99
Views
0
CrossRef citations to date
0
Altmetric
Systematic Review

Cyclodextrin Inclusion Complexes Improving Antibacterial Drug Profiles: An Update Systematic Review

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1363-1379 | Received 24 May 2023, Accepted 29 Aug 2023, Published online: 01 Nov 2023

References

  • Osman M , AlMir H , RafeiRet al. Epidemiology of antimicrobial resistance in Lebanese extra-hospital settings: an overview. J. Glob. Antimicrob. Resist.17, 123–129 (2019).
  • Prescott JF . The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology. Vet. Microbiol.171(3–4), 273–278 (2014).
  • Vikesland P , GarnerE , GuptaS , KangS , Maile-MoskowitzA , ZhuN. Differential drivers of antimicrobial resistance across the world. Acc. Chem. Res.52(4), 916–924 (2019).
  • Murray CJ , IkutaKS , ShararaFet al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet399(10325), 629–655 (2022).
  • Song Y , HanZ , SongK , ZhenT. Antibiotic consumption trends in China: evidence from six-year surveillance sales records in Shandong Province. Front. Pharmacol.11, 1 (2020).
  • Qiao M , YingGG , SingerAC , ZhuYG. Review of antibiotic resistance in China and its environment. Environ. Int.110, 160–172 (2018).
  • Daoud Z , DropaM. Editorial: the global threat of carbapenem-resistant Gram-negative bacteria, volume II. Front. Cell. Infect. Microbiol.13, 1–3 (2023).
  • Center of Disease Control Antibiotic Resistance Threats Report. CDC, GA, USA (2019). https://www.cdc.gov/drugresistance/biggest-threats.html
  • Pelgrift RY , FriedmanAJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev.65(13–14), 1803–1815 (2013).
  • Zarandona I , BarbaC , GuerreroP , Dela Caba K , MatéJ. Development of chitosan films containing β-cyclodextrin inclusion complex for controlled release of bioactives. Food Hydrocoll.104, doi: 10.1016/j.foodhyd.2020.105720 (2020) ( Epub ahead of print).
  • Saokham P , MuankaewC , JansookP , LoftssonT. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules23(5), 1–15 (2018).
  • Zhang D , LvP , ZhouC , ZhaoY , LiaoX , YangB. Cyclodextrin-based delivery systems for cancer treatment. Mater. Sci. Eng. C96, 872–886 (2019).
  • Mahjoubin-Tehran M , KovanenPT , XuS , JamialahmadiT , SahebkarA. Cyclodextrins: potential therapeutics against atherosclerosis. Pharmacol. Ther.214, doi: 10.1016/j.pharmthera.2020.107620 (2020) ( Epub ahead of print).
  • Chen G , ZhouY , ZhangWet al. Methyl-β-cyclodextrin suppresses the monocyte-endothelial adhesion triggered by lipopolysaccharide (LPS) or oxidized low-density lipoprotein (oxLDL). Pharm. Biol.59(1), 1034 (2021).
  • Boczar D , MichalskaK. Cyclodextrin inclusion complexes with antibiotics and antibacterial agents as drug-delivery systems – a pharmaceutical perspective. Pharmaceutics14(7), 1–71 (2022).
  • Andrade TA , FreitasTS , AraújoFOet al. Physico-chemical characterization and antibacterial activity of inclusion complexes of Hyptis martiusii Benth essential oil in β-cyclodextrin. Biomed. Pharmacother.89, 201–207 (2017).
  • Menezes PDP , AndradeTA , FrankLAet al. Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int. J. Pharm.559, 312–328 (2019).
  • Gandhi SR , QuintansJDS , GandhiGR , AraújoAAS , QuintansJúnior LJ. The use of cyclodextrin inclusion complexes to improve anticancer drug profiles: a systematic review. Expert Opin. Drug Deliv.17(8), 1069–1080 (2020).
  • de Oliveira MG , GuimarãesAG , AraújoAA , QuintansJS , SantosMR , Quintans-JúniorLJ. Cyclodextrins: improving the therapeutic response of analgesic drugs: a patent review. Expert Opin. Ther. Pat.25(8), 897–907 (2015).
  • dos Santos Lima B , ShanmugamS , deSouza Siqueira Quintans J , Quintans-JúniorLJ , deSouza Araújo AA. Inclusion complex with cyclodextrins enhances the bioavailability of flavonoid compounds: a systematic review. Phytochem. Rev.18(5), 1337–1359 (2019).
  • Agrawal G , BhargavaS. Preparation & characterization of solid inclusion complex of cefpodoxime proxetil with β-cyclodextrin. Curr. Drug Deliv.5(1), 1–6 (2008).
  • Aleem O , KuchekarB , PoreY , LateS. Effect of β-cyclodextrin and hydroxypropyl β-cyclodextrin complexation on physicochemical properties and antimicrobial activity of cefdinir. J. Pharm. Biomed. Anal.47(3), 535–540 (2008).
  • Mizera M , SzymanowskaD , StasiłowiczAet al. Computer-aided design of cefuroxime axetil/cyclodextrin system with enhanced solubility and antimicrobial activity. Biomolecules10(1), 24 (2019).
  • Mendes C , WiemesBP , ButtchevitzAet al. Investigation of β-cyclodextrin-norfloxacin inclusion complexes. Part 1. Preparation, physicochemical and microbiological characterization. Expert Rev. Anti. Infect. Ther.13(1), 119–129 (2015).
  • Amaro BR , AlvesCCS , FerreiraGFet al. Multifunctionality of βcD/ofloxacin and HPβCD/ofloxacin complexes: improvement of the antimicrobial activity and apoptosis induction on lung adenocarcinoma A549 cells. J. Braz. Chem. Soc.31(12), 2628–2637 (2020).
  • Li Y , ZhouJ , GuJ , ShaoQ , ChenY. Enhanced antibacterial activity of levofloxacin/hydroxypropyl-β-cyclodextrin inclusion complex: in vitro and in vivo evaluation. Colloids Surf. B Biointerfaces215, doi: 10.1016/j.colsurfb.2022.112514 (2022) ( Epub ahead of print).
  • Paczkowska-Walendowska M , RosiakN , TykarskaEet al. Tedizolid-cyclodextrin system as delayed-release drug delivery with antibacterial activity. Int. J. Mol. Sci.22(1), 1–15 (2020).
  • Suárez DF , ConsuegraJ , TrajanoVCet al. Structural and thermodynamic characterization of doxycycline/β-cyclodextrin supramolecular complex and its bacterial membrane interactions. Colloids Surf. B Biointerfaces118, 194–201 (2014).
  • Marian E , TitaB , DuteanuNet al. Antimicrobial activity of fusidic acid inclusion complexes. Int. J. Infect. Dis.101, 65–73 (2020).
  • Paczkowska M , Szymanowska-PowałowskaD , MizeraMet al. Cyclodextrins as multifunctional excipients: influence of inclusion into β-cyclodextrin on physicochemical and biological properties of tebipenem pivoxil. PLOS ONE14(1), e0210694 (2019).
  • Teixeira MG , de AssisJV , SoaresCGPet al. Theoretical and experimental study of inclusion complexes formed by isoniazid and modified β-cyclodextrins: 1 H NMR structural determination and antibacterial activity evaluation. J. Phys. Chem. B118(1), 81–93 (2014).
  • Shanmuga Priya A , SivakamavalliJ , VaseeharanB , StalinT. Improvement on dissolution rate of inclusion complex of rifabutin drug with β-cyclodextrin. Int. J. Biol. Macromol.62, 472–480 (2013).
  • Tan Q , HeD , WuMet al. Characterization, activity, and computer modeling of a molecular inclusion complex containing rifaldazine. Int. J. Nanomedicine8, 477–484 (2013).
  • Dan Córdoba AV , AiassaV , LonghiMR , QuevedoMA , ZoppiA. Improved activity of rifampicin against biofilms of Staphylococcus aureus by multicomponent complexation. AAPS PharmSciTech21(5), 163 (2020).
  • Zhang G , YuanC , SunY. Effect of selective encapsulation of hydroxypropyl-β-cyclodextrin on components and antibacterial properties of star anise essential oil. Molecules23(5), 1126 (2018).
  • Guo L , CaoX , YangSet al. Characterization, solubility and antibacterial activity of inclusion complex of questin with hydroxypropyl-β-cyclodextrin. 3 Biotech9(4), 123 (2019).
  • Ayoub AM , GutberletB , PreisEet al. Parietin cyclodextrin-inclusion complex as an effective formulation for bacterial photoinactivation. Pharmaceutics14(2), 357 (2022).
  • Cui H , SivaS , LinL. Ultrasound processed cuminaldehyde/2-hydroxypropyl-β-cyclodextrin inclusion complex: preparation, characterization and antibacterial activity. Ultrason. Sonochem.56, 84–93 (2019).
  • Nikolic IL , SavicIM , PopsavinMMet al. Preparation, characterization and antimicrobial activity of inclusion complex of biochanin A with (2-hydroxypropyl)-β-cyclodextrin. J. Pharm. Pharmacol.70(11), 1485–1493 (2018).
  • Oliveira FS , FreitasTS , CruzRPDet al. Evaluation of the antibacterial and modulatory potential of α-bisabolol, β-cyclodextrin and α-bisabolol/β-cyclodextrin complex. Biomed. Pharmacother.92, 1111–1118 (2017).
  • Lin L , MaoX , SunY , CuiH. Antibacterial mechanism of artemisinin/beta-cyclodextrins against methicillin-resistant Staphylococcus aureus (MRSA). Microb. Pathog.118, 66–73 (2018).
  • Zhang T , ZhuL , LiMet al. Inhalable andrographolide-β-cyclodextrin inclusion complexes for treatment of Staphylococcus aureus pneumonia by regulating immune responses. Mol. Pharm.14(5), 1718–1725 (2017).
  • Li M , ZhuL , ZhangT , LiuB , DuL , JinY. Pulmonary delivery of tea tree oil-β-cyclodextrin inclusion complexes for the treatment of fungal and bacterial pneumonia. J. Pharm. Pharmacol.69(11), 1458–1467 (2017).
  • Siva S , LiC , CuiH , MeenatchiV , LinL. Encapsulation of essential oil components with methyl-β-cyclodextrin using ultrasonication: solubility, characterization, DPPH and antibacterial assay. Ultrason. Sonochem.64, doi: 10.1016/j.ultsonch.2020.104997 (2020) ( Epub ahead of print).
  • de Almeida Magalhães TSS , deOliveira Macedo PC , KawashimaPacheco SYet al. Development and evaluation of antimicrobial and modulatory activity of inclusion complex of Euterpe oleracea Mart oil and β-cyclodextrin or HP-β-cyclodextrin. Int. J. Mol. Sci.21(3), 942 (2020).
  • Briñez-Ortega E , DeAlmeida VL , LopesJCD , BurgosAE. Partial inclusion of bis(1,10-phenanthroline) silver(I) salicylate in β-cyclodextrin: spectroscopic characterization, in vitro and in silico antimicrobial evaluation. An. Acad. Bras. Cienc.92(3), e20181323 (2020).
  • Brancaccio D , PizzoE , CafaroVet al. Antimicrobial peptide temporin-L complexed with anionic cyclodextrins results in a potent and safe agent against sessile bacteria. Int. J. Pharm.584, 1–37 (2020).
  • Del Valle EMM . Cyclodextrins and their uses: a review. Process Biochem.39(9), 1033–1046 (2004).
  • Otero-Espinar FJ , Luzardo-AlvarezA , Blanco-MendezJ. Cyclodextrins: more than pharmaceutical excipients. Mini-Rev. Med. Chem.10(8), 715–725 (2010).
  • Jansook P , OgawaN , LoftssonT. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm.535(1–2), 272–284 (2018).
  • Tian B , HuaS , LiuJ. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: a review. Carbohydr. Polym.232, doi: 10.1016/j.carbpol.2019.115805 (2020) ( Epub ahead of print).
  • Santos AC , CostaD , FerreiraLet al. Cyclodextrin-based delivery systems for in vivo-tested anticancer therapies. Drug Deliv. Transl. Res.11(1), 49–71 (2021).
  • Carneiro SB , DuarteFÍC , HeimfarthLet al. Cyclodextrin-drug inclusion complexes: in vivo and in vitro approaches. Int. J. Mol. Sci.20(3), 1–27 (2019).
  • Brewster ME , LoftssonT. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev.59(7), 645–666 (2007).
  • Szejtli J . Introduction and general overview of cyclodextrin chemistry. Chem. Rev.98(5), 1743–1753 (1998).
  • Zhang D , LvP , ZhouC , ZhaoY , LiaoX , YangB. Cyclodextrin-based delivery systems for cancer treatment. Mater. Sci. Eng. C96, 872–886 (2019).
  • Davis ME , BrewsterME. Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov.3(12), 1023–1035 (2004).
  • Di L , KernsEH. Formulation. In: Drug-Like Properties.Elsevier, CA, USA, 497–510 (2016).
  • Wang L , YanJ , LiYet al. The influence of hydroxypropyl-β-cyclodextrin on the solubility, dissolution, cytotoxicity, and binding of riluzole with human serum albumin. J. Pharm. Biomed. Anal.117, 453–463 (2016).
  • Szente L , SinghalA , DomokosA , SongB. Cyclodextrins: assessing the impact of cavity size, occupancy, and substitutions on cytotoxicity and cholesterol homeostasis. Molecules23(5), 1228 (2018).
  • Cid-Samamed A , RakmaiJ , MejutoJC , Simal-GandaraJ , AstrayG. Cyclodextrins inclusion complex: preparation methods, analytical techniques and food industry applications. Food Chem.384, 1–14 (2022).
  • da Silva Júnior WF , deOliveira Pinheiro JG , MoreiraCDLFA , de SouzaFJJ , deLima ÁAN. Chapter 15 – Alternative technologies to improve solubility and stability of poorly water-soluble drugs. In: Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics.GrumezescuAM ( Ed.). Elsevier, 281–305 (2017).
  • Mura P . Analytical techniques for characterization of cyclodextrin complexes in the solid state: a review. J. Pharm. Biomed. Anal.113, 226–238 (2015).
  • Szente L , SzemánJ , SohajdaT. Analytical characterization of cyclodextrins: history, official methods and recommended new techniques. J. Pharm. Biomed. Anal.130, 347–365 (2016).
  • Tiwari G , TiwariR , RaiAK. Cyclodextrins in delivery systems: applications. J. Pharm. Bioallied Sci.2(2), 72 (2010).
  • Goluszko P , NowickiB. Membrane cholesterol: a crucial molecule affecting interactions of microbial pathogens with mammalian cells. Infect. Immun.73(12), 7791 (2005).
  • Cheung GYC , BaeJS , OttoM. Pathogenicity and virulence of Staphylococcus aureus. Virulence12(1), 547–569 (2021).
  • Turner NA , Sharma-KuinkelBK , MaskarinecSAet al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat. Rev. Microbiol.17(4), 203–218 (2019).
  • Schlievert PM , StrandbergKL , LinY-C , PetersonML , LeungDYM. Secreted virulence factor comparison between methicillin-resistant and methicillin-sensitive Staphylococcus aureus, and its relevance to atopic dermatitis. J. Allergy. Clinical Immunology.125(1), 39–49 (2010).
  • Nikolic P , MudgilP , HarmanDG , WhitehallJ. Untargeted lipidomic differences between clinical strains of methicillin-sensitive and methicillin-resistant Staphylococcus aureus. Infect. Dis. (Lond.)54(7), 497–507 (2022).
  • Loftus RW , DexterF , RobinsonADM. Methicillin-resistant Staphylococcus aureus has greater risk of transmission in the operating room than methicillin-sensitive S aureus. Am. J. Infect. Control46(5), 520–525 (2018).
  • Asokan G , RamadhanT , AhmedE , SanadH. WHO global priority pathogens list: a bibliometric analysis of Medline-PubMed for knowledge mobilization to infection prevention and control practices in Bahrain. Oman Med. J.34(3), 184–193 (2019).
  • Karginov VA . Cyclodextrin derivatives as anti-infectives. Curr. Opin. Pharmacol.13(5), 717–725 (2013).
  • Santos AM , SantosMM , NascimentoJúnior JACet al. Mapping of new pharmacological alternatives in the face of the emergence of antibiotic resistance in COVID-19 patents treated for opportunistic respiratory bacterial pathogens. Recent Adv. Antiinfect. Drug Discov.17(1), 34–53 (2022).
  • Soleymani F , TaheriF , HaerizadehM , HaerizadehM , KarimiA. Evaluation of medicine prescription pattern using World Health Organization prescribing indicators in Iran: a cross-sectional study. J. Res. Pharm. Pract.3(2), 39 (2014).
  • Imperiale JC , SosnikAD. Cyclodextrin complexes for treatment improvement in infectious diseases. Nanomedicine10(10), 1621–1641 (2015).
  • Popielec A , LoftssonT. Effects of cyclodextrins on the chemical stability of drugs. Int. J. Pharm.531(2), 532–542 (2017).
  • Onufrak NJ , ForrestA , GonzalezD. Pharmacokinetic and pharmacodynamic principles of anti-infective dosing. Clin. Ther.38(9), 1930–1947 (2016).
  • Zhu C , JiangL , ChenTM , HwangKK. A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential. Eur. J. Med. Chem.37(5), 399–407 (2002).
  • Breda SA , Jimenez-KairuzAF , ManzoRH , OliveraME. Solubility behavior and biopharmaceutical classification of novel high-solubility ciprofloxacin and norfloxacin pharmaceutical derivatives. Int. J. Pharm.371(1–2), 106–113 (2009).
  • Yu X , ZippGL , DavidsonGW. The effect of temperature and pH on the solubility of quinolone compounds: estimation of heat of fusion. Pharm. Res.11(4), 522–527 (1994).
  • Wong CE , DolzhenkoAV , LeeSM , YoungDJ. Cyclodextrins: a weapon in the fight against antimicrobial resistance. J. Mol. Eng. Mater.5(1), (2017) ( Epub ahead of print).
  • Zhang G , YuanC , SunY. Effect of selective encapsulation of hydroxypropyl-β-cyclodextrin on components and antibacterial properties of star anise essential oil. Molecules23(5), 1–15 (2018).
  • Qiu N , ChengX , WangGet al. Inclusion complex of barbigerone with hydroxypropyl-β-cyclodextrin: preparation and in vitro evaluation. Carbohydr. Polym.101(1), 623–630 (2014).
  • Fair RJ , TorY. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem.6(6), 25 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.