1,665
Views
0
CrossRef citations to date
0
Altmetric
Drug Evaluation

Sulbactam–durlobactam: a β-lactam/β-lactamase inhibitor combination targeting Acinetobacter baumannii

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 563-576 | Received 08 Nov 2023, Accepted 02 Feb 2024, Published online: 01 Mar 2024

References

  • Centers for Disease Prevention and Control. Antibiotic Resistance Threats in the United States (2019). https://www.cdc.gov/drugresistance/biggest-threats.html ( Accessed 14 January 2024).
  • European Centre for Disease Prevention and Control. Rapid Risk Assessment: Carbapenem-resistant Acinetobacter baumannii in Healthcare Settings (2016). https://www.ecdc.europa.eu/en/publications-data/rapid-risk-assessment-carbapenem-resistant-Acinetobacter-baumannii-healthcare ( Accessed 14 January 2024).
  • Cain AK, Hamidian M. Portrait of a killer: uncovering resistance mechanisms and global spread of Acinetobacter baumannii. PLOS Pathog. 19(8), e1011520 (2023).
  • Lemos EV, de la Hoz FP, Einarson TR et al. Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: systematic review and meta-analysis. Clin. Microbiol. Infect. 20(5), 416–423 (2014).
  • Falcone M, Tiseo G, Carbonara S et al. Mortality Attributable to Bloodstream Infections Caused by Different Carbapenem-Resistant Gram-Negative Bacilli: Results From a Nationwide Study in Italy (ALARICO Network). Clin. Infect. Dis. 76(12), 2059–2069 (2023).
  • Munoz-Price LS, Weinstein RA. Acinetobacter infection. N. Engl. J. Med. 358(12), 1271–1281 (2008).
  • Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Antimicrobial Resistant Treatment Guidance: Gram-Negative Bacterial Infections. Clin. Infect. Dis. ciad428 (2023).
  • Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Systematic review of antimicrobial combination options for pandrug-resistant Acinetobacter baumannii. Antibiotics 10(11), 1344 (2021).
  • XACDURO® (sulbactam for injection; durlobactam for injection), co-packaged for intravenous use. Prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/216974Orig1s000Correctedlbl.pdf ( Accessed 14 January 2024).
  • Adnan S, Paterson DL, Lipman J, Roberts JA. Ampicillin/sulbactam: its potential use in treating infections in critically ill patients. Int. J. Antimicrob. Agents 42(5), 384–389 (2013).
  • Shapiro AB. Kinetics of sulbactam hydrolysis by β-lactamases, and kinetics of β-lactamase inhibition by Sulbactam. Antimicrob. Agents Chemother. 61(12), e01612–01617 (2017).
  • Noguchi JK, Gill MA. Sulbactam: a β-lactamase inhibitor. Clin. Pharm. 7(1), 37–51 (1988).
  • Penwell WF, Shapiro AB, Giacobbe RA et al. Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob. Agents Chemother. 59(3), 1680–1689 (2015).
  • Krizova L, Poirel L, Nordmann P, Nemec A. TEM-1 β-lactamase as a source of resistance to sulbactam in clinical strains of Acinetobacter baumannii. J. Antimicrob. Chemother. 68(12), 2786–2791 (2013).
  • Kuo S-C, Lee Y-T, Yang Lauderdale T-L et al. Contribution of Acinetobacter-derived cephalosporinase-30 to sulbactam resistance in Acinetobacter baumannii. Front. Microbiol. 6, 231 (2015).
  • Durand-Réville TF, Guler S, Comita-Prevoir J et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat. Microbiol. 2, 17104 (2017).
  • Castanheira M, Mendes RE, Gales AC. Global epidemiology and mechanisms of resistance of Acinetobacter baumannii-calcoaceticus complex. Clin. Infect. Dis. 76(Suppl. 2), S166–S178 (2023).
  • Shapiro AB, Gao N, Jahić H, Carter NM, Chen A, Miller AA. Reversibility of covalent, broad-spectrum serine β-lactamase inhibition by the diazabicyclooctenone ETX2514. ACS Infect. Dis. 3(11), 833–844 (2017).
  • Petropoulou D, Siopi M, Vourli S, Pournaras S. Activity of sulbactam–durlobactam and Comparators Against a National Collection of Carbapenem-Resistant Acinetobacter baumannii Isolates From Greece. Front. Cell. Infect. Microbiol. 11, 814530 (2021).
  • Seifert H, Müller C, Stefanik D, Higgins PG, Miller A, Kresken M. In vitro activity of sulbactam/durlobactam against global isolates of carbapenem-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 75(9), 2616–2621 (2020).
  • Nodari CS, Santos FF, Kurihara MNL, Valiatti TB, Cayô R, Gales AC. In vitro activity of sulbactam/durlobactam against extensively drug-resistant Acinetobacter baumannii isolates belonging to South American major clones. J. Glob. Antimicrob. Resist. 25, 363–366 (2021).
  • Karlowsky JA, Hackel MA, McLeod SM, Miller AA. In vitro activity of sulbactam–durlobactam against global isolates of Acinetobacter baumannii - calcoaceticus complex collected from 2016 to 2021. Antimicrob. Agents Chemother. 66(9), e00781–22 (2022).
  • Findlay J, Poirel L, Bouvier M, Nordmann P. In vitro activity of sulbactam–durlobactam against carbapenem-resistant Acinetobacter baumannii and mechanisms of resistance. J. Glob. Antimicrob. Resist. 30, 445–450 (2022).
  • Yang Q, Xu Y, Jia P et al. In vitro activity of sulbactam/durlobactam against clinical isolates of Acinetobacter baumannii collected in China. J. Antimicrob. Chemother. 75(7), 1833–1839 (2020).
  • FDA. Antimicrobial susceptibility test interpretive criteria. sulbactam–durlobactam. https://www.fda.gov/drugs/development-resources/sulbactam-and-durlobactam-injection ( Accessed 14 January 2024).
  • McLeod SM, Shapiro AB, Moussa SH et al. Frequency and mechanism of spontaneous resistance to sulbactam combined with the novel β-lactamase inhibitor ETX2514 in clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 62(2), e01576–17 (2018).
  • McLeod SM, Moussa SH, Hackel MA, Miller AA. In vitro activity of sulbactam–durlobactam against Acinetobacter baumannii-calcoaceticus complex isolates collected globally in 2016 and 2017. Antimicrob. Agents Chemother. 64(4), e02534–19 (2020).
  • Moussa SH, Shapiro AB, McLeod SM et al. Molecular drivers of resistance to sulbactam–durlobactam in contemporary clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 67(11), e0066523 (2023).
  • Barnes MD, Kumar V, Bethel CR et al. Targeting multidrug-resistant Acinetobacter spp.: sulbactam and the diazabicyclooctenone β-lactamase inhibitor ETX2514 as a novel therapeutic agent. mBio 10(2), e00159–19 (2019).
  • Mussi MA, Limansky AS, Viale AM. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of β-barrel outer membrane proteins. Antimicrob. Agents Chemother. 49(4), 1432–1440 (2005).
  • Iyer R, Moussa SH, Durand-Réville TF, Tommasi R, Miller A. Acinetobacter baumannii OmpA Is a selective antibiotic permeant porin. ACS Infect. Dis. 4(3), 373–381 (2018).
  • Corbella X, Ariza J, Ardanuy C et al. Efficacy of sulbactam alone and in combination with ampicillin in nosocomial infections caused by multiresistant Acinetobacter baumannii. J. Antimicrob. Chemother. 42(6), 793–802 (1998).
  • Obana Y, Nishino T. In-vitro and in-vivo activities of sulbactam and YTR830H against Acinetobacter calcoaceticus. J. Antimicrob. Chemother. 26(5), 677–682 (1990).
  • Rodríguez-Hernández MJ, Cuberos L, Pichardo C et al. Sulbactam efficacy in experimental models caused by susceptible and intermediate Acinetobacter baumannii strains. J. Antimicrob. Chemother. 47(4), 479–482 (2001).
  • Wolff M, Joly-Guillou ML, Farinotti R, Carbon C. In vivo efficacies of combinations of beta-lactams, beta-lactamase inhibitors, and rifampin against Acinetobacter baumannii in a mouse pneumonia model. Antimicrob. Agents Chemother. 43(6), 1406–1411 (1999).
  • Yokoyama Y, Matsumoto K, Ikawa K et al. Pharmacokinetic/pharmacodynamic evaluation of sulbactam against Acinetobacter baumannii in in vitro and murine thigh and lung infection models. Int. J. Antimicrob. Agents 43(6), 547–552 (2014).
  • Housman ST, Hagihara M, Nicolau DP, Kuti JL. In vitro pharmacodynamics of human-simulated exposures of ampicillin/sulbactam, doripenem and tigecycline alone and in combination against multidrug-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 68(10), 2296–2304 (2013).
  • Bulitta JB, Hope WW, Eakin AE et al. Generating robust and informative nonclinical in vitro and in vivo bacterial infection model efficacy data to support translation to humans. Antimicrob. Agents Chemother. 63(5), e02307–02318 (2019).
  • O'Donnell JP, Bhavnani SM. The pharmacokinetics/pharmacodynamic relationship of durlobactam in combination with sulbactam in in vitro and in vivo infection model systems versus Acinetobacter baumannii-calcoaceticus complex. Clin. Infect. Dis. 76(Suppl. 2), S202–S209 (2023).
  • U.S. Food and Drug Administration. Antibacterial therapies for patients with an unmet medical need for the treatment of serious bacterial diseases. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/antibacterial-therapies-patients-unmet-medical-need-treatment-serious-bacterial-diseases
  • Lickliter JD, Lawrence K, O'Donnell J, Isaacs R. Safety, pharmacokinetics, and drug-drug interaction potential of intravenous durlobactam, a β-lactamase inhibitor, in healthy subjects. Antimicrob. Agents Chemother. 64(7), e00071–20 (2020).
  • Rodvold KA, Gotfried MH, Isaacs RD, O'Donnell JP, Stone E. Plasma and intrapulmonary concentrations of ETX2514 and sulbactam following intravenous administration of ETX2514SUL to healthy adult subjects. Antimicrob. Agents Chemother. 62(11), e01089–18 (2018).
  • O'Donnell J, Maloney K, Steidler M, Morrison R, Isaacs R. A randomized, double-blind, placebo- and positive-controlled crossover study of the effects of durlobactam on cardiac repolarization in healthy subjects. Clin. Transl. Sci. 14(4), 1423–1430 (2021).
  • O'Donnell J, Preston RA, Mamikonyan G, Stone E, Isaacs R. Pharmacokinetics, safety, and tolerability of intravenous durlobactam and sulbactam in subjects with renal impairment and healthy matched control subjects. Antimicrob. Agents Chemother. 63(9), e00794–19 (2019).
  • Sagan O, Yakubsevitch R, Yanev K et al. Pharmacokinetics and tolerability of intravenous sulbactam–durlobactam with imipenem-cilastatin in hospitalized adults with complicated urinary tract infections, including acute pyelonephritis. Antimicrob. Agents Chemother. 64(3), e01506–01519 (2020).
  • Kaye KS, Shorr AF, Wunderink RG et al. Efficacy and safety of sulbactam–durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: a multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect. Dis. 23(9), 1072–1084 (2023).
  • Hartzell JD, Neff R, Ake J et al. Nephrotoxicity associated with intravenous colistin (colistimethate sodium) treatment at a tertiary care medical center. Clin. Infect. Dis. 48(12), 1724–1728 (2009).
  • Bartal C, Rolston KVI, Nesher L. Carbapenem-resistant Acinetobacter baumannii: colonization, infection and current treatment options. Infect. Dis. Ther. 11(2), 683–694 (2022).
  • Bassetti M, Echols R, Matsunaga Y et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase III trial. Lancet Infect. Dis. 21(2), 226–240 (2021).
  • Wunderink RG, Matsunaga Y, Ariyasu M et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase III, non-inferiority trial. Lancet Infect. Dis. 21(2), 213–225 (2021).
  • Choby JE, Ozturk T, Satola SW, Jacob JT, Weiss DS. Widespread cefiderocol heteroresistance in carbapenem-resistant Gram-negative pathogens. Lancet Infect. Dis. 21(5), 597–598 (2021).
  • Marcella S, Kobic E, Carr AL, Georgiades B, Margiotta C. Outcomes using cefiderocol for the treatment of Acinetobacter baumannii infections from the PROVE (real-world evidence) study. Open Forum Infect. Dis. 9, S361–S362 (2022).
  • Simner PJ, Palavecino EL, Satlin MJ et al. Potential of inaccurate cefiderocol susceptibility results: a CLSI AST subcommittee advisory. J. Clin. Microbiol. 61(4), e0160022 (2023).
  • XERAVA® (eravacycline) for injection, for intravenous use. Prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf
  • Livermore DM, Mushtaq S, Warner M, Woodford N. In vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. Antimicrob. Agents Chemother. 60(6), 3840–3844 (2016).
  • Hawser S, Kothari N, Monti F, Morrissey I, Siegert S, Hodges T. In vitro activity of eravacycline and comparators against Gram-negative and Gram-positive bacterial isolates collected from patients globally between 2017 and 2020. J. Glob. Antimicrob. Resist. 33, 304–320 (2023).
  • Solomkin J, Evans D, Slepavicius A et al. Assessing the efficacy and safety of eravacycline vs ertapenem in complicated intra-abdominal infections in the investigating Gram-negative infections treated with eravacycline (IGNITE 1) trial: a randomized clinical trial. JAMA Surg. 152(3), 224–232 (2017).
  • Solomkin JS, Gardovskis J, Lawrence K et al. IGNITE4: results of a phase III, randomized, multicenter, prospective trial of eravacycline vs meropenem in the treatment of complicated intraabdominal infections. Clin. Infect. Dis. 69(6), 921–929 (2019).
  • Alosaimy S, Morrisette T, Lagnf AM et al. Clinical outcomes of eravacycline in patients treated predominately for carbapenem-resistant Acinetobacter baumannii. Microbiol. Spectr. 10(5), e0047922 (2022).
  • Scott CJ, Zhu E, Jayakumar RA, Shan G, Viswesh V. Efficacy of eravacycline versus best previously available therapy for adults with pneumonia due to difficult-to-treat resistant (DTR) Acinetobacter baumannii. Ann. Pharmacother. 56(12), 1299–1307 (2022).
  • Iregui A, Landman D, Quale J. Activity of omadacycline and other tetracyclines against contemporary gram-negative pathogens from New York City hospitals. Microb. Drug Resist. Larchmt. N 27(2), 190–195 (2021).
  • Morrisette T, Alosaimy S, Lagnf AM et al. Real-world, multicenter case series of patients treated with oral omadacycline for resistant Gram-negative pathogens. Infect. Dis. Ther. 11(4), 1715–1723 (2022).
  • CLSI. Performance standards for antimicrobial susceptibility testing, M100-S33(33rd ed.). CLSI, PA, USA (2023).
  • Lenhard JR, Smith NM, Bulman ZP et al. High-dose ampicillin-sulbactam combinations combat polymyxin-resistant Acinetobacter baumannii in a hollow-fiber infection model. Antimicrob. Agents Chemother. 61(3), e01268–16 (2017).
  • Kengkla K, Kongpakwattana K, Saokaew S, Apisarnthanarak A, Chaiyakunapruk N. Comparative efficacy and safety of treatment options for MDR and XDR Acinetobacter baumannii infections: a systematic review and network meta-analysis. J. Antimicrob. Chemother. 73(1), 22–32 (2018).
  • McLeod S, Carter N, Miller A. In vitro susceptibility of Acinetobacter baumannii-calcoaceticus complex (ABC) to sulbactam–durlobactam in combination with a carbapenem. Presented at: ECCMID. Copenhagen, Denmark, P2126, 15–18 April 2023.
  • Kalil AC, Metersky ML, Klompas M et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 63(5), e61–e111 (2016).
  • VABOMERE® (meropenem and vaborbactam) for injection, for intravenous use. Prescribing information.
  • Magiorakos A-P, Srinivasan A, Carey RB et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18(3), 268–281 (2012).