22
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biosurfactant complexed with arginine has antibiofilm activity against methicillin-resistant Staphylococcus aureus

, , , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 667-679 | Received 01 Dec 2023, Accepted 01 Feb 2024, Published online: 12 Jun 2024

References

  • Alarjani KM, Skalicky M. Antimicrobial resistance profile of Staphylococcus aureus and its in-vitro potential inhibition efficiency. J. Infect. Public Health. 14(12), 1796–1801 (2021).
  • Tsuzuki S, Yu J, Matsunaga N, Ohmagari N. Length of stay, hospitalisation costs and in-hospital mortality of methicillin-susceptible and methicillin-resistant Staphylococcus aureus bacteremia in Japan. Public Health 198, 292–296 (2021).
  • Shrestha P, Cooper BS, Coast J et al. Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrob. Resist. Infect. Control. 7(1), 98 (2018).
  • Idrees M, Sawant S, Karodia N, Rahman A. Staphylococcus aureus biofilm: morphology, genetics, pathogenesis and treatment strategies. Int. J. Environ. Res. Public Health 18(14), 7602 (2021).
  • De Breij A, Riool M, Cordfunke RA et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med. [ Internet]. 10(eaan4044) (2018). Available from: https://www.science.org
  • Singh A, Amod A, Pandey P et al. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. Biomed. Mater. 17(2) (2022).
  • Rosenthal VD, Gupta D, Rajhans P et al. Six-year multicenter study on short-term peripheral venous catheters-related bloodstream infection rates in 204 intensive care units of 57 hospitals in 19 cities of India: International Nosocomial Infection Control Consortium (INICC) findings. Am. J. Infect. Control 48(9), 1001–1008 (2020).
  • Cangui-Panchi SP, Ñacato-Toapanta AL, Enríquez-Martínez LJ, Reyes J, Garzon-Chavez D, Machado A. Biofilm-forming microorganisms causing hospital-acquired infections from intravenous catheter: a systematic review. Curr. Res. Microb. Sci. 3, 100175 (November) (2022).
  • Farrag HA, Hosny AEDMS, Hawas AM, Hagras SAA, Helmy OM. Potential efficacy of garlic lock therapy in combating biofilm and catheter-associated infections; experimental studies on an animal model with focus on toxicological aspects. Saudi Pharm. J. 27(6), 830–840 (2019).
  • Ishikawa K, Furukawa K. Staphylococcus aureus bacteremia due to central venous catheter infection: a clinical comparison of infections caused by methicillin-resistant and methicillin-susceptible strains. Cureus 13(7), e16607 (2021).
  • Salmanov A, Litus V, Vdovychenko S et al. Healthcare-associated infections in intensive care units. Wiad. Lek. 72(5 cz 2), 963–969 (2019).
  • Ray-Barruel G, Xu H, Marsh N, Cooke M, Rickard CM. Effectiveness of insertion and maintenance bundles in preventing peripheral intravenous catheter-related complications and bloodstream infection in hospital patients: a systematic review. Infect. Dis. Heal. 24(3), 152–168 (2019).
  • Liu Y, She P, Xu L et al. Antimicrobial, antibiofilm, and anti-persister activities of penfluridol against Staphylococcus aureus. Front. Microbiol. 18(12), 727692 (2021).
  • Bonnal C, Birgand G, Lolom I et al. Staphylococcus aureus healthcare associated bacteraemia: an indicator of catheter related infections. Med. Mal. Infect. 45(3), 84–88 (2015).
  • Dadashi M, Nasiri MJ, Fallah F et al. Methicillin-resistant Staphylococcus aureus (MRSA) in Iran: a systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 12(2010), 96–103 (2018).
  • Liu WT, Chen EZ, Yang L et al. Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: a comprehensive review. Microb. Pathog. 156, 104915 (2021).
  • Thakur P, Saini NK, Thakur VK, Gupta VK, Saini RV, Saini AK. Rhamnolipid the glycolipid biosurfactant: emerging trends and promising strategies in the field of biotechnology and biomedicine. Microb. Cell Fact. 20(1), 1 (2021).
  • Singh P, Patil Y, Rale V. Biosurfactant production: emerging trends and promising strategies. J. Appl. Microbiol. 126(1), 2–13 (2019).
  • Ceresa C, Fracchia L, Sansotera AC, De Rienzo MAD, Banat IM. Harnessing the potential of biosurfactants for biomedical and pharmaceutical applications. Pharmaceutics 15(8), 2156 (2023).
  • Chong H, Li Q. Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb. Cell Fact. 16(1), 137 (2017).
  • Tambone E, Bonomi E, Ghensi P et al. Rhamnolipid coating reduces microbial biofilm formation on titanium implants: an in vitro study. BMC Oral Health 21(1), 49 (2021).
  • Ceresa C, Tessarolo F, Maniglio D et al. Medical-grade silicone coated with rhamnolipid R89 is effective against Staphylococcus spp. biofilms. Molecules 24(21),3843 (2019).
  • Ramos da Silva A, Manresa MÁ, Pinazo A, García MT, Pérez L. Rhamnolipids functionalized with basic amino acids: synthesis, aggregation behavior, antibacterial activity and biodegradation studies. Coll. Surf. B Biointerf. 181(February), 234–243 (2019).
  • da Silva A, Nobre H, Sampaio L et al. Antifungal and antiprotozoal green amino acid-based rhamnolipids: mode of action, antibiofilm efficiency and selective activity against resistant Candida spp. strains and Acanthamoeba castellanii. Coll. Surf. B Biointerf. 193(May), 111148 (2020).
  • CLSI. M07-A10: methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically [Internet]. Available from: http://www.clsi.org
  • Batista de Andrade Neto J, Alexandre Josino MA, Rocha da Silva C et al. A mechanistic approach to the in-vitro resistance modulating effects of fluoxetine against meticillin resistant Staphylococcus aureus strains. Microb. Pathog. 127(November 2018), 335–340 (2019).
  • Das B, Mandal D, Dash SK et al. Eugenol provokes ROS-mediated membrane damage-associated antibacterial activity against clinically isolated multidrug-resistant Staphylococcus aureus strains. Infect. Dis. Res. Treat. 9, IDRT.S31741 (2016).
  • Da Silva CR, De Andrade Neto JB, Costa Sidrim JJ et al. Synergistic effects of amiodarone and fluconazole on Candida tropicalis resistant to fluconazole. Antimicrob. Agents Chemother. 57(4), 1691–1700 (2013).
  • Costa EM, Silva S, Madureira AR, Cardelle-Cobas A, Tavaria FK, Pintado MM. A comprehensive study into the impact of a chitosan mouthwash upon oral microorganism's biofilm formation in vitro. Carbohydr. Polym. 101(1), 1081–1086 (2014).
  • Brambilla LZS, Endo EH, Cortez DAG, Filho BPD. Anti-biofilm activity against Staphylococcus aureus MRSA and MSSA of neolignans and extract of Piper regnellii. Rev. Bras. Farmacogn. 27(1), 112–117 (2017).
  • Sidrim JJC, Amando BR, Gomes FIF et al. Chlorpromazine-impregnated catheters as a potential strategy to control biofilm-associated urinary tract infections. Fut. Microbiol. 14(12), 1023–1034 (2019).
  • Iwata Y, Sakai N, Yoneda I et al. D-Serine inhibits the attachment and biofilm formation of methicillin-resistant Staphylococcus aureus. Biochem. Biophys. Res. Commun. 537, 50–56 (2021).
  • Do Amaral Valente Sá LG, Da Silva CR, De Andrade Neto JB et al. Antifungal activity of etomidate against growing biofilms of fluconazole-resistant Candida spp. strains, binding to mannoproteins and molecular docking with the ALS3 protein. J. Med. Microbiol. 69(10), 1221–1227 (2020).
  • CLSI. CLSI.Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically;ApprovedStandard—Tenth Edition.CLSI documentM07-A10. Wayne, PA: Clinical and LaboratoryStandards Institute; 2015. 30th ed.2015
  • Buonocore C, Giugliano R, Della Sala G et al. Evaluation of antimicrobial properties and potential applications of Pseudomonas gessardii M15 rhamnolipids towards multiresistant Staphylococcus aureus. Pharmaceutics 15(2), 700 (2023).
  • Malakar C, Patowary K, Deka S, Kalita MC. Synthesis, characterization, and evaluation of antibacterial efficacy of rhamnolipid-coated zinc oxide nanoparticles against Staphylococcus aureus. World J. Microbiol. Biotechnol. 37(11), 1–14 (2021).
  • Samadi N, Abadian N, Ahmadkhaniha R et al. Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus. Folia Microbiol. (Praha) 57(6), 501–508 (2012).
  • Otzen DE. Biosurfactants and surfactants interacting with membranes and proteins: same but different? Biochim. Biophys. Acta - Biomembr. 1859(4), 639–649 (2017).
  • Radlinski LC, Rowe SE, Brzozowski R et al. Chemical induction of aminoglycoside uptake overcomes antibiotic tolerance and resistance in Staphylococcus aureus. Cell Chem. Biol. 26(10), 1355–1364.e4 (2019).
  • Pinazo A, Manresa MA, Marques AM, Bustelo M, Espuny MJ, Pérez L. Amino acid-based surfactants: new antimicrobial agents. Adv. Colloid Interface Sci. 228, 17–39 (2016).
  • Patrone V, Campana R, Vittoria E, Baffone W. In vitro synergistic activities of essential oils and surfactants in combination with cosmetic preservatives against Pseudomonas aeruginosa and Staphylococcus aureus. Curr. Microbiol. 60(4), 237–241 (2010).
  • Serpa Sampaio Moreno L, Nobre Junior HV, Ramos da Silva A et al. Arginine-phenylalanine and arginine-tryptophan-based surfactants as new biocompatible antifungal agents and their synergistic effect with Amphotericin B against fluconazole-resistant Candida strains. Coll. Surf. B Biointerf. 207, 112017 (2021).
  • Sabarinathan D, Vanaraj S, Sathiskumar S et al. Characterization and application of rhamnolipid from Pseudomonas plecoglossicida BP03. Lett. Appl. Microbiol. 72(3), 251–262 (2021).
  • e Silva SS, Carvalho JWP, Aires CP, Nitschke M. Disruption of Staphylococcus aureus biofilms using rhamnolipid biosurfactants. J. Dairy Sci. 100(10), 7864–7873 (2017).
  • Allegrone G, Ceresa C, Rinaldi M, Fracchia L. Diverse effects of natural and synthetic surfactants on the inhibition of Staphylococcus aureus biofilm. Pharmaceutics 13(8),1172 (2021).
  • Nickzad A, Déziel E. The involvement of rhamnolipids in microbial cell adhesion and biofilm development - an approach for control? Lett. Appl. Microbiol. 58(5), 447–453 (2014).
  • Sulaiman R, Trizna E, Kolesnikova A et al. Antimicrobial and biofilm-preventing activity of l-borneol possessing 2(5H)-furanone derivative F131 against S. aureus—C.albicans mixed cultures. Pathogens 12(1), 26 (2023).
  • Bera S, Zhanel GG, Schweizer F. Antibacterial activity of guanidinylated neomycin B- and kanamycin A-derived amphiphilic lipid conjugates. J. Antimicrob. Chemother. 65(6), 1224–1227 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.