254
Views
0
CrossRef citations to date
0
Altmetric
Review

Bacteriophage-based bioassays: an expected paradigm shift in microbial diagnostics

ORCID Icon & ORCID Icon
Received 07 Nov 2023, Accepted 01 Mar 2024, Published online: 20 Jun 2024

References

  • McNally L, Brown SP. Building the microbiome in health and disease: niche construction and social conflict in bacteria. Philos. Trans. R. Soc. B 2015;370(1675):20140298.
  • Falkow S. Who speaks for the microbes? Emerg. Infect. Dis. 1998;4(3):495.
  • Graham DW, Bergeron G, Bourassa MW et al. Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann. NY Acad. Sci. 2019;1441(1):17–30.
  • Van Boeckel TP, Pires J, Silvester R et al. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science 2019;365(6459):eaaw1944.
  • Van Boeckel TP, Brower C, Gilbert M et al. Global trends in antimicrobial use in food animals. Proc. Natl Acad. Sci. USA 2015;112(18):5649–5654.
  • Murray CJ, Ikuta KS, Sharara F et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022;399(10325):629–655.
  • Schirrmann T, Meyer T, Schütte M et al. Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules 2011;16(1):412–426.
  • Daubie V, Chalhoub H, Blasdel B et al. Determination of phage susceptibility as a clinical diagnostic tool: a routine perspective. Front. Cell. Infect. Microbiol. 2022;12:1000721.
  • Farooq U, Wajid Ullah M, Yang Q, Wang S. Applications of phage-based biosensors in the diagnosis of infectious diseases, food safety, and environmental monitoring. Biosens. Environ. Monit. 2019;12:1–18.
  • Bahara NHH, Tye GJ, Choong YS et al. Phage display antibodies for diagnostic applications. Biologicals 2013;41(4):209–216.
  • Wang L-F, Yu M. Epitope identification and discovery using phage display libraries: applications in vaccine development and diagnostics. Curr. Drug Targ. 2004;5(1):1–15.
  • Roth KDR, Wenzel EV, Ruschig M et al. Developing recombinant antibodies by phage display against infectious diseases and toxins for diagnostics and therapy. Front. Cell. Infect. Microbiol. 2021;11:697876.
  • Azzazy HM, Highsmith WE Jr.. Phage display technology: clinical applications and recent innovations. Clin. Biochem. 2002;35(6):425–445.
  • Deutscher SL. Phage display in molecular imaging and diagnosis of cancer. Chem. Rev. 2010;110(5):3196–3211.
  • Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985;228(4705):1315–1317.
  • Jamal M, Bukhari SM, Andleeb S et al. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields. J. Basic Microbiol. 2019;59(2):123–133.
  • Yue H, He Y, Fan E et al. Label-free electrochemiluminescent biosensor for rapid and sensitive detection of pseudomonas aeruginosa using phage as highly specific recognition agent. Biosens. Bioelectron. 2017;94:429–432.
  • Park M-K, Li S, Chin BA. Detection of Salmonella typhimurium grown directly on tomato surface using phage-based magnetoelastic biosensors. Food Bioproc. Technol. 2013;6(3):682–689.
  • Edgar R, McKinstry M, Hwang J et al. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc. Natl Acad. Sci. USA 2006;103(13):4841–4845.
  • Kawakamii S, Ono Y, Miyazawa Y. Consider the advantages and disadvantages of microbial examinations in a hospital, and ideal microbial laboratory. Rinsho Byori Japan. J. Clin. Pathol. 2011;59(10):940–943.
  • Garibyan L, Avashia N. Research techniques made simple: polymerase chain reaction (PCR). J. Investig. Dermatol. 2013;133(3):e6.
  • Sell TL, Schaberg DR, Fekety FR. Bacteriophage and bacteriocin typing scheme for Clostridium difficile. J. Clin. Microbiol. 1983;17(6):1148–1152.
  • Sergueev KV, Filippov AA, Nikolich MP. Highly sensitive bacteriophage-based detection of Brucella abortus in mixed culture and spiked blood. Viruses 2017;9(6):144.
  • Caprioli T, Zaccour F, Kasatiya S. Phage typing scheme for group D streptococci isolated from human urogenital tract. J. Clin. Microbiol. 1975;2(4):311–317.
  • Hickman-Brenner F, Stubbs A, Farmer J 3rd. Phage typing of Salmonella enteritidis in the United States. J. Clin. Microbiol. 1991;29(12):2817–2823.
  • Castro D, Morińigo M, Martinez-Manzanares E et al. Development and application of a new scheme of phages for typing and differentiating Salmonella strains from different sources. J. Clin. Microbiol. 1992;30(6):1418–1423.
  • Slopek S, Przondo-Hessek A, Mulczyk M. New scheme of phage typing of Shigella flexneri. Arch. Roumain. de Patholog. Experiment. et de Microbiolog. 1969;28(4):974–975.
  • Khakhria R, Duck D, Lior H. Extended phage-typing scheme for Escherichia coli 0157: h7. Epidemiol. Infect. 1990;105(3):511–520.
  • Loessner MJ, Busse M. Bacteriophage typing of Listeria species. Appl. Environ. Microbiol. 1990;56(6):1912–1918.
  • Ahmed R, Sankar-Mistry P, Jackson S et al. Bacillus cereus phage typing as an epidemiological tool in outbreaks of food poisoning. J. Clin. Microbiol. 1995;33(3):636–640.
  • Khakhria R, Lior H. Extended phage-typing scheme for Campylobacter jejuni and Campylobacter coli. Epidemiol. Infect. 1992;108(3):403–414.
  • Chakrabarti A, Ghosh A, Nair GB et al. Development and evaluation of a phage typing scheme for Vibrio cholerae O139. J. Clin. Microbiol. 2000;38(1):44–49.
  • McNerney R. TB: the return of the phage. A review of fifty years of mycobacteriophage research. Inter. J. Tubercul. Lung Dis. 1999;3(3):179–184.
  • Baker P, Farmer J 3rd. New bacteriophage typing system for Yersinia enterocolitica, Yersinia kristensenii, Yersinia frederiksenii, and Yersinia intermedia: correlation with serotyping, biotyping, and antibiotic susceptibility. J. Clin. Microbiol. 1982;15(3):491–502.
  • Sekaninová G, Rychlík I, Kolářová M et al. A new bacteriophage typing scheme for Proteus mirabilis and Proteus vulgaris strains: 3. Analys. Lytic Propert. Folia Microbiol. 1998;43:136–140.
  • Singh A, Poshtiban S, Evoy S. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 2013;13(2):1763–1786.
  • Keeler E, Perkins MD, Small P et al. Reducing the global burden of tuberculosis: the contribution of improved diagnostics. Nature 2006;444(Suppl. 1):49–57.
  • McNerney R, Kambashi BS, Kinkese J et al. Development of a bacteriophage phage replication assay for diagnosis of pulmonary tuberculosis. J. Clin. Microbiol. 2004;42(5):2115–2120.
  • Hazbón MH, Guarín N, Ferro BE et al. Photographic and luminometric detection of luciferase reporter phages for drug susceptibility testing of clinical Mycobacterium tuberculosis isolates. J. Clin. Microbiol. 2003;41(10):4865–4869.
  • Beinhauerova M, Slana I. Phage amplification assay for detection of mycobacterial infection: a review. Microorganisms. 2021;9(2):237.
  • Malagon F, Estrella LA, Stockelman MG et al. Phage-mediated molecular detection (PMMD): a novel rapid method for phage-specific bacterial detection. Viruses 2020;12(4):435.
  • Mulvey MC, Lemmon M, Rotter S et al. Optimization of a nucleic acid-based reporter system to detect Mycobacterium tuberculosis antibiotic sensitivity. Antimicrob. Agents Chemother. 2015;59(1):407–413.
  • Mulvey MC, Sacksteder KA, Einck L, Nacy CA. Generation of a novel nucleic acid-based reporter system to detect phenotypic susceptibility to antibiotics in Mycobacterium tuberculosis. MBio. 2012;3(2):e00312–11.
  • Wang X, Li X, Liu S et al. Ultrasensitive detection of bacteria by targeting abundant transcripts. Scient. Reports 2016;6(1):20393.
  • O'Donnell MR, Larsen MH, Brown TS et al. Early detection of emergent extensively drug-resistant tuberculosis by flow cytometry-based phenotyping and whole-genome sequencing. Antimicrob. Agents Chemother. 2019;63(4):e01834–18.
  • Urdániz E, Rondón L, Martí MA et al. Rapid whole-cell assay of antitubercular drugs using second-generation Fluoromycobacteriophages. Antimicrob. Agents Chemother. 2016;60(5):3253–3256.
  • Rondón L, Urdániz E, Latini C et al. Fluoromycobacteriophages can detect viable Mycobacterium tuberculosis and determine phenotypic rifampicin resistance in 3–5 days from sputum collection. Front. Microbiol. 2018;9:1471.
  • Yim PB, Clarke ML, McKinstry M et al. Quantitative characterization of quantum dot-labeled lambda phage for Escherichia coli detection. Biotechnol. Bioeng. 2009;104(6):1059–1067.
  • Wu L, Song Y, Luan T et al. Specific detection of live Escherichia coli O157: h7 using tetracysteine-tagged PP01 bacteriophage. Biosens. Bioelectron. 2016;86:102–108.
  • Ford M, Stenstrom C, Hendrix R, Hatfull G. Mycobacteriophage TM4: genome structure and gene expression. Tubercl. Lung Dis. 1998;79(2):63–73.
  • Jacobs WR Jr, Barletta RG, Udani R et al. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 1993;260(5109):819–822.
  • Kumar V, Loganathan P, Sivaramakrishnan G et al. Characterization of temperate phage Che12 and construction of a new tool for diagnosis of tuberculosis. Tuberculosis 2008;88(6):616–623.
  • Pearson RE, Jurgensen S, Sarkis GJ et al. Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria. Gene 1996;183(1–2):129–136.
  • Sarkis GJ, Jacobs WR Jr, Hatfulll GF. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol. Microbiol. 1995;15(6):1055–1067.
  • Serena NN, Boschero RA, Hospinal-Santiani M et al. High-performance immune diagnosis of tuberculosis: use of phage display and synthetic peptide in an optimized experimental design. J. Immunol. Methods 2022;503:113242.
  • Riska PF, Su Y, Bardarov S et al. Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx Box. J. Clin. Microbiol. 1999;37(4):1144–1149.
  • Goldman ER, Pazirandeh MP, Mauro JM et al. Phage-displayed peptides as biosensor reagents. J. Mol. Recogn. 2000;13(6):382–387.
  • Rowe CA, Tender LM, Feldstein MJ et al. Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Anal. Chem. 1999;71(17):3846–3852.
  • Brown M, Hall A, Zahn H et al. Bacteriophage-based detection of Staphylococcus aureus in human serum. Viruses 2022;14(8):1748.
  • Organization WH. WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007–2015 2015.
  • Goodridge L, Chen J, Griffiths M. The use of a fluorescent bacteriophage assay for detection of Escherichia coli O157: h7 in inoculated ground beef and raw milk. Inter. J. Food Microbiol. 1999;47(1–2):43–50.
  • Goodridge L, Chen J, Griffiths M. Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157: h7. Appl. Environ. Microbiol. 1999;65(4):1397–1404.
  • Kalantri S, Pai M, Pascopella L et al. Bacteriophage-based tests for the detection of Mycobacterium tuberculosis in clinical specimens: a systematic review and meta-analysis. BMC Infect. Dis. 2005;5:1–13.
  • Anany H, Brovko L, El Dougdoug NK et al. Print to detect: a rapid and ultrasensitive phage-based dipstick assay for foodborne pathogens. Analyt. Bioanalyt. Chem. 2018;410:1217–1230.
  • Rees JC, Pierce CL, Schieltz DM, Barr JR. Simultaneous identification and susceptibility determination to multiple antibiotics of Staphylococcus aureus by bacteriophage amplification detection combined with mass spectrometry. Anal. Chem. 2015;87(13):6769–6777.
  • Rees JC, Barr JR. Detection of methicillin-resistant Staphylococcus aureus using phage amplification combined with matrix-assisted laser desorption/ionization mass spectrometry. Analyt. Bioanalyt. Chem. 2017;409:1379–1386.
  • Richter Ł, Janczuk-Richter M, Niedziółka-Jönsson J et al. Recent advances in bacteriophage-based methods for bacteria detection. Drug Discov. Today 2018;23(2):448–455.
  • Tilton L, Das G, Yang X et al. Nanophotonic device in combination with bacteriophages for enhancing detection sensitivity of Escherichia coli in simulated wash water. Analyt. Lett. 2019;52(14):2203–2213.
  • Burnham S, Hu J, Anany H et al. Towards rapid on-site phage-mediated detection of generic Escherichia coli in water using luminescent and visual readout. Analyt. Bioanalyt. Chem. 2014;406:5685–5693.
  • Chen J, Alcaine SD, Jiang Z et al. Detection of Escherichia coli in drinking water using T7 bacteriophage-conjugated magnetic probe. Anal. Chem. 2015;87(17):8977–8984.
  • Yang X, Wisuthiphaet N, Young GM, Nitin N. Rapid detection of Escherichia coli using bacteriophage-induced lysis and image analysis. PLOS ONE 2020;15(6):e0233853.
  • Alonzo LF, Jain P, Hinkley T et al. Rapid, sensitive, and low-cost detection of Escherichia coli bacteria in contaminated water samples using a phage-based assay. Scient. Rep. 2022;12(1):7741.
  • Zhang D, Coronel-Aguilera CP, Romero PL et al. The use of a novel NanoLuc-based reporter phage for the detection of Escherichia coli O157: h7. Scient. Rep. 2016;6(1):33235.
  • Willford JD, Bisha B, Bolenbaugh KE, Goodridge LD. Luminescence based enzyme-labeled phage (Phazyme) assays for rapid detection of Shiga toxin producing Escherichia coli serogroups. Bacteriophage 2011;1(2):101–110.
  • Wang D, Hinkley T, Chen J et al. Phage based electrochemical detection of Escherichia coli in drinking water using affinity reporter probes. Analyst 2019;144(4):1345–1352.
  • Luo J, Jiang M, Xiong J et al. Exploring a phage-based real-time PCR assay for diagnosing Acinetobacter baumannii bloodstream infections with high sensitivity. Analyt. Chim. Acta 2018;1044:147–153.
  • Luo J, Jiang M, Xiong J et al. Rapid ultrasensitive diagnosis of pneumonia caused by Acinetobacter baumannii using a combination of enrichment and phage-based qPCR assay. 2020;8:147–153.
  • de Aquino NSM, de Oliveira Elias S, Gomes LVA, Tondo EC. Phage-based assay for the detection of Salmonella in Brazilian poultry products. J. Food Sci. Nutr. Res. 2021;4(3):249–258.
  • Kuipers EJ. Encyclopedia of Gastroenterology. Elsevier; 2019.
  • Polese P, Del Torre M, Venir E, Stecchini ML. A simplified modelling approach established to determine the Listeria monocytogenes behaviour during processing and storage of a traditional (Italian) ready-to-eat food in accordance with the European Commission Regulation N° 2073/2005. Food Control. 2014;36(1):166–173.
  • Foods NACoMCf. Response to questions posed by the food safety and inspection service regarding Salmonella control strategies in poultry. J. Food Protect. 2019;82(4):645–668.
  • Heymans R, Vila A, van Heerwaarden CA et al. Rapid detection and differentiation of Salmonella species, Salmonella Typhimurium and Salmonella Enteritidis by multiplex quantitative PCR. PLOS ONE 2018;13(10):e0206316.
  • Vinay M, Franche N, Grégori G et al. Phage-based fluorescent biosensor prototypes to specifically detect enteric bacteria such as E. coli and Salmonella enterica Typhimurium. PLOS ONE 2015;10(7):e0131466.
  • de Aquino NSM, Elias SdO, Tondo EC. Evaluation of PhageDX Salmonella Assay for Salmonella detection in hydroponic curly lettuce. Foods 2021;10(8):1795.
  • Nguyen MM, Gil J, Brown M et al. Accurate and sensitive detection of Salmonella in foods by engineered bacteriophages. Scient. Rep. 2020;10(1):17463.
  • Krithiga N, Viswanath KB, Vasantha V, Jayachitra A. Specific and selective electrochemical immunoassay for Pseudomonas aeruginosa based on pectin–gold nano composite. Biosens. Bioelectron. 2016;79:121–129.
  • Pastells C, Pascual N, Sanchez-Baeza F, Marco M-P. Immunochemical determination of pyocyanin and 1-hydroxyphenazine as potential biomarkers of Pseudomonas aeruginosa infections. Anal. Chem. 2016;88(3):1631–1638.
  • Harada LK, Júnior WB, Silva EC et al. Bacteriophage-based biosensing of Pseudomonas aeruginosa: an integrated approach for the putative real-time detection of multi-drug-resistant strains. Biosensors 2021;11(4):124.
  • Ezzat SM, Azzam MI. An approach using a novel phage mix for detecting Pseudomonas aeruginosa in water. Water Environm. J. 2020;34(2):189–202.
  • Hoffmaster AR, Meyer RF, Bowen MP et al. Evaluation and validation of a real-time polymerase chain reaction assay for rapid identification of Bacillus anthracis. 2002.
  • Kolton CB, Podnecky NL, Shadomy SV et al. Bacillus anthracis gamma phage lysis among soil bacteria: an update on test specificity. BMC Res. Notes 2017;10(1):1–6.
  • Jeffs E, Williman J, Brunton C et al. The epidemiology of listeriosis in pregnant women and children in New Zealand from 1997 to 2016: an observational study. BMC Public Health 2020;20(1):1–8.
  • Kawacka I, Olejnik-Schmidt A, Schmidt M, Sip A. Effectiveness of phage-based inhibition of Listeria monocytogenes in food products and food processing environments. Microorganisms 2020;8(11):1764.
  • Gutiérrez D, Rodríguez-Rubio L, Fernández L et al. Applicability of commercial phage-based products against Listeria monocytogenes for improvement of food safety in Spanish dry-cured ham and food contact surfaces. Food Control. 2017;73:1474–1482.
  • Loessner MJ, Rudolf M, Scherer S. Evaluation of luciferase reporter bacteriophage A511:: luxAB for detection of Listeria monocytogenes in contaminated foods. Appl. Environ. Microbiol. 1997;63(8):2961–2965.
  • Schmelcher M, Shabarova T, Eugster MR et al. Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains. Appl. Environ. Microbiol. 2010;76(17):5745–5756.
  • Costa SP, Dias NM, Melo LD et al. A novel flow cytometry assay based on bacteriophage-derived proteins for Staphylococcus detection in blood. Scient. Rep. 2020;10(1):6260.
  • Zhou J, Zhou D, Chen W et al. Study on the clinical application of Streptococcus pneumoniae serotype detection based on MALDI-TOF MS technology. Food Sci. Technol. 2022;23:42.
  • Llull D, López R, García E. Characteristic signatures of the lytA gene provide a basis for rapid and reliable diagnosis of Streptococcus pneumoniae infections. J. Clin. Microbiol. 2006;44(4):1250–1256.
  • Cardaci A, Papasergi S, Midiri A et al. Protective activity of Streptococcus pneumoniae Spr1875 protein fragments identified using a phage displayed genomic library. PLOS ONE 2012;7(5):e36588.
  • Shahin K, Bouzari M. Bacteriophage application for biocontrolling Shigella flexneri in contaminated foods. J. Food Sci. Technol. 2018;55:550–559.
  • Mallick B, Mondal P, Dutta M. Morphological, biological, and genomic characterization of a newly isolated lytic phage Sfk20 infecting Shigella flexneri, Shigella sonnei, and Shigella dysenteriae1. Scient. Rep. 2021;11(1):19313.