119
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Anti-Staphylococcus Aureus Effects of Natural Antimicrobial Peptides and the Underlying Mechanisms

, , , , &
Pages 355-372 | Received 28 Jul 2023, Accepted 13 Oct 2023, Published online: 05 Mar 2024

References

  • Balasubramanian D, Harper L, Shopsin B, Torres VJ. Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis 75(1), doi: 10.1093/femspd/ftx005 (2017).
  • Tam K, Torres VJ. Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol. Spectr. 7(2), doi: 10.1128/microbiolspec.GPP3-0039-2018 (2019).
  • Oliveira D, Borges A, Simões M. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins 10(6), doi: 10.3390/toxins10060252 (2018).
  • Kwiecinski JM, Horswill AR. Staphylococcus aureus bloodstream infections: pathogenesis and regulatory mechanisms. Curr. Opin. Microbiol. 53, 51–60 (2020).
  • Ahmad-Mansour N, Loubet P, Pouget C et al. Staphylococcus aureus toxins: an update on their pathogenic properties and potential treatments. Toxins 13(10), doi: 10.3390/toxins13100677 (2021).
  • Álvarez A, Fernández L, Gutiérrez D, Iglesias B, Rodríguez A, García P. Methicillin-resistant Staphylococcus aureus in hospitals: latest trends and treatments based on bacteriophages. J. Clin. Microbiol. 57(12), doi: 10.1128/JCM.01006-19 (2019).
  • Cascioferro S, Carbone D, Parrino B et al. Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections. ChemMedChem 16(1), 65–80 (2021).
  • Lee AS, De Lencastre H, Garau J et al. Methicillin-resistant Staphylococcus aureus . Nat. Rev. Dis. Primers 4, 18033 (2018).
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 284(5418), 1318–1322 (1999).
  • Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35(4), 322–332 (2010).
  • Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 41(3), 276–301 (2017).
  • Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence 1(5), 440–464 (2010).
  • Park S, Park SH, Ahn HC et al. Structural study of novel antimicrobial peptides, nigrocins, isolated from Rana nigromaculata . FEBS Lett. 507(1), 95–100 (2001).
  • Fitton JE, Dell A, Shaw WV. The amino acid sequence of the delta haemolysin of Staphylococcus aureus . FEBS Lett. 115(2), 209–212 (1980).
  • Boman HG, Hultmark D. Cell-free immunity in insects. Annu. Rev. Microbiol. 41, 103–126 (1987).
  • Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19(3), 491–511 (2006).
  • Rončević T, Puizina J, Tossi A. Antimicrobial peptides as anti-infective agents in pre-post-antibiotic era? Int. J. Mol. Sci. 20(22), doi: 10.3390/ijms20225713 (2019).
  • Luo Y, Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities. Int. J. Mol. Sci. 22(21), doi: 10.3390/ijms222111401 (2021).
  • Hemmati F, Rezaee MA, Ebrahimzadeh S et al. Novel strategies to combat bacterial biofilms. Mol. Biotechnol. 63(7), 569–586 (2021).
  • Shahrour H, Ferrer-Espada R, Dandache I et al. AMPs as anti-biofilm agents for human therapy and prophylaxis. Adv. Exp. Med. Biol. 1117, 257–279 (2019).
  • Moravej H, Moravej Z, Yazdanparast M et al. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb. Drug Resist. 24(6), 747–767 (2018).
  • Sierra JM, Fusté E, Rabanal F, Vinuesa T, Viñas M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin. Biol. Ther. 17(6), 663–676 (2017).
  • Volejníková A, Melicherčík P, Nešuta O et al. Antimicrobial peptides prevent bacterial biofilm formation on the surface of polymethylmethacrylate bone cement. J. Med. Microbiol. 68(6), 961–972 (2019).
  • Segev-Zarko L, Saar-Dover R, Brumfeld V, Mangoni ML, Shai Y. Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochem. J. 468(2), 259–270 (2015).
  • Yasir M, Willcox MDP, Dutta D. Action of antimicrobial peptides against bacterial biofilms. Materials 11(12), doi: 10.3390/ma11122468 (2018).
  • Lipsky BA, Holroyd KJ, Zasloff M. Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin. Infect. Dis. 47(12), 1537–1545 (2008).
  • Méndez-Samperio P. Peptidomimetics as a new generation of antimicrobial agents: current progress. Infect. Drug Resist. 7, 229–237 (2014).
  • Nilsson AC, Janson H, Wold H et al. LTX-109 is a novel agent for nasal decolonization of methicillin-resistant and -sensitive Staphylococcus aureus . Antimicrob. Agents Chemother. 59(1), 145–151 (2015).
  • Haisma EM, De Breij A, Chan H et al. LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents. Antimicrob. Agents Chemother. 58(8), 4411–4419 (2014).
  • Rajasekaran G, Kim EY, Shin SY. LL-37-derived membrane-active FK-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity. Biochim. Biophys. Acta Biomembr. 1859(5), 722–733 (2017).
  • Narayana JL, Mishra B, Lushnikova T, Golla RM, Wang G. Modulation of antimicrobial potency of human cathelicidin peptides against the ESKAPE pathogens and in vivo efficacy in a murine catheter-associated biofilm model. Biochim. Biophys. Acta Biomembr. 1861(9), 1592–1602 (2019).
  • De Breij A, Riool M, Cordfunke RA et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med. 10(423), doi: 10.1126/scitranslmed.aan4044 (2018).
  • Huang Q, Yu HJ, Liu GD et al. Comparison of the effects of human β-defensin 3, vancomycin, and clindamycin on Staphylococcus aureus biofilm formation. Orthopedics 35(1), e53–60 (2012).
  • Zhu C, Tan H, Cheng T et al. Human β-defensin 3 inhibits antibiotic-resistant Staphylococcus biofilm formation. J. Surg. Res. 183(1), 204–213 (2013).
  • Feldman M, Smoum R, Mechoulam R, Steinberg D. Antimicrobial potential of endocannabinoid and endocannabinoid-like compounds against methicillin-resistant Staphylococcus aureus . Sci. Rep. 8(1), 17696 (2018).
  • Zhou W, Du Y, Li X, Yao C. Lipoic acid modified antimicrobial peptide with enhanced antimicrobial properties. Bioorgan. Med. Chem. 28(19), 115682 (2020).
  • Jiale Z, Jian J, Xinyi T, Haoji X, Xueqin H, Xiao W. Design of a novel antimicrobial peptide 1018M targeted ppGpp to inhibit MRSA biofilm formation. AMB Express 11(1), 49 (2021).
  • Wu X, Pan J, Wu Y et al. PSN-PC: a novel antimicrobial and anti-biofilm peptide from the skin secretion of Phyllomedusa-camba with cytotoxicity on human lung cancer cell. Molecules 22(11), doi: 10.3390/molecules22111896 (2017).
  • Yuan Y, Zai Y, Xi X et al. A novel membrane-disruptive antimicrobial peptide from frog skin secretion against cystic fibrosis isolates and evaluation of anti-MRSA effect using Galleria mellonella model. Biochim. Biophys. Acta Gen. Subj. 1863(5), 849–856 (2019).
  • Liu J, Wu Q, Li L et al. Discovery of phylloseptins that defense against Gram-positive bacteria and inhibit the proliferation of the non-small cell lung cancer cell line, from the skin secretions of Phyllomedusa frogs. Molecules 22(9), doi: 10.3390/molecules22091428 (2017).
  • Song X, Pan H, Wang H et al. Identification of new dermaseptins with self-assembly tendency: membrane disruption, biofilm eradication, and infected wound healing efficacy. Acta Biomater. 109, 208–219 (2020).
  • Golda A, Kosikowska-Adamus P, Kret A et al. The bactericidal activity of temporin analogues against methicillin resistant Staphylococcus aureus . Int. J. Mol. Sci 20(19), doi: 10.3390/ijms20194761 (2019).
  • Yang N, Teng D, Mao R et al. A recombinant fungal defensin-like peptide-P2 combats multidrug-resistant Staphylococcus aureus and biofilms. Appl. Microbiol. Biotechnol. 103(13), 5193–5213 (2019).
  • Vasilchenko AS, Julian WT, Lapchinskaya OA, Katrukha GS, Sadykova VS, Rogozhin EA. A novel peptide antibiotic produced by Streptomyces roseoflavus strain INA-Ac-5812 with directed activity against Gram-positive bacteria. Front. Microbiol. 11, 556063 (2020).
  • Ma Z, Han J, Chang B et al. Membrane-active amphipathic peptide WRL3 with in vitro antibiofilm capability and in vivo efficacy in treating methicillin-resistant Staphylococcus aureus burn wound infections. ACS Infect. Dis. 3(11), 820–832 (2017).
  • Sandiford S, Upton M. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against Staphylococci . Antimicrob. Agents Chemother. 56(3), 1539–1547 (2012).
  • Saising J, Dube L, Ziebandt AK, Voravuthikunchai SP, Nega M, Götz F. Activity of gallidermin on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 56(11), 5804–5810 (2012).
  • Shi J, Chen C, Wang D, Tong Z, Wang Z, Liu Y. Amphipathic peptide antibiotics with potent activity against multidrug-resistant pathogens. Pharmaceutics 13(4), doi: 10.3390/pharmaceutics13040438 (2021).
  • Okuda K, Zendo T, Sugimoto S et al. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob. Agents Chemother. 57(11), 5572–5579 (2013).
  • Wei G, He Y. Antibacterial and antibiofilm activities of novel cyclic peptides against methicillin-resistant Staphylococcus aureus . Int. J. Mol. Sci. 23(14), doi: 10.3390/ijms23148029 (2022).
  • Xiong F, Dai X, Li YX et al. Effects of the antimicrobial peptide L12 against multidrug-resistant Staphylococcus aureus . Mol. Med. Rep. 19(4), 3337–3344 (2019).
  • Han J, Ma Z, Gao P et al. The antibacterial activity of LI-F type peptide against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and inhibition of infections in murine scalded epidermis. Appl. Microbiol. Biotechnol. 102(5), 2301–2311 (2018).
  • Oyama LB, Olleik H, Teixeira ACN et al. In silico identification of two peptides with antibacterial activity against multidrug-resistant Staphylococcus aureus . NPJ Biofilms Microbiomes 8(1), 58 (2022).
  • Mataraci E, Dosler S. In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob. Agents Chemother. 56(12), 6366–6371 (2012).
  • Santana FL, Estrada K, Alford MA et al. Novel alligator cathelicidin As-CATH8 demonstrates anti-infective activity against clinically relevant and crocodylian bacterial pathogens. Antibiotics 11(11), doi: 10.3390/antibiotics11111603 (2022).
  • Mishra B, Wang X, Lushnikova T et al. Antibacterial, antifungal, anticancer activities and structural bioinformatics analysis of six naturally occurring temporins. Peptides 106, 9–20 (2018).
  • Rocha LQ, Orzaéz M, García-Jareño AB et al. Dinoponera quadriceps venom as a source of active agents against Staphylococcus aureus . Toxicon 189, 33–38 (2021).
  • Choi JH, Jang AY, Lin S et al. Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus . Mol. Med. Rep. 12(5), 6483–6490 (2015).
  • Lima WG, de Brito JCM, Cardoso VN, Fernandes SOA. In-depth characterization of antibacterial activity of melittin against Staphylococcus aureus and use in a model of non-surgical MRSA-infected skin wounds. Eur. J. Pharm. Sci. 156, 105592 (2021).
  • Memariani H, Memariani M, Pourmand MR. Venom-derived peptide mastoparan-1 eradicates planktonic and biofilm-embedded methicillin-resistant Staphylococcus aureus isolates. Microb. Pathog. 119, 72–80 (2018).
  • Wang B, Yao Y, Wei P et al. Housefly phormicin inhibits Staphylococcus aureus and MRSA by disrupting biofilm formation and altering gene expression in vitro and in vivo . J. Biol. Macromol. 167, 1424–1434 (2021).
  • Oh JH, Park J, Park Y. Anti-biofilm and anti-inflammatory effects of lycosin-II isolated from spiders against multi-drug resistant bacteria. Biochim. Biophys. Acta Biomembr. 1864(1), 183769 (2022).
  • Li Z, Xu X, Meng L et al. Hp1404, a new antimicrobial peptide from the scorpion Heterometrus petersii . PLOS ONE 9(5), e97539 (2014).
  • Wang X, Hong X, Chen F, Wang KJ. A truncated peptide Spgillcin (177–189) derived from mud crab Scylla paramamosain exerting multiple antibacterial activities. Front. Cell. Infect. Microbiol. 12, 928220 (2022).
  • Farha MA, El-Halfawy OM, Gale RT et al. Uncovering the hidden antibiotic potential of cannabis. ACS Infect. Dis. 6(3), 338–346 (2020).
  • Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect. Immun. 76(9), 4176–4182 (2008).
  • Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. 276(8), 5707–5713 (2001).
  • Milman G, Maor Y, Abu-Lafi S et al. N-arachidonoyl L-serine, an endocannabinoid-like brain constituent with vasodilatory properties. Proc. Natl Acad. Sci. USA 103(7), 2428–2433 (2006).
  • Spindler EC, Hale JD, Giddings TH Jr , Hancock RE, Gill RT. Deciphering the mode of action of the synthetic antimicrobial peptide Bac8c. Antimicrob. Agents Chemother. 55(4), 1706–1716 (2011).
  • Lee H, Lee DG. SOS genes contribute to Bac8c induced apoptosis-like death in Escherichia coli . Biochimie 157, 195–203 (2019).
  • Spindler EC, Boyle NR, Hancock RE, Gill RT. Genome-wide identification of genes conferring energy related resistance to a synthetic antimicrobial peptide (Bac8c). PLOS ONE 8(1), e55052 (2013).
  • Mansour SC, de la Fuente-Núñez C, Hancock RE. Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. J. Pept. Sci. 21(5), 323–329 (2015).
  • He X, Yang S, Wei L, Liu R, Lai R, Rong M. Antimicrobial peptide diversity in the skin of the torrent frog, Amolops jingdongensis . Amino Acids 44(2), 481–487 (2013).
  • Feng G, Wu J, Yang HL, Mu L. Discovery of antioxidant peptides from amphibians: a review. Protein Pept. Lett. 28(11), 1220–1229 (2021).
  • Bergaoui I, Zairi A, Tangy F, Aouni M, Selmi B, Hani K. In vitro antiviral activity of dermaseptin S(4) and derivatives from amphibian skin against herpes simplex virus type 2. J. Med. Virol. 85(2), 272–281 (2013).
  • Van Zoggel H, Hamma-Kourbali Y, Galanth C et al. Antitumor and angiostatic peptides from frog skin secretions. Amino Acids 42(1), 385–395 (2012).
  • Chen X, Liu S, Fang J et al. Peptides isolated from amphibian skin secretions with emphasis on antimicrobial peptides. Toxins 14(10), doi: 10.3390/toxins14100722 (2022).
  • Mangoni ML, Grazia AD, Cappiello F, Casciaro B, Luca V. Naturally occurring peptides from Rana temporaria: antimicrobial properties and more. Curr. Top. Med. Chem. 16(1), 54–64 (2016).
  • Kemung HM, Tan LT, Khan TM et al. Streptomyces as a prominent resource of future anti-MRSA drugs. Front. Microbiol. 9, 2221 (2018).
  • Sun P, Maloney KN, Nam SJ et al. Fijimycins A–C, three antibacterial etamycin-class depsipeptides from a marine-derived Streptomyces sp. Bioorgan. Med. Chem. 19(22), 6557–6562 (2011).
  • Lapchinskaya OA, Katrukha GS, Gladkikh EG et al. Investigation of the complex antibiotic INA-5812. Russ. J. Bioorganic Chem. 42(6), 664–671 (2016).
  • Ma Z, Yang J, Han J et al. Insights into the antimicrobial activity and cytotoxicity of engineered α-helical peptide amphiphiles. J. Med. Chem. 59(24), 10946–10962 (2016).
  • Kellner R, Jung G, Hörner T et al. Gallidermin: a new lanthionine-containing polypeptide antibiotic. Eur. J. Med. Chem. 177(1), 53–59 (1988).
  • Götz F, Perconti S, Popella P, Werner R, Schlag M. Epidermin and gallidermin: staphylococcal antibiotics. Int. J. Med. Microbiol. 304(1), 63–71 (2014).
  • Lakshmaiah Narayana J, Mishra B, Lushnikova T et al. Two distinct amphipathic peptide antibiotics with systemic efficacy. Proc. Natl Acad. Sci. USA 117(32), 19446–19454 (2020).
  • Rogers LA. The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus . J. Bacteriol. 16(5), 321–325 (1928).
  • Fujita K, Ichimasa S, Zendo T et al. Structural analysis and characterization of lacticin Q, a novel bacteriocin belonging to a new family of unmodified bacteriocins of Gram-positive bacteria. Appl. Environ. Microbiol. 73(9), 2871–2877 (2007).
  • Sashihara T, Kimura H, Higuchi T et al. A novel lantibiotic, nukacin ISK-1, of Staphylococcus warneri ISK-1: cloning of the structural gene and identification of the structure. Biosci. Biotechnol. Biochem. 64(11), 2420–2428 (2000).
  • Zipperer A, Konnerth MC, Laux C et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535(7613), 511–516 (2016).
  • Bionda N, Pitteloud JP, Cudic P. Cyclic lipodepsipeptides: a new class of antibacterial agents in the battle against resistant bacteria. Future Med. Chem. 5(11), 1311–1330 (2013).
  • Deng Y, Lu Z, Bi H, Lu F, Zhang C, Bie X. Isolation and characterization of peptide antibiotics LI-F04 and polymyxin B6 produced by Paenibacillus polymyxa strain JSa-9. Peptides 32(9), 1917–1923 (2011).
  • De Mandal S, Panda AK, Murugan C, Xu X, Senthil Kumar N, Jin F. Antimicrobial peptides: novel source and biological function with a special focus on entomopathogenic nematode/bacterium symbiotic complex. Front. Microbiol. 12, 555022 (2021).
  • Mulpuru V, Semwal R, Varadwaj P, Mishra N. HAMP: a knowledge-base of antimicrobial peptides from human microbiome. Curr. Bioinform. (2020). https://doi.org/10.2174/1574893615999200802041228
  • Ma Y, Guo Z, Xia B et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nature Biotechnol. 40(6), 921–931 (2022).
  • Chalasani AG, Roy U, Nema S. Purification and characterisation of a novel antistaphylococcal peptide (ASP-1) from Bacillus sp. URID 12.1. Int. J. Antimicrob. Agents 51(1), 89–97 (2018).
  • Chalasani AG, Dhanarajan G, Nema S, Sen R, Roy U. An antimicrobial metabolite from Bacillus sp.: significant activity against pathogenic bacteria including multidrug-resistant clinical strains. Front. Microbiol. 6, 1335 (2015).
  • Santana FL, Arenas I, Haney EF, Estrada K, Hancock REW, Corzo G. Identification of a crocodylian β-defensin variant from Alligator mississippiensis with antimicrobial and antibiofilm activity. Peptides 141, 170549 (2021).
  • Merchant ME, Mills K, Leger N, Jerkins E, Vliet KA, McDaniel N. Comparisons of innate immune activity of all known living crocodylian species. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 143(2), 133–137 (2006).
  • Lima DB, Torres AF, Mello CP et al. Antimicrobial effect of Dinoponera quadriceps (Hymenoptera: formicidae) venom against Staphylococcus aureus strains. J. Appl. Microbiol 117(2), 390–396 (2014).
  • Rady I, Siddiqui IA, Rady M, Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 402, 16–31 (2017).
  • Lyu C, Fang F, Li B. Anti-tumor effects of melittin and its potential applications in clinic. Curr. Protein Pept. Sci. 20(3), 240–250 (2019).
  • Maiden MM, Zachos MP, Waters CM. Hydrogels embedded with melittin and tobramycin are effective against Pseudomonas aeruginosa biofilms in an animal wound model. Front. Microbiol. 10, 1348 (2019).
  • Picoli T, Peter CM, Zani JL et al. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Microb. Pathog. 112, 57–62 (2017).
  • Wang Y, Wang L, Yang H et al. The spider venom peptide lycosin-II has potent antimicrobial activity against clinically isolated bacteria. Toxins 8(5), doi: 10.3390/toxins8050119 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.