257
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Many substrates and functions of type II secretion: lessons learned from Legionella pneumophila

Pages 797-805 | Published online: 01 Sep 2009

Bibliography

  • Desvaux M , HebraudM, TalonR, HendersonIR: Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue.Trends Microbiol.17 , 139–145 (2009).
  • Cianciotto NP : Type II secretion: a protein secretion system for all seasons.Trends Microbiol.13 , 581–588 (2005).
  • Evans FF , EganS, KjellebergS: Ecology of type II secretion in marine γproteobacteria.Environ. Microbiol.10 , 1101–1107 (2008).
  • Johnson TL , AbendrothJ, HolWG, SandkvistM: Type II secretion: from structure to function.FEMS Microbiol. Lett.255 , 175–186 (2006).
  • Filloux A : The underlying mechanisms of type II protein secretion.Biochim. Biophys. Acta Mol. Cell. Res.1694 , 163–179 (2004).
  • Peabody CR , ChungYJ, YenMR, Vidal-IngigliardiD, PugsleyAP, SaierMH Jr: Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology149 , 3051–3072 (2003).
  • Lybarger SR , JohnsonTL, GrayMD, SikoraAE, SandkvistM: Docking and assembly of the type II secretion complex of Vibrio cholerae.J. Bacteriol.191 , 3149–3161 (2009).
  • Arts J , de Groot A, Ball G et al.: Interaction domains in the Pseudomonas aeruginosa type II secretory apparatus component XcpS (GspF). Microbiology153 , 1582–1592 (2007).
  • Korotkov KV , HolWG: Structure of the GspK–GspI–GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system.Nat. Struct. Mol. Biol.15 , 462–468 (2008).
  • Forest KT : The type II secretion arrowhead: the structure of GspI–GspJ–GspK.Nat. Struct. Mol. Biol.15 , 428–430 (2008).
  • Korotkov KV , PardonE, SteyaertJ, HolWG: Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody.Structure17 , 255–265 (2009).
  • Buddelmeijer N , KrehenbrinkM, PecorariF, PugsleyAP: Type II secretion system secretin PulD localizes in clusters in the Escherichia coli outer membrane.J. Bacteriol.191 , 161–168 (2009).
  • Shevchik VE , Robert-BaudouyJ, CondemineG: Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins.EMBO J.16 , 3007–3016 (1997).
  • Bouley J , CondemineG, ShevchikVE: The PDZ domain of OutC and the N-terminal region of OutD determine the secretion specificity of the type II out pathway of Erwinia chrysanthemi.J. Mol. Biol.308 , 205–219 (2001).
  • Francetic O , PugsleyAP: Towards the identification of type II secretion signals in a nonacylated variant of pullulanase from Klebsiella oxytoca.J. Bacteriol.187 , 7045–7055 (2005).
  • Sandkvist M : Type II secretion and pathogenesis.Infect. Immun.69 , 3523–3535 (2001).
  • Fields BS , BensonRF, BesserRE: Legionella and Legionnaires‘ disease: 25 years of investigation.Clin. Microbiol. Rev.15 , 506–526 (2002).
  • Lau HY , AshboltNJ: The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water.J. Appl. Microbiol. doi: 10.1111/j.1365–2672.2009. 04208.x (2009) (Epub ahead of print).
  • Diederen BM : Legionella spp. and Legionnaires‘ disease.J. Infect.56 , 1–12 (2008).
  • Dalebroux ZD , EdwardsRL, SwansonMS: SpoT governs Legionella pneumophila differentiation in host macrophages.Mol. Microbiol.71 , 640–658 (2009).
  • Allard KA , DaoJ, SanjeevaiahPet al.: Purification of legiobactin and the importance of this siderophore in lung infection by Legionella pneumophila.Infect. Immun.77 , 2887–2895 (2009).
  • Al-Khodor S , KalachikovS, MorozovaI, PriceCT, Abu Kwaik Y: The PmrA/PmrB two-component system of Legionella pneumophila is a global regulator required for intracellular replication within macrophages and protozoa. Infect. Immun.77 , 374–386 (2009).
  • Steinert M , HeunerK, BuchrieserC, Albert-WeissenbergerC, GlocknerG: Legionella pathogenicity: genome structure, regulatory networks and the host cell response.Int. J. Med. Microbiol.297 , 577–587 (2007).
  • De Buck E , AnneJ, LammertynE: The role of protein secretion systems in the virulence of the intracellular pathogen Legionella pneumophila.Microbiology153 , 3948–3953 (2007).
  • Bruggemann H , CazaletC, BuchrieserC: Adaptation of Legionella pneumophila to the host environment: role of protein secretion, effectors and eukaryotic-like proteins.Curr. Opin. Microbiol.9 , 86–94 (2006).
  • Shin S , RoyCR: Host cell processes that influence the intracellular survival of Legionella pneumophila.Cell. Microbiol.10 , 1209–1220 (2008).
  • DebRoy S , DaoJ, SoderbergM, RossierO, CianciottoNP: Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung.Proc. Natl Acad. Sci. USA103 , 19146–19151 (2006).
  • Vincent CD , FriedmanJR, JeongKC, BufordEC, MillerJL, VogelJP: Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system.Mol. Microbiol.62 , 1278–1291 (2006).
  • Bandyopadhyay P , LiuS, GabbaiCB, VenitelliZ, SteinmanHM: Environmental mimics and the Lvh type IVA secretion system contribute to virulence-related phenotypes of Legionella pneumophila.Infect. Immun.75 , 723–735 (2007).
  • Cazalet C , RusniokC, BruggemannHet al.: Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity.Nat. Genet.36 , 1165–1173 (2004).
  • Jacobi S , HeunerK: Description of a putative type I secretion system in Legionella pneumophila.Int. J. Med. Microbiol.293 , 349–358 (2003).
  • Isberg RR , TJ O‘Connor, Heidtman M: The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat. Rev. Microbiol.7 , 13–24 (2009).
  • Chen J , ReyesM, ClarkeM, ShumanHA: Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila.Cell. Microbiol.9 , 1660–1671 (2007).
  • Ninio S , RoyCR: Effector proteins translocated by Legionella pneumophila: strength in numbers.Trends Microbiol.15 , 372–380 (2007).
  • Liu Y , LuoZQ: The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome.Infect. Immun.75 , 592–603 (2007).
  • Vincent CD , VogelJP: The Legionella pneumophila IcmS–LvgA protein complex is important for Dot/Icm-dependent intracellular growth.Mol. Microbiol.61 , 596–613 (2006).
  • Liles MR , ViswanathanVK, CianciottoNP: Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion.Infect. Immun.66 , 1776–1782 (1998).
  • Liles MR , EdelsteinPH, CianciottoNP: The prepilin peptidase is required for protein secretion by and the virulence of the intracellular pathogen Legionella pneumophila.Mol. Microbiol.31 , 959–970 (1999).
  • Hales LM , ShumanHA: Legionella pneumophila contains a type II general secretion pathway required for growth in amoebae as well as for secretion of the Msp protease.Infect. Immun.67 , 3662–3666 (1999).
  • Rossier O , CianciottoNP: Type II protein secretion is a subset of the PilD-dependent processes that facilitate intracellular infection by Legionella pneumophila.Infect. Immun.69 , 2092–2098 (2001).
  • Rossier O , StarkenburgS, CianciottoNP: Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires‘ disease pneumonia.Infect. Immun.72 , 310–321 (2004).
  • Chien M , MorozovaI, ShiSet al.: The genomic sequence of the accidental pathogen Legionella pneumophila.Science305 , 1966–1968 (2004).
  • Glockner G , Albert-WeissenbergerC, WeinmannEet al.: Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands.Int. J. Med. Microbiol.298 , 411–428 (2007).
  • De Buck E , LebeauI, MaesLet al.: A putative twin-arginine translocation pathway in Legionella pneumophila.Biochem. Biophys. Res. Commun.317 , 654–661 (2004).
  • Rossier O , CianciottoNP: The Legionella pneumophila tatB gene facilitates secretion of phospholipase C, growth under iron-limiting conditions, and intracellular infection.Infect. Immun.73 , 2020–2032 (2005).
  • Aragon V , KurtzS, FliegerA, NeumeisterB, CianciottoNP: Secreted enzymatic activities of wild-type and pilD-deficient Legionella pneumophila.Infect. Immun.68 , 1855–1863 (2000).
  • Banerji S , BewersdorffM, HermesB, CianciottoNP, FliegerA: Characterization of the major secreted zinc metalloprotease- dependent glycerophospholipid:cholesterol acyltransferase, PlaC, of Legionella pneumophila.Infect. Immun.73 , 2899–2909 (2005).
  • Aragon V , KurtzS, CianciottoNP: Legionella pneumophila major acid phosphatase and its role in intracellular infection.Infect. Immun.69 , 177–185 (2001).
  • Aragon V , RossierO, CianciottoNP: Legionella pneumophila genes that encode lipase and phospholipase C activities.Microbiology148 , 2223–2231 (2002).
  • Flieger A , GongS, FaigleM, StevanovicS, CianciottoNP, NeumeisterB: Novel lysophospholipase A secreted by Legionella pneumophila.J. Bacteriol.183 , 2121–2124 (2001).
  • Flieger A , NeumeisterB, CianciottoNP: Characterization of the gene encoding the major secreted lysophospholipase A of Legionella pneumophila and its role in detoxification of lysophosphatidylcholine.Infect. Immun.70 , 6094–6106 (2002).
  • Rossier O , DaoJ, CianciottoNP: A type II-secreted ribonuclease of Legionella pneumophila facilitates optimal intracellular infection of Hartmannella vermiformis.Microbiology155 , 882–890 (2009).
  • Rossier O , DaoJ, CianciottoNP: The type II secretion system of Legionella pneumophila elaborates two aminopeptidases as well as a metalloprotease that contributes to differential infection among protozoan hosts.Appl. Environ. Microbiol.74 , 753–761 (2008).
  • Brand BC , SadoskyAB, ShumanHA: The Legionella pneumophila icm locus: a set of genes required for intracellular multiplication in human macrophages.Mol. Microbiol.14 , 797–808 (1994).
  • Matthews M , RoyCR: Identification and subcellular localization of the Legionella pneumophila IcmX protein: a factor essential for establishment of a replicative organelle in eukaryotic host cells.Infect. Immun.68 , 3971–3982 (2000).
  • Ridenour DA , CirilloSL, FengS, SamrakandiMM, CirilloJD: Identification of a gene that affects the efficiency of host cell infection by Legionella pneumophila in a temperature-dependent fashion.Infect. Immun.71 , 6256–6263 (2003).
  • Segal G , RussoJJ, ShumanHA: Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila.Mol. Microbiol.34 , 799–809 (1999).
  • Li J , WolfSG, ElbaumM, TzfiraT: Exploring cargo transport mechanics in the type IV secretion systems.Trends Microbiol.13 , 295–298 (2005).
  • Kalogeraki VS , WinansSC: Wound-released chemical signals may elicit multiple responses from an Agrobacterium tumefaciens strain containing an octopine-type Ti plasmid.J. Bacteriol.180 , 5660–5667 (1998).
  • de Felipe KS , GloverRT, CharpentierXet al.: Legionella eukaryotic-like type IV substrates interfere with organelle trafficking.PLoS Pathog.4 , e1000117 (2008).
  • Galka F , WaiSN, KuschHet al.: Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles.Infect. Immun.76 , 1825–1836 (2008).
  • Kazemi-Pour N , CondemineG, Hugouvieux-Cotte-PattatN: The secretome of the plant pathogenic bacterium Erwinia chrysanthemi.Proteomics4 , 3177–3186 (2004).
  • Kang Y , KimJ, KimSet al.: Proteomic analysis of the proteins regulated by HrpB from the plant pathogenic bacterium Burkholderia glumae.Proteomics8 , 106–121 (2008).
  • Evans FF , RafteryMJ, EganS, KjellebergS: Profiling the secretome of the marine bacterium Pseudoalteromonas tunicata using amine-specific isobaric tagging (iTRAQ).J. Proteome Res.6 , 967–975 (2007).
  • Poueymiro M , GeninS: Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant.Curr. Opin. Microbiol.12 , 44–52 (2009).
  • DebRoy S , AragonV, KurtzS, CianciottoNP: Legionella pneumophila Mip, a surface-exposed peptidylproline cis–trans-isomerase, promotes the presence of phospholipase C-like activity in culture supernatants.Infect. Immun.74 , 5152–5160 (2006).
  • Stewart CR , RossierO, CianciottoNP: Surface translocation by Legionella pneumophila: a form of sliding motility that is dependent upon type II protein secretion.J. Bacteriol.191 , 1537–1546 (2009).
  • George JR , PineL, ReevesMW, HarrellWK: Amino acid requirements of Legionella pneumophila.J. Clin. Microbiol.11 , 286–291 (1980).
  • Söderberg MA , RossierO, CianciottoNP: The type II protein secretion system of Legionella pneumophila promotes growth at low temperatures.J. Bacteriol.186 , 3712–3720 (2004).
  • Söderberg MA , DaoJ, StarkenburgS, CianciottoNP: The importance of type II secretion for Legionella pneumophila survival in tap water and amoebae at low temperature.Appl. Environ. Microbiol.74 , 5583–5588 (2008).
  • Söderberg MA , CianciottoNP: A Legionella pneumophila peptidyl-prolyl cis–trans isomerase present in culture supernatants is necessary for optimal growth at low temperatures.Appl. Environ. Microbiol.74 , 1634–1638 (2008).
  • Sandkvist M , MichelLO, HoughLPet al.: General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae.J. Bacteriol.179 , 6994–7003 (1997).
  • Sikora AE , LybargerSR, SandkvistM: Compromised outer membrane integrity in Vibrio cholerae type II secretion mutants.J. Bacteriol.189 , 8484–8495 (2007).
  • Polesky AH , RossJT, FalkowS, TompkinsLS: Identification of Legionella pneumophila genes important for infection of amoebas by signature-tagged mutagenesis.Infect. Immun.69 , 977–987 (2001).
  • Rechnitzer C , WilliamsA, WrightJB, DowsettAB, MilmanN, FitzgeorgeRB: Demonstration of the intracellular production of tissue-destructive protease by Legionella pneumophila multiplying within guinea-pig and human alveolar macrophages.J. Gen. Microbiol.138 , 1671–1677 (1992).
  • Brieland J , McClainM, HeathLet al.: Coinoculation with Hartmannella vermiformis enhances replicative Legionella pneumophila lung infection in a murine model of Legionnaires‘ disease.Infect. Immun.64 , 2449–2456 (1996).
  • Cirillo JD , CirilloSLG, YanL, BermudezLE, FalkowS, TompkinsLS: Intracellular growth in Acanthamoeba castellani affects monocyte entry mechansism and enhances virulence of Legionella pneumophila.Infect. Immun.67 , 4427–4434 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.