AlessandriC, ContiF, PrioriR. COVID-19 gone bad: a new character in the spectrum of the hyperferritinemic syndrome?Autoimmun. Rev.19(7), 102573 (2020).
  • Perricone C , BartoloniE, BursiRet al. COVID-19 as part of the hyperferritinemic syndromes: the role of iron depletion therapy. Immunol. Res.68(4), 213–224 (2020).
  • Dalamaga M , KarampelaI, MantzorosCS. Commentary: could iron chelators prove to be useful as an adjunct to COVID-19 treatment regimens?Metabolism108, 154260 (2020).
  • Abbas A , MostafaA, YousofE, AliS. Use of iron chelators to reduce the severity of COVID-19. Thromb. Haemost. Res.4(2), 1042 (2020).
  • Esam Z . A proposed mechanism for the possible therapeutic potential of metformin in COVID-19. Diabetes Res. Clin. Pract.167, 108282 (2020).
  • Sharma S , RayA, SadasivamB. Metformin in COVID-19: a possible role beyond diabetes. Diabetes Res. Clin. Pract.164, 108183 (2020).
  • Ursini F , CiaffiJ, LandiniMP, MeliconiR. COVID-19 and diabetes: is metformin a friend or foe?Diabetes Res. Clin. Pract.164, 108167 (2020).
  • Scheen AJ . Metformin and COVID-19: from cellular mechanisms to reduced mortality. Diabetes Metab.46(6), 423–426 (2020).
  • Malhotra A , HepokoskiM, MccowenKC, ShyyJY. ACE2, metformin, and COVID-19. Iscience23(9), 101425 (2020).
  • El-Arabey AA , AbdallaM. Metformin and COVID-19: a novel deal of an old drug. J. Med. Virol.92(11), 2293–2294 (2020).
  • Singh AK , SinghR. Is metformin ahead in the race as a repurposed host-directed therapy for patients with diabetes and COVID-19?Diabetes Res. Clin. Pract.65, 108268 (2020).
  • Bramante CT , IngrahamNE, MurrayTAet al. Metformin and risk of mortality in patients hospitalised with COVID-19: a retrospective cohort analysis. Lancet Healthy Longev.2(1), e34–e41 (2021).
  • Luo P , QiuL, LiuYet al. Metformin treatment was associated with decreased mortality in COVID-19 patients with diabetes in a retrospective analysis. Am. J. Trop. Med. Hyg.103(1), 69–72 (2020).
  • Kaye RJ . Overview of stem cell therapy for acute respiratory distress syndrome with focus on COVID-19. Pain Physician23, S425–S434 (2020).
  • Khorshidi M , ZarezadehM, EmamiM, OlangB, MoghaddamOM. Promising impacts of mesenchymal stem cell therapy in treatment of SARS-CoV-2 (COVID-19). Heart Lung49(6), 745–748 (2020).
  • Metcalfe SM . Mesenchymal stem cells and management of COVID-19 pneumonia. Med. Drug Discov.5, 100019 (2020).
  • Meng F , XuR, WangSet al. Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: a phase 1 clinical trial. Signal Transduct. Target Ther.5(1), 172 (2020).
  • Shetty AK . Mesenchymal stem cell infusion shows promise for combating coronavirus (COVID-19)-induced pneumonia. Aging Dis.11(2), 462–464 (2020).
  • Chen X , ShanY, WenY, SunJ, DuH. Mesenchymal stem cell therapy in severe COVID-19: a retrospective study of short-term treatment efficacy and side effects. J. Infect.81(4), 647 (2020).
  • COVID-19 Treatment Guidelines Panel . Coronavirus disease 2019 (COVID-19) treatment guidelines. National Institutes of Health (2021). http://www.covid19treatmentguidelines.nih.gov/
  • Tu Y-F , ChienC-S, YarmishynAAet al. A review of SARS-CoV-2 and the ongoing clinical trials. Int. J. Mol. Sci.21(7), 2657 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.