96
Views
0
CrossRef citations to date
0
Altmetric
Review

Butyrate Affects Bacterial Virulence: A New Perspective on Preventing Enteric Bacterial Pathogen Invasion

ORCID Icon, , &
Pages 73-84 | Received 29 Jun 2023, Accepted 11 Sep 2023, Published online: 12 Dec 2023

References

  • Teklemariam AD , Al-Hindi RR , Albiheyri RS et al.> Human salmonellosis: a continuous global threat in the farm-to-fork food safety continuum. Foods 12(9), 1756 (2023).
  • Buliva E , Elnossery S , Okwarah P et al.> Cholera prevention, control strategies, challenges and World Health Organization initiatives in the Eastern Mediterranean Region: a narrative review. Heliyon 9(5), e15598 (2023).
  • Christaki E , Marcou M , Tofarides A . Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J. Mol. Evol. 88(1), 26–40 (2020).
  • Mazhar M , Zhu Y , Qin L . The interplay of dietary fibers and intestinal microbiota affects type 2 diabetes by generating short-chain fatty acids. Foods 12(5), 1023 (2023).
  • Dong Y , Zhang K , Wei J et al.> Gut microbiota-derived short-chain fatty acids regulate gastrointestinal tumor immunity: a novel therapeutic strategy? Front. Immunol. 14, 1158200 (2023).
  • Li Y , Zhang Y , Wei K et al.> Review: effect of gut microbiota and its metabolite SCFAs on radiation-induced intestinal injury. Front. Cell. Infect. Microbiol. 11, 577236 (2021).
  • Zhan Z , Tang H , Zhang Y et al.> Potential of gut-derived short-chain fatty acids to control enteric pathogens. Front. Microbiol. 13, 976406 (2022).
  • Tang H , Zhan Z , Zhang Y , Huang X . Propionylation of lysine, a new mechanism of short-chain fatty acids affecting bacterial virulence. Am. J. Transl. Res. 14(8), 5773–5784 (2022).
  • Fang Y , Li X . Protein lysine four-carbon acylations in health and disease. J. Cell Physiol. doi:10.1002/jcp.30981 (2023) ( Epub ahead of print).
  • Xiang T , Zhao S , Wu Y et al.> Novel post-translational modifications in the kidneys for human health and diseases. Life Sci. 311(Pt B), 121188 (2022).
  • Qin J , Li R , Raes J et al.> A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285), 59–65 (2010).
  • Litvak Y , Byndloss MX , Bäumler AJ . Colonocyte metabolism shapes the gut microbiota. Science 362(6418), eaat9076 (2018).
  • Golpour F , Abbasi-Alaei M , Babaei F et al.> Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed. Pharmacother. 163, 114763 (2023).
  • Parada Venegas D , De La Fuente MK , Landskron G et al.> Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).
  • Cronin P , Joyce SA , O’Toole PW , O’Connor EM . Dietary fibre modulates the gut microbiota. Nutrients 13(5), 1655 (2021).
  • Ríos-Covián D , Ruas-Madiedo P , Margolles A et al.> Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 7, 185 (2016).
  • Morrison DJ , Preston T . Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7(3), 189–200 (2016).
  • Singh V , Lee G , Son H et al.> Butyrate producers, ‘the sentinel of gut’: Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front. Microbiol. 13, 1103836 (2022).
  • Vital M , Howe AC , Tiedje JM . Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio 5(2), e00889 (2014).
  • Fu X , Liu Z , Zhu C et al.> Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit. Rev. Food Sci. Nutr. 59(Suppl. 1), S130–S152 (2019).
  • Stilling RM , Van De Wouw M , Clarke G et al.> The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis? Neurochem. Int. 99, 110–132 (2016).
  • Louis P , Flint HJ . Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 19(1), 29–41 (2017).
  • Vital M , Karch A , Pieper DH . Colonic butyrate-producing communities in humans: an overview using omics data. mSystems 2(6), e00130-17 (2017).
  • Zhang L , Liu C , Jiang Q , Yin Y . Butyrate in energy metabolism: there is still more to learn. Trends Endocrinol. Metab. 32(3), 159–169 (2021).
  • Louis P , Duncan SH , Mccrae SI et al.> Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J. Bacteriol. 186(7), 2099–2106 (2004).
  • Vital M , Penton CR , Wang Q et al.> A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community. Microbiome 1(1), 8 (2013).
  • Clausen MR , Mortensen PB . Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis. Gut 37(5), 684–689 (1995).
  • Nie K , Ma K , Luo W et al.> Roseburia intestinalis: a beneficial gut organism from the discoveries in genus and species. Front. Cell Infect. Microbiol. 11, 757718 (2021).
  • Stokowa-Sołtys K , Wojtkowiak K , Jagiełło K . Fusobacterium nucleatum – friend or foe? J. Inorg. Biochem. 224, 111586 (2021).
  • Bronner DN , Faber F , Olsan EE et al.> Genetic ablation of butyrate utilization attenuates gastrointestinal Salmonella disease. Cell Host Microbe 23(2), 266–273.e4 (2018).
  • Rishi P , Pathak S , Ricke SC . Short chain fatty acids influence virulence properties of Salmonella enterica serovar typhimurium. J. Environ. Sci. Health B 40(4), 645–657 (2005).
  • Durant JA , Lowry VK , Nisbet DJ et al.> Short-chain fatty acids affect cell-association and invasion of HEp-2 cells by Salmonella typhimurium. J. Environ. Sci. Health B 34(6), 1083–1099 (1999).
  • Gantois I , Ducatelle R , Pasmans F et al.> Butyrate specifically down-regulates salmonella pathogenicity island 1 gene expression. Appl. Environ. Microbiol. 72(1), 946–949 (2006).
  • Boyen F , Haesebrouck F , Vanparys A et al.> Coated fatty acids alter virulence properties of Salmonella Typhimurium and decrease intestinal colonization of pigs. Vet. Microbiol. 132(3–4), 319–327 (2008).
  • Van Immerseel F , De Buck J , De Smet I et al.> Interactions of butyric acid- and acetic acid-treated Salmonella with chicken primary cecal epithelial cells in vitro. Avian Dis. 48(2), 384–391 (2004).
  • Papezova K , Gregorova D , Jonuschies J , Rychlik I . Ordered expression of virulence genes in Salmonella enterica serovar Typhimurium. Folia Microbiol (Praha) 52(2), 107–114 (2007).
  • Liu J , Zhu W , Qin N et al.> Propionate and butyrate inhibit biofilm formation of Salmonella Typhimurium grown in laboratory media and food models. Foods 11(21), 3493 (2022).
  • Goodman KN , Powers MJ , Crofts AA et al.> Campylobacter jejuni BumSR directs a response to butyrate via sensor phosphatase activity to impact transcription and colonization. Proc. Natl Acad. Sci. USA 117(21), 11715–11726 (2020).
  • Sun Y , Wilkinson BJ , Standiford TJ et al.> Fatty acids regulate stress resistance and virulence factor production for Listeria monocytogenes. J. Bacteriol. 194(19), 5274–5284 (2012).
  • Pace F , Rudolph SE , Chen Y et al.> The short-chain fatty acids propionate and butyrate augment adherent-invasive Escherichia coli virulence but repress inflammation in a human intestinal enteroid model of infection. Microbiol. Spectr. 9(2), e0136921 (2021).
  • Nakanishi N , Tashiro K , Kuhara S et al.> Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli . Microbiology (Reading) 155(Pt 2), 521–530 (2009).
  • Tobe T , Nakanishi N , Sugimoto N . Activation of motility by sensing short-chain fatty acids via two steps in a flagellar gene regulatory cascade in enterohemorrhagic Escherichia coli. Infect. Immun. 79(3), 1016–1024 (2011).
  • Takao M , Yen H , Tobe T . LeuO enhances butyrate-induced virulence expression through a positive regulatory loop in enterohaemorrhagic Escherichia coli . Mol. Microbiol. 93(6), 1302–1313 (2014).
  • Dillon SC , Espinosa E , Hokamp K et al.> LeuO is a global regulator of gene expression in Salmonella enterica serovar Typhimurium. Mol. Microbiol. 85(6), 1072–1089 (2012).
  • Baek C-H , Wang S , Roland KL , Curtiss R . Leucine-responsive regulatory protein (Lrp) acts as a virulence repressor in Salmonella enterica serovar Typhimurium. J. Bacteriol. 191(4), 1278–1292 (2009).
  • Qin R , Sang Y , Ren J et al.> The bacterial two-hybrid system uncovers the involvement of acetylation in regulating of Lrp activity in Salmonella Typhimurium. Front. Microbiol. 7, 1864 (2016).
  • Walsh CT , Garneau-Tsodikova S , Gatto GJ . Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. Engl. 44(45), 7342–7372 (2005).
  • Minguez P , Parca L , Diella F et al.> Deciphering a global network of functionally associated post-translational modifications. Mol. Syst. Biol. 8, 599 (2012).
  • Ren J , Sang Y , Lu J , Yao Y-F . Protein acetylation and its role in bacterial virulence. Trends Microbiol. 25(9), 768–779 (2017).
  • Liu M , Guo L , Fu Y et al.> Bacterial protein acetylation and its role in cellular physiology and metabolic regulation. Biotechnol. Adv. 53, 107842 (2021).
  • Hentchel KL , Escalante-Semerena JC . Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic stress. Microbiol. Mol. Biol. Rev. 79(3), 321–346 (2015).
  • Chen Y , Sprung R , Tang Y et al.> Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell Proteomics 6(5), 812–819 (2007).
  • Sang Y , Ren J , Qin R et al.> Acetylation regulating protein stability and DNA-binding ability of HilD, thus modulating Salmonella Typhimurium virulence. J. Infect. Dis. 216(8), 1018–1026 (2017).
  • Zhang ZJ , Pedicord VA , Peng T , Hang HC . Site-specific acylation of a bacterial virulence regulator attenuates infection. Nat. Chem. Biol. 16(1), 95–103 (2020).
  • Xu J-Y , Xu Z , Liu X et al.> Protein acetylation and butyrylation regulate the phenotype and metabolic shifts of the endospore-forming Clostridium acetobutylicum . Mol. Cell Proteomics 17(6), 1156–1169 (2018).
  • Gupta VK , Paul S , Dutta C . Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front. Microbiol. 8, 1162 (2017).
  • Rivera-Chávez F , Lopez CA , Bäumler AJ . Oxygen as a driver of gut dysbiosis. Free Radic. Biol. Med. 105, 93–101 (2017).
  • Kelly CJ , Zheng L , Campbell EL et al.> Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17(5), 662–671 (2015).
  • Nagpal R , Tsuji H , Takahashi T et al.> Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breast-fed infants over the first 3 years of life: a quantitative bird’s-eye view. Front. Microbiol. 8, 1388 (2017).
  • Kim S , Covington A , Pamer EG . The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol. Rev. 279(1), 90–105 (2017).
  • Pamer EG . Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science 352(6285), 535–538 (2016).
  • Garner CD , Antonopoulos DA , Wagner B et al.> Perturbation of the small intestine microbial ecology by streptomycin alters pathology in a Salmonella enterica serovar typhimurium murine model of infection. Infect. Immun. 77(7), 2691–2702 (2009).
  • Rivera-Chávez F , Zhang LF , Faber F et al.> Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella . Cell Host Microbe 19(4), 443–454 (2016).
  • Galán JE . Salmonella Typhimurium and inflammation: a pathogen-centric affair. Nat. Rev. Microbiol. 19(11), 716–725 (2021).
  • Stecher B , Robbiani R , Walker AW et al.> Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5(10), 2177–2189 (2007).
  • Mirzaei R , Dehkhodaie E , Bouzari B et al.> Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomed. Pharmacother. 145, 112352 (2022).
  • Dalile B , Van Oudenhove L , Vervliet B , Verbeke K . The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 16(8), 461–478 (2019).
  • Liu H , Wang J , He T et al.> Butyrate: a double-edged sword for health? Adv Nutr 9(1), 21–29 (2018).
  • Mowat AM , Agace WW . Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14(10), 667–685 (2014).
  • Gupta A , Bansal M , Liyanage R et al.> Sodium butyrate modulates chicken macrophage proteins essential for Salmonella enteritidis invasion. PLoS ONE 16(4), e0250296 (2021).
  • Tsugawa H , Kabe Y , Kanai A et al.> Short-chain fatty acids bind to apoptosis-associated speck-like protein to activate inflammasome complex to prevent Salmonella infection. PLoS Biol. 18(9), e3000813 (2020).
  • Song C , Chai Z , Chen S et al.> Intestinal mucus components and secretion mechanisms: what we do and do not know. Exp. Mol. Med. 55(4), 681–691 (2023).
  • Martens EC , Neumann M , Desai MS . Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat. Rev. Microbiol. 16(8), 457–470 (2018).
  • Zhao Y , Chen F , Wu W et al.> GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 11(3), 752–762 (2018).
  • Fang J , Wang H , Zhou Y et al.> Slimy partners: the mucus barrier and gut microbiome in ulcerative colitis. Exp. Mol. Med. 53(5), 772–787 (2021).
  • Dahlgren D , Lennernäs H . Review on the effect of chemotherapy on the intestinal barrier: epithelial permeability, mucus and bacterial translocation. Biomed. Pharmacother. 162, 114644 (2023).
  • Sylvester PA , Myerscough N , Warren BF et al.> Differential expression of the chromosome 11 mucin genes in colorectal cancer. J. Pathol. 195(3), 327–335 (2001).
  • Gratchev A , Böhm C , Riede E et al.> Regulation of mucin MUC2 gene expression during colon carcinogenesis. Ann. NY Acad. Sci. 859, 180–183 (1998).
  • Gaudier E , Jarry A , Blottière HM et al.> Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am. J. Physiol. Gastrointest. Liver Physiol. 287(6), G1168–G1174 (2004).
  • Burger-Van Paassen N , Vincent A , Puiman PJ et al.> The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem. J. 420(2), 211–219 (2009).
  • Wrzosek L , Miquel S , Noordine M-L et al.> Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 11, 61 (2013).
  • Wang H-B , Wang P-Y , Wang X et al.> Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig. Dis. Sci. 57(12), 3126–3135 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.