1,179
Views
0
CrossRef citations to date
0
Altmetric
Review

Clostridial Toxins

&
Pages 1021-1064 | Published online: 13 Oct 2009

Bibliography

  • Brüggemann H , BäumerS, FrickeWF et al.: The genome sequence of Clostridium tetani, the causative agent of tetanus disease.Proc. Natl Acad. Sci. USA100 , 1316–1321 (2003).
  • Brüggemann H , GottschalkG: Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani.Anaerobe10 , 53–68 (2004).
  • Sebaihia M , PeckMW, MintonNP et al.: Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes.Genome Res.17 , 1082–1092 (2007).
  • Sebaihia M , WrenBW, MullanyP et al.: The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome.Nat. Genet.38 , 779–786 (2006).
  • Shimizu T , OhtaniK, HirakawaH et al.: Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater.Proc. Natl Acad. Sci. USA99 , 996–1001 (2002).
  • Stackebrandt E , HippeH: Taxonomy and systematics. In: Clostridia. Bahl H, Dürre P (Eds). Willey-VCH, Weinheim, Germany, 19–48 (2001).
  • Popoff MR , StilesBG: Clostridial toxins vs. other bacterial toxins. In: Handbook of Clostridia. Dürre P (Ed.). Taylor and Francis, FL, USA, 323–383 (2005).
  • Songer JG : Clostridial enteric diseases of domestic animals.Clin. Microbiol. Rev.9 , 216–234 (1996).
  • Geny B , PopoffMR: Bacterial protein toxins and lipids: pore formation or toxin entry into cells.Biol. Cell98 , 667–678 (2006).
  • Deguchi A , MiyamotoK, KuwaharaT et al.: Genetic characterization of type A enterotoxigenic Clostridium perfringens strains.PLoS One4 , e5598 (2009).
  • Katayama S , DupuyB, ColeST: Rapid expansion of the physical and genetic map of the chromosome of Clostridium perfringens CPN50.J. Bacteriol.177 , 5680–5685 (1995).
  • Tweten RK : Nucleotide sequence of the gene for perfringolysin O (θ toxin) from Clostridium perfringens: significant homology with the genes for streptolysin and pneumolysin.Infect. Immun.56 , 3235–3240 (1988).
  • Alouf J : Cholesterol binding toxins (Streptococcus, Bacillus, Clostridium, Listeria). In: Guidebook to Protein Toxins and their Use in Cell Biology. Rappuoli R, Montecucco C (Eds). Sambrook & Tooze Publications, Oxford, UK, 7–10 (1997).
  • Alouf JE : Molecular features of the cytolytic pore forming bacterial protein toxins.Folia Microbiol. (Praha)48 , 5–16 (2003).
  • Tweten RK : Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins.Infect. Immun.73 , 6199–6209 (2005).
  • Rossjohn J , FeilSC, McKinstryWJ, TwetenRK, ParkerMW: Structure of a cholesterol-binding thiol-activated cytolysin and a model of its membrane form.Cell89 , 685–692 (1997).
  • Soltani CE , HotzeEM, JohnsonAE, TwetenRK: Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions.Proc. Natl Acad. Sci. USA104 , 20226–20231 (2007).
  • Soltani CE , HotzeEM, JohnsonAE, TwetenRK: Specific protein-membrane contacts are required for prepore and pore assembly by a cholesterol-dependent cytolysin.J. Biol. Chem.282 , 15709–15716 (2007).
  • Sekino-Suzuki N , NakamuraM, MitsuiK, Ohno-IwashitaO: Contribution of individual tryptophan residues to the structure and activity of θ-toxin (pefringolysin O), a cholesterol-binding cytolysin.Eur. J. Biochem.241 , 941–947 (1996).
  • Waheed AA , ShimadaY, HeijnenHFG et al.: Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts).Proc. Natl Acad. Sci. USA98 , 4926–4931 (2001).
  • Shepard L , ShaturskyO, JohnsonA, TwetenR: The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane β-hairpins.Biochemistry39 , 10284–10293 (2000).
  • Dang TX , HotzeEM, RouillerI, TwetenRK, Wilson-KubalekEM: Prepore to pore transition of a cholesterol-dependent cytolysin visualized by electron microscopy.J. Struct. Biol.150 , 100–108 (2005).
  • Ramachandran R , TwetenRK, JohnsonAE: Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit β-strand alignment.Nat. Struct. Mol. Biol.11 , 697–705 (2004).
  • Heuck AP , SavvaCG, HolzenburgA, JohnsonAE: Conformational changes that effect oligomerization and initiate pore formation are triggered throughout perfringolysin O upon binding to cholesterol.J. Biol. Chem.282 , 22629–22637 (2007).
  • Rossjohn J , PolekhinaG, FeilSC, MortonCJ, TwetenRK, ParkerMW: Structures of perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins.J. Mol. Biol.367 , 1227–1236 (2007).
  • Ramachandran R , HeuckAP, TwetenRK, JohnsonAE: Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin.Nat. Struct. Biol.9 , 823–827 (2002).
  • Heuck AP , HotzeEM, TwetenRK, JohnsonAE: Mechanism of membrane insertion of a multimeric β-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes.Mol. Cell6 , 1233–1242 (2000).
  • Heuck AP , TwetenRK, JohnsonAE: β-Barrel Pore-Forming Toxins: Intriguing Dimorphic Proteins.Biochemistry40 , 9065–9073 (2001).
  • Shatursky O , HeuckA, ShepardL et al.: The mechanism of membrane insertion of a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins.Cell99 , 293–299 (1999).
  • Hotze EM , HeuckAP, CzajkowskyDM, ShaoZ, JohnsonAE, TwetenRK: Monomer–monomer interactions drive the prepore to pore conversion of a β-barrel-forming cholesterol-dependent cytolysin.J. Biol. Chem.277 , 11597–11605 (2002).
  • Czajkowsky DM , HotzeEM, ShaoZ, TwetenRK: Vertical collapse of a cytolysin prepore moves its transmembrane β-hairpins to the membrane.EMBO J.23 , 3206–3215 (2004).
  • Nelson LD , JohnsonAE, LondonE: How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction.J. Biol. Chem.283 , 4632–4642 (2008).
  • Stevens DL , TwetenRK, AwadMM, RoodJI, BryantAE: Clostridial gas gangrene: evidence that α and τ-toxin differentially modulate the immune response and induce acute tissue necrosis.J. Infect. Dis.176 , 189–195 (1997).
  • Bryant AE , BergstromR, ZimmermanGA et al.: Clostridium perfringens invasiveness is enhanced by effects of θ toxin upon PMNL structure and function: the roles of leukocytotoxicity and expression of CD11/CD18 adherence glycoprotein.FEMS Immunol. Med. Microbiol.7 , 321–326 (1993).
  • Bryant AE , StevensDL: Phospholipase C and perfringolysin O from Clostridium perfringens upregulate endothelial cell-leukocyte adherence molecule 1 and intercellular leukocyte adherence molecule 1 expression and induce interleukin-8 synthesis on cultured human umbilical vein endothelial cells.Infect. Immun.64 , 358–362 (1996).
  • Awad MM , EllenorDM, BodRL, EmminsJJ, RoodJI: Synergistic effects of α-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene.Infect. Immun.69 , 7904–7910 (2001).
  • Stevens DL , BryantAE: The role of clostridial toxins in the pathogenesis of gas gangrene.Clin. Infect. Dis.35 , S93–S100 (2002).
  • Sayeed S , Fernandez-MiyakawaME, FisherDJ et al.: E-toxin is required for most Clostridium perfringens type D vegetative culture supernatants to cause lethality in the mouse intravenous injection model.Infect. Immun.73 , 7413–7421 (2005).
  • Fernandez Miyakawa ME , UzalFA: The early effects of Clostridium perfringens type D ε toxin in ligated intestinal loops of goats and sheep.Vet. Res. Commun.27 , 231–241 (2003).
  • Losada-Eaton DM , UzalFA, Fernandez Miyakawa ME: Clostridium perfringens ε toxin is absorbed from different intestinal segments of mice. Toxicon51 , 1207–1213 (2008).
  • Tamai E , IshidaT, MiyataS et al.: Accumulation of Clostridium perfringens ε-toxin in the mouse kidney and its possible biological significance.Infect. Immun.71 , 5371–5375 (2003).
  • Uzal FA , SongerJG: Diagnosis of Clostridium perfringens intestinal infections in sheep and goats.J. Vet. Diagn. Invest.20 , 253–265 (2008).
  • Nagahama M , SakuraiJ: Distribution of labeled Clostridium perfringens ε toxin in mice.Toxicon29 , 211–217 (1991).
  • Nagahama M , SakuraiJ: High-affinity binding of Clostridium perfringens ε-toxin to rat brain.Infect. Immun.60 , 1237–1240 (1992).
  • Finnie JW : Neurological disorders produced by Clostridium perfringens type D ε toxin.Anaerobe10 , 145–150 (2004).
  • Soler-Jover A , DorcaJ, PopoffMR et al.: Distribution of Clostridium perfringens ε toxin in the brains of acutely intoxicated mice and its effect upon glial cells.Toxicon50 , 530–540 (2007).
  • Dorca-Arevalo J , Soler-JoverA, GibertM, PopoffMR, Martin-SatueM, BlasiJ: Binding of ε-toxin from Clostridium perfringens in the nervous system.Vet. Microbiol.131 , 14–25 (2008).
  • Finnie JW : Pathogenesis of brain damage produced in sheep by Clostridium perfringens type D ε toxin: a review.Aust. Vet. J.81 , 219–221 (2003).
  • Miyamoto O , MinamiJ, ToyoshimaT et al.: Neurotoxicity of Clostridium perfringens ε-toxin for the rat hipocampus via glutamanergic system.Infect. Immun.66 , 2501–2508 (1998).
  • Hunter SE , ClarkeIN, KellyDC, TitballRW: Cloning and nucleotide sequencing of the Clostridium perfringens ε-toxin gene and its expression in Escherichia coli.Infect. Immun.60 , 102–110 (1992).
  • Minami J , KatayamaS, MatsushitaO, MatsushitaC, OkabeA: λ-toxin of Clostridium perfringens activates the precursor of ε-toxin by releasing its N- and C-terminal peptides.Microbiol. Immunol.41 , 527–535 (1997).
  • Cole A : Structural studies on ε toxin from Clostridium perfringens. In: Protein Toxins of the Genus Clostridium and Vaccination. Duchesnes C, Mainil J, Popoff MR, Titball R (Eds). Presses de la Faculté de Médecine Vétérinaire, Liège, Belgium, 95 (2003).
  • Sakurai J : Toxins of Clostridium perfringens.Rev. Med. Microbiol.6 , 175–185 (1995).
  • Oyston PCF , PayneDW, HavardHL, WilliamsonED, TitballRW: Production of a non-toxic site-directed mutant of Clostridium perfringens ε-toxin which induces protective immunity in mice.Microbiology144 , 333–341 (1998).
  • Heine K , PustS, EnzenmullerS, BarthH: ADP-ribosylation of actin by the Clostridium botulinum C2 toxin in mammalian cells results in delayed caspase-dependent apoptotic cell death.Infect. Immun.76 , 4600–4608 (2008).
  • Lindsay CD , HambrookJL, UpshallDG: Examination of toxicity of Clostridium perfringens ε-toxin in the MDCK cell line.Toxicol. In Vitro9 , 213–218 (1995).
  • Payne DW , WilliamsonED, HavardH, ModiN, BrownJ: Evaluation of a new cytotoxicity assay for Clostridium perfringens type D ε toxin.FEMS Microbiol. Lett.116 , 161–168 (1994).
  • Petit L , GibertM, GilletD, Laurent-WinterC, BoquetP, PopoffMR: Clostridium perfringens ε-toxin acts on MDCK cells by forming a large membrane complex.J. Bacteriol.179 , 6480–6487 (1997).
  • Shortt SJ , TitballRW, LindsayCD: An assessment of the in vitro toxicology of Clostridium perfringens type D ε-toxin in human and animal cells.Hum. Exp. Toxicol.19 , 108–116 (2000).
  • Miyata S , MatsushitaO, MinamiJ, KatayamaS, ShimamotoS, OkabeA: Cleavage of C-terminal peptide is essential for heptamerization of Clostridium perfringens ε-toxin in the synaptosomal membrane.J. Biol. Chem.276 , 13778–13783 (2001).
  • Miyata S , MinamiJ, TamaiE, MatsushitaO, ShimamotoS, OkabeA: Clostridium perfringens ε-toxin forms a heptameric pore within the detergent-insoluble microdomains of Madin–Darby canine kidney cells and rat synaptosomes.J. Biol. Chem.277 , 39463–39468 (2002).
  • Payne D , WilliamsonED, TitballRW: The Clostridium perfringens ε-toxin.Rev. Med. Microbiol.8 , S28–S30 (1997).
  • Chassin C , BensM, de Barry J et al.: Pore-forming ε toxin causes membrane permeabilization and rapid ATP depletion-mediated cell death in renal collecting duct cells. Am. J. Physiol. Renal Physiol.293 , F927–F937 (2007).
  • Shimamoto S , TamaiE, MatsushitaO, MinamiJ, OkabeA, MiyataS: Changes in ganglioside content affect the binding of Clostridium perfringens ε-toxin to detergent-resistant membranes of Madin–Darby canine kidney cells.Microbiol. Immunol.49 , 245–253 (2005).
  • Nagahama M , HaraH, Fernandez-MiyakawaM, ItohayashiY, SakuraiJ: Oligomerization of Clostridium perfringens ε-toxin is dependent upon membrane fluidity in liposomes.Biochemistry45 , 296–302 (2006).
  • Petit L , MaierE, GibertM, PopoffMR, BenzR: Clostridium perfringens ε-toxin induces a rapid change in cell membrane permeability to ions and forms channels in artificial lipid bilayers.J. Biol. Chem.276 , 15736–15740 (2001).
  • Petit L , GibertM, GourchA, BensM, VandewalleA, PopoffMR: Clostridium perfringens ε toxin rapidly decreases membrane barrier permeability of polarized MDCK cells.Cell. Microbiol.5 , 155–164 (2003).
  • Buxton D : The use of an imunoperoxidase technique to investigate by light and electron microscopy the sites of binding of Clostridium welchii type D ε-toxin in mice.J. Med. Microbiol.11 , 289–292 (1978).
  • Finnie JW , BlumbergsPC, ManavisJ: Neuronal damage produced in rat brains by Clostridium perfringens type D ε-toxin.J. Comp. Path.120 , 415–420 (1999).
  • Zhu C , GhabrielMN, BlumbergsPC et al.: Clostridium perfringens prototoxin-induced alteration of endothelial barrier antigen (EBA) immunoreactivity at the blood brain barrier (BBB).Exp. Neurol.169 , 72–82 (2001).
  • Miyamoto O , SumitamiK, NakamuraT et al.: Clostridium perfringens ε toxin causes excessive release of glutamate in the mouse hippocampus.FEMS Microbiol. Lett.189 , 109–113 (2000).
  • Kennedy CL , KrejanyEO, YoungLF et al.: The α-toxin of Clostridium septicum is essential for virulence.Mol. Microbiol.57 , 1357–1366 (2005).
  • Melton JA , ParkerMW, RossjohnJ, BuckleyJT, TwetenRK: The identification and structure of the membrane-spanning domain of the Clostridium septicum α toxin.J. Biol. Chem.279 , 14315–14322 (2004).
  • Imagawa T , DohiY, HigashiY: Cloning, nucleotide sequence and expression of a hemolysin gene of Clostridium septicum.FEMS Microbiol. Lett.117 , 287–292 (1994).
  • Ballard J , CrabtreeJ, RoeBA, TwetenRK: The primary structure of Clostridium septicum α-toxin exhibits similarity with that of Aeromonas hydrophila aerolysin.Infect. Immun.63 , 340–344 (1995).
  • Ballard J , BryantA, StevensD, TwetenRK: Purification and characterization of the lethal toxin (α-toxin) of Clostridium septicum.Infect. Immun.60 , 784–790 (1992).
  • Melton-Witt JA , BentsenLM, TwetenRK: Identification of functional domains of Clostridium septicum α toxin.Biochemistry45 , 14347–14354 (2006).
  • Amimoto K , SasakiY, FukuyamaS, TamuraY: Genetic variation and cross-reactivity of Clostridium septicum α-toxin.Vet. Microbiol.114 , 51–59 (2006).
  • Gordon VM , BenzR, FujiiK, LepplaSH, TwetenRK: Clostridium septicum α-toxin is proteolytically activated by furin.Infect. Immun.65 , 4130–4134 (1997).
  • Ballard J , SokolovY, YuanWL, KaganBL, TwetenRK: Activation and mechanism of Clostridium septicum α toxin.Mol. Microbiol.10 , 627–634 (1993).
  • Gordon VM , NelsonKL, BuckleyJT et al.: Clostridium septicum α-toxin uses glycosylphosphatidylinositol-anchored protein receptors.J. Biol. Chem.274 , 27274–27280 (1999).
  • Hong Y , OhishiK, InoueN et al.: Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum α-toxin.EMBO J.21 , 5047–5056 (2002).
  • Hang‘ombe MB , MukamotoM, KohdaT, SugimotoN, KozakiS: Cytotoxicity of Clostridium septicum α-toxin: its oligomerization in detergent resistant membranes of mammalian cells.Microb. Pathog.37 , 279–286 (2004).
  • Sellman BR , TwetenRK: The propeptide of Clostridium septicum α toxin functions as an intramolecular chaperone and is a potent inhibitor of α toxin-dependent cytolysis.Mol. Microbiol.25 , 429–440 (1997).
  • Sellman BR , KaganBL, TwetenRK: Generation of a membrane-bound, oligomerized pre-pore complex is necessary for pore formation by Clostridium septicum α toxin.Mol. Microbiol.23 , 531–538 (1997).
  • Tweten RK : Clostridium perfringens β toxin and Clostridium septicum α toxin: their mechanisms and possible role in pathogenesis.Vet. Microbiol.82 , 1–9 (2001).
  • Kennedy CL , LyrasD, CordnerLM et al.: Pore-forming activity of α-toxin is essential for clostridium septicum-mediated myonecrosis.Infect. Immun.77 , 943–951 (2009).
  • Kennedy CL , SmithDJ, LyrasD, ChakravortyA, RoodJI: Programmed cellular necrosis mediated by the pore-forming α-toxin from Clostridium septicum.PLoS Pathog.5 , e1000516 (2009).
  • Knapp O , MaierE, Ben Mkaddem S et al.: Clostridium septicum α-toxin forms pores and induces rapid cell necrosis. Toxicon. (2009) (Epub ahead of print).
  • Wichroski MJ , MeltonJA, DonahueCG, TwetenRK, WardGE: Clostridium septicum α-toxin is active against the parasitic protozoan Toxoplasma gondii and targets members of the SAG family of glycosylphosphatidylinositol-anchored surface proteins.Infect. Immun.70 , 4353–4361 (2002).
  • Melton JA , TwetenRK: Clostridium septicum pore-forming α-toxin. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 623–630 (2006).
  • Lindsay JA : Clostridium perfringens type A enterotoxin (CPE): more than just explosive diarrhea.Crit. Rev. Microbiol.22 , 257–277 (1996).
  • Petit L , GibertM, PopoffMR: Clostridium perfringens enterotoxin and C. perfringens food poisoning. In: Encyclopedia of Food Microbiology. Robinson R, Batt C, Patel P (Eds). Academic Press, London, UK, 438–444 (1999).
  • Brynestad S , SarkerMR, McClaneBA, GranumPE, RoodJI: The enterotoxin (CPE) plasmid from Clostridium perfringens is conjugative.Infect. Immun.69 , 3483–3487 (2001).
  • Brynestad S , SynstadB, GranumPE: The Clostridium perfringens enterotoxin gene is on a transposable element in type A human food poisoning strains.Microbiology143 , 2109–2115 (1997).
  • Cornillot E , Saint-JoanisB, DaubeG, GranumPE, CanardB, ColeST: The enterotoxin gene (cpe) of Clostridium perfringens can be chromosomal or plasmid-borne.Mol. Microbiol.15 , 639–647 (1995).
  • Sparks SG , CarmanRJ, SarkerMR, McClaneBA: Genotyping of enterotoxigenic Clostridium perfringens fecal isolates associated with antibiotic-associated diarrhea and food poisoning in North America.J. Clin. Microbiol.39 , 883–888 (2001).
  • Collie RE , McClaneBA: Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with non-food-borne human gastrointestinal diseases.J. Clin. Microbiol.36 , 30–36 (1998).
  • Miyamoto K , FisherDJ, LiJ, SayeedS, AkimotoS, McClaneBA: Complete sequencing and diversity analysis of the enterotoxin-encoding plasmids in Clostridium perfringens type A non-food-borne human gastrointestinal disease isolates.J. Bacteriol.188 , 1585–1598 (2006).
  • Kobayashi S , WadaA, ShibasakiS et al.: Spread of a large plasmid carrying the cpe gene and the tcp locus amongst Clostridium perfringens isolates from nosocomial outbreaks and sporadic cases of gastroenteritis in a geriatric hospital.Epidemiol. Infect.137 , 108–113 (2009).
  • Li J , McClaneBA: Further comparison of temperature effects on growth and survival of Clostridium perfringens type A isolates carrying a chromosomal or plasmid-borne enterotoxin gene.Appl. Environ. Microbiol.72 , 4561–4568 (2006).
  • Li J , McClaneBA: Comparative effects of osmotic, sodium nitrite-induced, and pH-induced stress on growth and survival of Clostridium perfringens type A isolates carrying chromosomal or plasmid-borne enterotoxin genes.Appl. Environ. Microbiol.72 , 7620–7625 (2006).
  • Lahti P , HeikinheimoA, JohanssonT, KorkealaH: Clostridium perfringens type A strains carrying a plasmid-borne enterotoxin gene (genotype IS1151-cpe or IS1470-like-cpe) as a common cause of food poisoning.J. Clin. Microbiol.46 , 371–373 (2008).
  • Tanaka D , KimataK, ShimizuM et al.: Genotyping of Clostridium perfringens isolates collected from food poisoning outbreaks and healthy individuals in Japan based on the cpe locus.Jpn. J. Infect. Dis.60 , 68–69 (2007).
  • Nakamura M , KatoA, TanakaD et al.: PCR identification of the plasmid-borne enterotoxin gene (cpe) in Clostridium perfringens strains isolated from food poisoning outbreaks.Int. J. Med. Microbiol.294 , 261–265 (2004).
  • Kokai-Kun JF , McClaneBA: Deletion analysis of the Clostridium perfringens enterotoxin.Infect. Immun.65 , 1014–1022 (1997).
  • Hanna PC , MietznerTA, SchoolnikGK, McClaneBA: Localization of the receptor-binding region of Clostridium perfringens enterotoxin utilizing cloned toxin fragments and synthetic peptides. The 30 C-terminal amino acids define a functional binding region.J. Biol. Chem.266 , 11037–11043 (1991).
  • Fujita K , KatahiraJ, HoriguchiY, SonodaN, FuruseM, TsukitaS: Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein.FEBS Lett.476 , 258–261 (2000).
  • Katahira J , InoueN, HoriguchiY, MatsudaM, SugimotoN: Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin.J. Cell Biol.136 , 1239–1247 (1997).
  • Sonoda N , FuruseM, SasakiH et al.: Clostridium perfringens enterotoxin fragment removes specific claudin from tight junction strands: evidence for direct involvement of claudin in tight junction barrier.J. Cell Biol.147 , 195–204 (1999).
  • Winkler L , GehringC, WenzelA et al.: Molecular determinants of the interaction between Clostridium perfringens enterotoxin fragments and claudin-3.J. Biol. Chem.284 , 18863–18872 (2009).
  • Van Itallie CM , BettsL, SmedleyJG 3rd, McClane BA, Anderson JM: Structure of the claudin-binding domain of Clostridium perfringens enterotoxin. J. Biol. Chem.283 , 268–274 (2008).
  • Caserta JA , HaleML, PopoffMR, StilesBG, McClaneBA: Evidence that membrane rafts are not required for the action of Clostridium perfringens enterotoxin.Infect. Immun.76 , 5677–5685 (2008).
  • Wieckowski EU , Kokai-KunJF, McClaneBA: Characterization of membrane-associated Clostridium perfringens enterotoxin following pronase treatment.Infect. Immun.66 , 5897–5905 (1998).
  • Singh U , Van Itallie CM, Mitic LL, Anderson JM, McClane BA: CaCo-2 cells treated with Clostridium perfringens enterotoxin form multiple complex species, one of which contains the tight junction protein occludin. J. Biol. Chem.275 , 18407–18417 (2000).
  • Smedley JG 3rd, Uzal FA, McClane BA: Identification of a prepore large-complex stage in the mechanism of action of Clostridium perfringens enterotoxin. Infect. Immun.75 , 2381–2390 (2007).
  • Singh U , MiticLL, WieckowskiEU, AndersonJM, McClaneBA: Comparative biochemical and immunocytochemical studies reveal differences in the effects of Clostridium perfringens enterotoxin on polarized CaCo-2 cells versus Vero cells.J. Biol. Chem.276 , 33402–33412 (2001).
  • Chakrabarti G , McClaneBA: The importance of calcium influx, calpain and calmodulin for the activation of CaCo-2 cell death pathways by Clostridium perfringens enterotoxin.Cell. Microbiol.7 , 129–146 (2005).
  • McClane BA : An overview of Clostridium perfringens enterotoxin.Toxicon34 , 1335–1343 (1996).
  • Smedley JG 3rd, Saputo J, Parker JC et al.: Noncytotoxic Clostridium perfringens enterotoxin (CPE) variants localize CPE intestinal binding and demonstrate a relationship between CPE-induced cytotoxicity and enterotoxicity. Infect. Immun.76 , 3793–3800 (2008).
  • Fernandez Miyakawa ME , Pistone Creydt V, Uzal FA, McClane BA, Ibarra C: Clostridium perfringens enterotoxin damages the human intestine in vitro.Infect. Immun.73 , 8407–8410 (2005).
  • Sayeed S , UzalFA, FisherDJ et al.: β toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model.Mol. Microbiol.67 , 15–30 (2008).
  • Fernandez-Miyakawa ME , FisherDJ, PoonR et al.: Both ε-toxin and β-toxin are important for the lethal properties of Clostridium perfringens type B isolates in the mouse intravenous injection model.Infect. Immun.75 , 1443–1452 (2007).
  • Fisher DJ , Fernandez-MiyakawaME, SayeedS et al.: Dissecting the contributions of Clostridium perfringens type C toxins to lethality in the mouse intravenous injection model.Infect. Immun.74 , 5200–5210 (2006).
  • Vidal JE , McClaneBA, SaputoJ, ParkerJ, UzalFA: Effects of Clostridium perfringens β-toxin on the rabbit small intestine and colon.Infect. Immun.76 , 4396–4404 (2008).
  • Hunter SE , BrownE, OystonPCF, SakuraiJ, TitballRW: Molecular genetic analysis of β-toxin of Clostridium perfringens reveals sequence homology with α-toxin, γ-toxin, and leukocidin of Staphylococcus aureus.Infect. Immun.61 , 3958–3965 (1993).
  • Gibert M , PerelleS, DaubeG, PopoffMR: Clostridium spiroforme toxin genes are related to C. perfringens ι toxin genes but have a different genomic localization.Syst. Appl. Microbiol.20 , 337–347 (1997).
  • Katayama S , DupuyB, DaubeG, ChinaB, ColeS: Genome mapping of Clostridium perfringens strains with I-CeuI shows many virulence genes to be plamsid-borne.Mol. Gen. Genet.251 , 720–726 (1996).
  • Sakurai J , FujiiY, MatsuuraM: Effect of oxidizing agents and sulfhydryl group reagents on β toxin from Clostridium perfringens type C.Microbiol. Immunol.24 , 595–601 (1980).
  • Nagahama M , MiyawakiT, KiharaA et al.: Thiol group reagent-sensitive Clostridium perfringens β-toxin does not require a thiol group for lethal activity.Biochim. Biophys. Acta1454 , 97–105 (1999).
  • Steinthorsdottir V , FridiksdottirV, GunnarsonE, AndressonO: Site-directed mutagenesis of Clostridium perfringens β-toxin expression of wild type and mutant toxins in Bacillus subtilis.FEMS Microbiol. Lett.158 , 17–23 (1998).
  • Steinthorsdottir V , HalldorsonH, AndressonO: Clostridium perfringens β-toxin forms multimeric transmembrane pores in human endothelial cells.Microb. Pathog.28 , 45–50 (2000).
  • Shatursky O , BaylesR, RogersM, JostBH, SongerJG, TwetenRK: Clostridium perfringens β-toxin forms potential-dependent, cation-selective channels in lipid bilayers.Infect. Immun.68 , 5546–5551 (2000).
  • Nagahama M , HayashiH, MorimitsuS, SakuraiJ: Biological activities and pore formation of Clostridium perfringens β toxin in HL60 cells.J. Biol. Chem.278 , 36934–36941 (2003).
  • Nagahama M , MorimitsuS, KiharaA, AkitaM, SetsuK, SakuraiJ: Involvement of tachykinin receptors in Clostridium perfringens β-toxin-induced plasma extravasation.Br. J. Pharmacol.138 , 23–30 (2003).
  • Nagahama M , KiharaA, KintohH, OdaM, SakuraiJ: Involvement of tumour necrosis factor-α in Clostridium perfringens β-toxin-induced plasma extravasation in mice.Br. J. Pharmacol.153 , 1296–1302 (2008).
  • Gibert M , Jolivet-ReynaudC, PopoffMR: β2 toxin, a novel toxin produced by Clostridium perfringens.Gene203 , 65–73 (1997).
  • Herholz C , MiserezR, NicoletJ et al.: Prevalence of β2-toxigenic Clostridium perfringens in horses with intestinal disorders.J. Clin. Microbiol.37 , 358–361 (1999).
  • Vilei EM , SchlatterY, PerretenV et al.: Antibiotic-induced expression of a cryptic cpb2 gene in equine β2-toxigenic Clostridium perfringens.Mol. Microbiol.57 , 1570–1581 (2005).
  • Waters M , RajuD, GarmoryHS, PopoffMR, SarkerMR: Regulated expression of the β2-toxin gene (cpb2) in Clostridium perfringens type a isolates from horses with gastrointestinal diseases.J. Clin. Microbiol.43 , 4002–4009 (2005).
  • Bacciarini LN , BoerlinP, StraubR, FreyJ, GroneA: Immunohistochemical localization of Clostridium perfringens β2-toxin in the gastrointestinal tract of horses.Vet. Pathol.40 , 376–381 (2003).
  • van Asten AJ , NikolaouGN, GroneA: The occurrence of cpb2-toxigenic Clostridium perfringens and the possible role of the β2-toxin in enteric disease of domestic animals, wild animals and humans.Vet. J. (2008) (Epub ahead of print).
  • Lebrun M , FileeP, MoussetB et al.: The expression of Clostridium perfringens consensus β2 toxin is associated with bovine enterotoxaemia syndrome.Vet. Microbiol.120 , 151–157 (2007).
  • Harrison B , RajuD, GarmoryHS, BrettMM, TitballRW, SarkerMR: Molecular characterization of Clostridium perfringens isolates from humans with sporadic diarrhea: evidence for transcriptional regulation of the β2-toxin-encoding gene.Appl. Environ. Microbiol.71 , 8362–8370 (2005).
  • Fisher DJ , MiyamotoK, HarrisonB, AkimotoS, SarkerMR, McClaneBA: Association of β2 toxin production with Clostridium perfringens type A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene.Mol. Microbiol.56 , 747–762 (2005).
  • Waters M , SavoieA, GarmoryHS et al.: Genotyping and phenotyping of β2-toxigenic Clostridium perfringens fecal isolates associated with gastrointestinal diseases in piglets.J. Clin. Microbiol.41 , 3584–3591 (2003).
  • Jolivet-Reynaud C , PopoffMR, VinitMA, RavisseP, MoreauH, AloufJE: Enteropathogenicity of Clostridium perfringens β toxin and other clostridial toxins.Zentralbl. Bakteriol.S15 , 145–151 (1986).
  • Keyburn AL , BoyceJD, VazP et al.: NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens.PLoS Pathog.4 , e26 (2008).
  • Manich M , KnappO, GibertM et al.: Clostridium perfringens δ toxin is sequence related to β toxin, NetB, and Staphylococcus pore-forming toxins, but shows functional differences.PLoS ONE3 , e3764 (2008).
  • Chalmers G , BruceHL, HunterDB et al.: Multilocus sequence typing analysis of Clostridium perfringens isolates from necrotic enteritis outbreaks in broiler chicken populations.J. Clin. Microbiol.46 , 3957–3964 (2008).
  • Truscott RB , Al-SheikhlyF: Reproduction and treatment of necrotic enteritis in broilers.Am. J. Vet. Res.38 , 857–861 (1977).
  • Al-Sheikhly F , TruscottRB: The interaction of Clostridium perfringens and its toxins in the production of necrotic enteritis of chickens.Avian Dis.21 , 256–263 (1977).
  • Keyburn AL , SheedySA, FordME et al.: α-toxin of Clostridium perfringens is not an essential virulence factor in necrotic enteritis in chickens.Infect. Immun.74 , 6496–6500 (2006).
  • Jolivet-Reynaud C , LaunayJM, AloufJE: Damaging effects of Clostridium perfringens δ toxin on blood platelets and their relevance to ganglioside GM2.Arch. Biochem. Biophys.262 , 59–66 (1988).
  • Jolivet C , AloufJE: Binding of Clostridium perfringens125I-labeled δ-toxin to erythrocytes.J. Biol. Chem.258 , 1871–1877 (1983).
  • Jolivet-Reynaud C , HauttecoeurB, AloufJ: Interaction of Clostridium perfringens δ-toxin with erythrocyte and liposome membranes and relation with the specific binding to the ganglioside GM2.Toxicon27 , 1113–1126 (1989).
  • Stevens DL , TroyerBE, MerrickDT, MittenJE, OlsonRD: Lethal effects and cardiovascular effects of purified α- and τ-toxins from Clostridium perfringens.J. Infect. Dis.157 , 272–279 (1988).
  • Flores-Diaz M , Alape-GironA: Role of Clostridium perfringens phospholipase C in the pathogenesis of gas gangrene.Toxicon42 , 979–986 (2003).
  • Shimizu-Reynaud T , OhtaniK, Ba-TheinW, InuiS, NakamuraS, HayashiH: Characterization of α toxin-deficient Clostridium perfringens strain, KZ1340.Microbiol. Immunol.40 , 141–145 (1996).
  • Brett MM : Outbreaks of food-poisoning associated with lecithinase-negative Clostridium perfringens.J. Med. Microbiol.41 , 405–407 (1994).
  • Justin N , WalkerN, BullifentHL et al.: The first strain of Clostridium perfringens isolated from an avian source has an α-toxin with divergent structural and kinetics properties.Biochemistry41 , 6253–6262 (2002).
  • Abildgaard L , EngbergRM, PedersenK, SchrammA, HojbergO: Sequence variation in the α-toxin encoding plc gene of Clostridium perfringens strains isolated from diseased and healthy chickens.Vet. Microbiol.136 , 293–299 (2008).
  • Sheedy SA , InghamAB, RoodJI, MooreRJ: Highly conserved α-toxin sequences of avian isolates of Clostridium perfringens.J. Clin. Microbiol.42 , 1345–1347 (2004).
  • Naylor CE , EatonJT, HowellsA et al.: Structure of the key toxin in gas gangrene.Nat. Struct. Biol.5 , 738–746 (1998).
  • Titball RW , LeslieDL, HarveyS, KellyD: Hemolytic and sphingomyelinase activities of Clostridium perfringens α-toxin are dependent on a domain homologous to that of an enzyme from the human arachidonic acid pathway.Infect. Immun.59 , 1872–1874 (1991).
  • Guillouard I , GarnierT, ColeS: Use of site-directed mutagenesis to probe structure–function relationship of α-toxin from Clostridium perfringens.Infect. Immun.64 , 2440–2444 (1996).
  • Nagahama M , NakayamaT, MichiueK, SakuraiJ: Site-specific mutagenesis of Clostridium perfringens α-toxin: replacement of Asp-56, Asp-130, or Glu-152 causes loss of enzymatic and hemolytic activites.Infect. Immun.65 , 3489–3492 (1997).
  • Nagahama MY , OkagawaT, NakayamaT, NishiokaE, SakuraiJ: Site directed mutagenesis of histidine residues in Clostridium perfringens α-toxin.J. Bacteriol.177 , 1179–1185 (1995).
  • Eaton JT , NaylorCE, HowellsAM, MossDS, TitballRW, BasakAK: Crystal structure of the C. perfringens α-toxin with the active site closed by a flexible loop region.J. Mol. Biol.319 , 275–281 (2002).
  • Titball RW : Biochemical and immunological properties of the C-terminal domain of the α-toxin of Clostridium perfringens.FEMS Microbiol. Lett.110 , 45–50 (1993).
  • Nagahama M , MukaiM, MorimitsuS, OchiS, SakuraiJ: Role of the C-domain in the biological activities of Clostridium perfringens α-toxin.Microbiol. Immunol.46 , 647–655 (2002).
  • Moreau H , PieroniG, Jolivet-ReynaudC, AloufJE, VergerR: A new kinetic approach for studying phospholipase C (Clostridium perfringens α toxin) activity on phospholipid monolayers.Biochemistry27 , 2319–2323 (1988).
  • Nagahama M , MichiueK, MukaiM, OchiS, SakuraiJ: Mechanism of membrane damage by Clostridium perfringens α-toxin.Microbiol. Immunol.42 , 533–538 (1998).
  • Jepson M , HowellsA, BullifentHL et al.: Differences in the carboxy-terminal (putative phospholipid binding) domains of Clostridium perfringens and Clostridium bifermentans phospholipases C influence the hemolytic and lethal properties of these enzymes.Infect. Immun.67 , 3297–3301 (1999).
  • Guillouard I , AlzariPM, SaliouB, ColeST: The carboxy-terminal C2-like domain of the α-toxin from Clostridium perfringens mediates calcium-dependent membrane recognition.Mol. Microbiol.26 , 867–876 (1997).
  • Williamson ED , TitballRW: A genetically engineered vaccine against the α-toxin of Clostridium perfringens also protects mice against experimental gas gangrene.Vaccine11 , 1253–1258 (1993).
  • Titball RW , NaylorCE, BasakAK: The Clostridium perfringens α-toxin.Anaerobe5 , 51–64 (1999).
  • Nagahama M , MichiueK, SakuraiJ: Membrane-damaging action of Clostridium perfringens α-toxin on phospholipid liposomes.Biochim. Biophys. Acta1280 , 120–126 (1996).
  • Nagahama M , OtsukaA, OdaM et al.: Effect of unsaturated bonds in the sn-2 acyl chain of phosphatidylcholine on the membrane-damaging action of Clostridium perfringens α-toxin toward liposomes.Biochim. Biophys. Acta1768 , 2940–2945 (2007).
  • Sakurai J , OchiS, TanakaH: Evidence for coupling of Clostridium perfringens α-toxin-induced hemolysis to stimulated phosphatidic acid formation in rabbit erythrocytes.Infect. Immun.61 , 3711–3718 (1993).
  • Ochi S , HashimotoK, NagahamaM, SakuraiJ: Phospholipid metabolism induced by Clostridium perfringens α-toxin elicits a hot cold type of hemolysis in rabbit erythrocytes.Infect. Immun.64 , 3930–3933 (1996).
  • Oda M , MatsunoT, ShiiharaR et al.: The relationship between the metabolism of sphingomyelin species and the hemolysis of sheep erythrocytes induced by Clostridium perfringens α-toxin.J. Lipid Res.49 , 1039–1047 (2008).
  • Sakurai J , NagahamaM, OdaM: Clostridium perfringens α-toxin: characterization and mode of action.J. Biochem.136 , 569–574 (2004).
  • Oda M , IkariS, MatsunoT, MorimuneY, NagahamaM, SakuraiJ: Signal transduction mechanism involved in Clostridium perfringens α-toxin-induced superoxide anion generation in rabbit neutrophils.Infect. Immun.74 , 2876–2886 (2006).
  • O‘Brien DK , MelvilleSB: Effects of Clostridium perfringens α-toxin (PLC) and perfringolysin O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on persistence of C. perfringens in host tissues.Infect. Immun.72 , 5204–5215 (2004).
  • Bryant AE , BayerCR, Hayes-SchroerSM, StevensD: Activation of platelet gpIIIa by phospholipase C from Clostridium perfringens involves store-operated calcium entry.J. Infect. Dis.187 , 408–417 (2003).
  • Bryant AE , ChenRYZ, NagataY et al.: Clostridial gas gangrene. II. Phospholipase C-induced activation of platelet gpIIbIIIa mediates vascular occlusion and myonecrosis in Clostridium perfringens gas gangrene.J. Infect. Dis.182 , 808–815 (2000).
  • Bryant AE , ChenRYZ, NagataY et al.: Clostridial gas gangrene. I. Cellular and molecular mechanisms of microvascular dysfunction induced by exotoxins of Clostridium perfringens.J. Infect. Dis.182 , 799–807 (2000).
  • Bunting M , LorantDE, BryantAE et al.: A toxin from Clostridium perfringens induces proinflammatory changes in endothelial cells.J. Clin. Invest.100 , 565–574 (1997).
  • Abe A , MatsuzawaT, KuwaeA: Type-III effectors: sophisticated bacterial virulence factors.C. R. Biol.328 , 413–428 (2005).
  • Flores-Diaz M , Alape-GironA, TitballRW et al.: UDP-glucose deficiency causes hypersensitivity to the cytotoxic effect of Clostridium perfringens phospholipase C.J. Biol. Chem.273 , 24433–24438 (1998).
  • Matsushita O , JungCM, KatayamaS, MinamiJ, TakahashiY, OkabeA: Gene duplication and multiplicity of collagenases in Clostridium histolyticum.J. Bacteriol.181, 923–933 (1999).
  • Jung CM , MatsushitaO, KatayamaS, MinamiJ, SakuraiJ, OkabeA: Identification of metal ligands in the Clostridium histolyticum ColH collagenase.J. Bacteriol.181 , 2816–2822 (1999).
  • Matsushita O , JungCM, MinamiJ, KatayamaS, NishiN, OkabeA: A study of the collagen-binding domain of a 116 kDa Clostridium histolyticum collagenase.J. Biol. Chem.273 , 3643–3648 (1998).
  • Matsushita O , OkabeA: Clostridial hydrolytic enzymes degrading extracellular components.Toxicon39 , 1769–1780 (2001).
  • Wilson JJ , MatsushitaO, OkabeA, SakonJ: A bacterial collagen-binding domain with novel calcium-binding motif controls domain orientation.EMBO J.22 , 1743–1752 (2003).
  • Matsushita O , YoshiharaK, KatayamaS, MinamiJ, OkabeA: Purification and characterization of a Clostridium perfringens 120-kilodalton collagenase and nucleotide sequence of the corresponding gene.J. Bacteriol.176 , 149–156 (1994).
  • Awad MM , EllemorDM, BryantAE et al.: Construction and virulence testing of a collagenase mutant of Clostridium perfringens.Microb. Pathog.28 , 107–117 (2000).
  • Okumura K , OhtaniK, HayashiH, ShimizuT: Characterization of genes regulated directly by the VirR/VirS system in Clostridium perfringens.J. Bacteriol.190 , 7719–7727 (2008).
  • Petit L , GibertM, PopoffMR: Clostridium perfringens: toxinotype and genotype.Trends Microbiol.7 , 104–110 (1999).
  • Popoff MR : Molecular biology of actin-ADP-ribosylating toxins. In: Bacterial Protein Toxins. Aktories K, Just I (Eds). Springer, Berlin, Germany, 275–302 (2000).
  • Barth H , AktoriesK, PopoffMR, StilesBG: Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins.Microbiol. Mol. Biol. Rev.68 , 373–402 (2004).
  • Popoff MR , StilesBG: Bacterial toxins and virulence factors targetting the actin cytoskeleton and intercellular junctions. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 154–187 (2006).
  • Gibert M , PetitL, RaffestinS, OkabeA, PopoffMR: Clostridium perfringens ι-toxin requires activation of both binding and enzymatic components for cytopathic activity.Infect. Immun.68 , 3848–3853 (2000).
  • Ohishi I : Structure and function of actin-adenosine-diphosphate-ribosylating toxins. In: Bacterial Protein Toxins. Aktories K, Just I (Eds). Springer, Berlin, Germany, 253–273 (2000).
  • Petosa C , CollierJR, KlimpelKR, LepplaSH, LiddingtonRC: Crystal structure of the anthrax toxin protective antigen.Nature385 , 833–838 (1997).
  • Cunningham K , LacyDB, MogridgeJ, CollierRJ: Mapping the lethal factor and edema factor binding sites on oligomeric anthrax protective antigen.Proc. Natl Acad. Sci. USA99 , 7049–7053 (2002).
  • Abrami L , LiuS, CossonP, LepplaSH, van der Goot FG: Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol.160 , 321–328 (2003).
  • Mogridge J , CuninghamK, LacyDB, MourezM, CollierRJ: The lethal and edema factors of anthrax toxin bind only to oligomeric forms of the protective antigen.Proc. Natl Acad. Sci. USA99 , 7045–7048 (2002).
  • Mogridge J , CunninghamK, CollierRJ: Stoichiometry of anthrax toxin complexes.Biochemistry41 , 1079–1082 (2002).
  • Schleberger C , HochmannH, BarthH, AktoriesK, SchulzGE: Structure and action of the binary C2 toxin from Clostridium botulinum.J. Mol. Biol.364 , 705–715 (2006).
  • Blöcker D , BarthH, MaierE, BenzR, BarbieriJT, AktoriesK: The C terminus of component C2II of Clostridium botulinum C2 toxin is essential for receptor binding.Infect. Immun.68 , 4566–4573 (2000).
  • Marvaud JC , SmithT, HaleML, PopoffMR, SmithLA, StilesBG: Clostridium perfringens ι-toxin: mapping of receptor binding and Ia docking domains on Ib.Infect. Immun.69 , 2435–2441 (2001).
  • Stiles B , HaleML, MarvaudJC, PopoffMR: Clostridium perfringens ι toxin: binding studies and characterization of cell surface receptor by fluorescence-activated cytometry.Infect. Immun.68 , 3475–3484 (2000).
  • Eckhardt M , BarthH, BlöckerD, AktoriesK: Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates.J. Biol. Chem.275 , 2328–2334 (2000).
  • Barth H , HofmannF, OlenikC, JustI, AktoriesK: The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin.Infect. Immun.66 , 1364–1369 (1998).
  • Han S , CraigJA, PutnamCD, CarozziNB, TainerJA: Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex.Nat. Struct. Biol.6 , 932–936 (1999).
  • Tsuge H , NagahamaM, NishimuraH et al.: Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens ι-toxin.J. Mol. Biol.325 , 471–483 (2003).
  • Marvaud JC , StilesBG, ChenalA et al.: Clostridium perfringens ι toxin: mapping of the Ia domain involved in docking with Ib and cellular internalization.J. Biol. Chem.277 , 43659–43666 (2002).
  • Barth H , RoeblingR, FritzM, AktoriesK: The binary Clostridium botulinum C2 toxin as a protein delivery system.J. Biol. Chem.277 , 5074–5081 (2002).
  • Tsuge H , NagahamaM, OdaM et al.: Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens ι-toxin.Proc. Natl Acad. Sci. USA105 , 7399–7404 (2008).
  • Perelle S , GibertM, BoquetP, PopoffMR: Characterization of Clostridium perfringens ι-toxin genes and expression in Escherichia coli.Infect. Immun.61 , 5147–5156 (Author‘s correction: 63 , 4967 [1995]) (1993).
  • Simpson LL , StilesBG, ZepedaHH, WilkinsTD: Molecular basis for the pathological actions of Clostridium perfringens ι toxin.Infect. Immun.55 , 118–122 (1987).
  • Bachmeyer C , BenzR, BarthH, AktoriesK, GibertM, PopoffMR: Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes and Vero cells: inhibition of channel function in chloroquine and related compounds in vitro and toxin action in vivo.FASEB J.15 , 1658–1660 (2001).
  • Barth H , BlöckerD, BehlkeJ et al.: Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification.J. Biol. Chem.275 , 18704–18711 (2000).
  • Knapp O , BenzR, GibertM, MarvaudJC, PopoffMR: Interaction of Clostridium perfringens ι-toxin with lipid bilayer membranes.J. Biol. Chem.277 , 6143–6152 (2002).
  • Schmid A , BenzR, JustI, AktoriesK: Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes.J. Biol. Chem.269 , 16706–16711 (1994).
  • Gibert M , MarvaudJC, PereiraY et al.: Differential requirement for the translocation of clostridial binary toxins: ι toxin requires a membrane potential gradient.FEBS Lett.581 , 1287–1296 (2007).
  • Ohishi I : Activation of botulinum C2 toxin by trypsin.Infect. Immun.55 , 1461–1465 (1987).
  • Stiles BG , HaleML, MarvaudJC, PopoffMR: Clostridium perfringens ι toxin: characterization of the cell-asociated ι b complex.Biochem. J.367 , 801–808 (2002).
  • Neumeyer T , SchifflerB, MaierE, LangAE, AktoriesK, BenzR: Clostridium botulinum C2 toxin. Identification of the binding site for chloroquine and related compounds and influence of the binding site on properties of the C2II channel.J. Biol. Chem.283 , 3904–3914 (2008).
  • Lang AE , NeumeyerT, SunJ, CollierRJ, BenzR, AktoriesK: Amino acid residues involved in membrane insertion and pore formation of Clostridium botulinum C2 toxin.Biochemistry47 , 8406–8413 (2008).
  • Kaiser E , HaugG, HliscsM, AktoriesK, BarthH: Formation of a biologically active toxin complex of the binary Clostridium botulinum C2 toxin without cell membrane interaction.Biochemistry45 , 13361–13368 (2006).
  • Haug G , AktoriesK, BarthH: The host cell chaperone Hsp90 is necessary for cytotxic action of the binary ι-like toxins.Infect. Immun.72 , 3066–3068 (2004).
  • Haug G , LeemhuisJ, TiemannD, MeyerDK, AktoriesK, BarthH: The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol.J. Biol. Chem.278 , 32266–32274 (2003).
  • Ratts R , ZengH, BergEA et al.: The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex.J. Cell Biol.160 , 1139–1150 (2003).
  • Richard JF , MainguyG, GibertM, MarvaudJC, StilesBG, PopoffMR: Transcytosis of ι toxin across polarized CaCo-2 cell monolayers.Mol. Microbiol.43 , 907–917 (2002).
  • Reuner KH , DunkerP, van der Does A et al.: Regulation of actin synthesis in rat hepatocytes by cytoskeleton rearrangements. Eur. J. Cell Biol.69 , 189–196 (1996).
  • Kiefer G , LernerM, SehrP, JustI, AktoriesK: Cytotoxic effects by microinjection of ADP-ribosylated skeletal muscle G-actin in PtK2 cells in the absence of Clostridium perfringens ι toxin.Med. Microbiol. Immunol.184 , 175–180 (1996).
  • Uematsu Y , KogoY, OhishiI: Disassembly of actin filaments by botulinum C2 toxin and actin-filament-disrupting agents induces assembly of microtubules in human leukaemia cell lines.Biol. Cell99 , 141–150 (2007).
  • Barth H , KlingerM, AktoriesK, KinzelV: Clostridium botulinum C2 toxin delays entry into mitosis and activation of p34cdc2 kinase and cdc25-C phosphatase in Hela cells.Infect. Immun.67 , 5083–5090 (1999).
  • Vershueren H , van der Taelen I, Dewit J et al.: Effects of Clostridium botulinum C2 toxin and cytochalasin D on in vitro invasiveness, motility and F-actin content of a murine T-lymphoma cell line. Eur. J. Cell Biol.66 , 335–341 (1995).
  • Mauss S , KochG, KreyeVAW, AktoriesK: Inhibition of the contraction of the isolated longitudinal muscle of the guinea-pig ileum by botulinum C2 toxin: evidence for a role of G/F-actin transition in smooth muscle contraction.Naunyn Schmiedebergs Arch. Pharmacol.340 , 345–351 (1989).
  • Ermert L , BrücknerH, WalmrathD et al.: Role of endothelial cytoskeleton in high-permeability edema due to botulism C2 toxin in perfused rabbit lungs.Am. J. Physiol.268 , L753–L761 (1995).
  • Aktories K , KochG: Modification of actin and Rho proteins by clostridial ADP-ribosylating toxins. In: Bacterial Toxins and Virulence Factors in Disease. Iglewski B, Moss J, Vaughan M (Eds). Marcel Dekker, NY, USA, 491–520 (1995).
  • Vogelsgesang M , PautschA, AktoriesK: C3 exoenzymes, novel insights into structure and action of Rho-ADP-ribosylating toxins.Naunyn Schmiedebergs Arch. Pharmacol.374 , 347–360 (2007).
  • Han S , ArvaiAS, ClancySB, TainerJA: Crystal structure and novel recognition motif of Rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.J. Mol. Biol.305 , 95–107 (2001).
  • Vogelsgesang M , StieglitzB, HerrmannC, PautschA, AktoriesK: Crystal structure of the Clostridium limosum C3 exoenzyme.FEBS Lett.582 , 1032–1036 (2008).
  • Evans HR , HollowayDE, SuttonJM, AyrissJ, ShoneCC, AcharyaKR: C3 exoenzyme from Clostridium botulinum: structure of a tetragonal crystal form and a reassessment of NAD-induced flexure.Acta Crystallogr. D Biol. Crystallogr.60 , 1502–1505 (2004).
  • Evans HR , SuttonJM, HollowayDE, AyrissJ, ShoneCC, AcharyaKR: The crystal structure of C3stau2 from Staphylococcus aureus and its complex with NAD.J. Biol. Chem.278 , 45924–45930 (2003).
  • Ménétrey J , FlatauG, SturaEA et al.: NAD binding induces conformational changes in Rho ADP-ribosylating Clostridium botulinum C3 exoenzyme.J. Biol. Chem.277 , 30950–30957 (2002).
  • Menetrey J , FlatauG, BoquetP, MenezA, SturaEA: Structural basis for the NAD-hydrolysis mechanism and the ARTT-loop plasticity of C3 exoenzymes.Protein Sci.17 , 878–886 (2008).
  • Wilde C , ChhatwalGS, SchmalzingG, AktoriesK, JustI: A novel C3-like ADP-ribosyltransferase from Staphyloccocus aureus modifyng RhoE and Rnd3.J. Biol. Chem.276 , 9537–9542 (2001).
  • Aktories K , JustI: Clostridial Rho-inhibiting protein toxins.Curr. Top. Microbiol. Immunol.291 , 113–145 (2005).
  • Hall A : Rho GTPases and the actin cytoskeleton.Science279 , 509–514 (1998).
  • Wei Y , ZhangY, DerewendaU et al.: Crystal structure of RhoA-GDP and its functional implications.Nat. Struct. Biol.4 , 699–703 (1997).
  • Bourmeyster N , StrasiaMJ, GarinJ, GagnonJ, BoquetP, VignaisP: Copurification of Rho protein and the Rho GDP dissociation inhibitor from bovine neutrophil cytosol. Effects of phosphoinositides on Rho ADP-ribosylation by the C3 exoenzyme of Clostridium botulinum.Biochemistry31 , 12863–12869 (1992).
  • Ren XD , BokochGM, Traynor-KaplanA, JenkinsGH, AndersonRA, SchwartzMA: Physical association of the small GTPase Rho with a 68-kDa phosphatidylinositol 4-phosphate 5-kinase in swiss 3T3 cells.Mol. Biol. Cell7 , 435–442 (1996).
  • Sehr P , GiliJ, GenthH, JustI, PickE, AktoriesK: Glucosylation and ADP ribosylation of Rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling.Biochemistry37 , 5296–5304 (1998).
  • Genth H , SchmidtM, GerhardR, AktoriesK, JustI: Activation of phospholipase D1 by ADP-ribosylated RhoA.Biochem. Biophys. Res. Commun.302 , 127–132 (2003).
  • Genth H , GerhardR, MaedaA et al.: Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the Rho-guanine nucleotide dissociation inhibitor-1 complex.J. Biol. Chem.278 , 28523–28527 (2003).
  • Fujihara H , WalkerLA, GongMC et al.: Inhibition of RhoA translocation and calcium sensitization by in vivo ADP-ribosylation with the chimeric toxin DC3B.Mol. Biol. Cell8 , 2437–2447 (1997).
  • Barth H , OlenikC, SehrP, SchmidtG, AktoriesK, MeyerDK: Neosynthesis and activation of Rho by Escherichia coli cytotoxic necrotizing factor (CNF1) reverse cytopathic effects of ADP-ribosylated Rho.J. Biol. Chem.274 , 27407–27414 (1999).
  • Holbourn KP , SuttonJM, EvansHR, ShoneCC, AcharyaKR: Molecular recognition of an ADP-ribosylating Clostridium botulinum C3 exoenzyme by RalA GTPase.Proc. Natl Acad. Sci. USA102 , 5357–5362 (2005).
  • Pautsch A , VogelsgesangM, TrankleJ, HerrmannC, AktoriesK: Crystal structure of the C3bot–RalA complex reveals a novel type of action of a bacterial exoenzyme.EMBO J.24(20) , 3670–3680 (2005).
  • Ahnert-Hilger G , HoltjeM, GrosseG et al.: Differential effects of Rho GTPases on axonal and dendritic development in hippocampal neurones.J. Neurochem.90 , 9–18 (2004).
  • Holtje M , DjalaliS, HofmannF et al.: A 29-amino acid fragment of Clostridium botulinum C3 protein enhances neuronal outgrowth, connectivity, and reinnervation.FASEB J.23 , 1115–1126 (2009).
  • Chardin P , BoquetP, MadauleP, PopoffMR, RubinEJ, GillDM: The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells.EMBO J.8 , 1087–1092 (1989).
  • Ridley AJ , HallA: The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors.Cell70 , 389–399 (1992).
  • Fukata M , KaibuchiK: Rho-family GTPases in cadherin-mediated cell–cell adhesion.Nat. Rev. Mol. Cell Biol.2 , 887–897 (2001).
  • Aktories K , BarthH, JustI: Clostridium botulinum C3 exoenzyme and C3-like transferases. In: Bacterial Protein Toxins. Aktories K, Just I (Eds). Springer, Berlin, Germany, 207–233 (2000).
  • Aktories K , WildeC, VogelsgesangM: Rho-modifying C3-like ADP-ribosyltransferases.Rev. Physiol. Biochem. Pharmacol.152 , 1–22 (2004).
  • Boyer L , DoyeA, RolandoM et al.: Induction of transient macroapertures in endothelial cells through RhoA inhibition by Staphylococcus aureus factors.J. Cell Biol.173 , 809–819 (2006).
  • Czech A , YamaguchiT, BaderL et al.: Prevalence of Rho-inactivating epidermal cell differentiation inhibitor toxins in clinical Staphylococcus aureus isolates.J. Infec. Dis.184 , 785–788 (2001).
  • O ‘Neill AJ , LarsenAR, SkovR, HenriksenAS, ChopraI: Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus.J. Clin. Microbiol.45 , 1505–1510 (2007).
  • Jank T , AktoriesK: Structure and mode of action of clostridial glucosylating toxins: the ABCD model.Trends Microbiol.16 , 222–229 (2008).
  • Amimoto K , NoroT, OishiE, ShimizuM: A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C.Microbiology153 , 1198–1206 (2007).
  • Na X , KimH, MoyerMP, PothoulakisC, LaMontJT: gp96 is a human colonocyte plasma membrane binding protein for Clostridium difficile toxin A.Infect. Immun.76 , 2862–2871 (2008).
  • Greco A , HoJG, LinSJ, PalcicMM, RupnikM, NgKK: Carbohydrate recognition by Clostridium difficile toxin A.Nat. Struct. Mol. Biol.13 , 460–461 (2006).
  • Ho JG , GrecoA, RupnikM, NgKK: Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A.Proc. Natl Acad. Sci. USA102 , 18373–18378 (2005).
  • Hofmann F , BuschC, AktoriesK: Chimeric clostridial cytotoxins: identification of the N-terminal region involved in protein substrate recognition.Infect. Immun.66 , 1076–1081 (1998).
  • Hofmann F , BuschC, PrepensU, JustI, AktoriesK: Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin.J. Biol. Chem.272 , 11074–11078 (1997).
  • Rupnik M , PabstS, RupnikM, von Eichel-Streiber C, Urlaub H, Soling HD: Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile toxin B (TcdB) by host cells. Microbiology151 , 199–208 (2005).
  • Ziegler MO , JankT, AktoriesK, SchulzGE: Conformational changes and reaction of clostridial glycosylating toxins.J. Mol. Biol.377 , 1346–1356 (2008).
  • Reinert DJ , JankT, AktoriesK, SchulzGE: Structural basis for the function of Clostridium difficile toxin B.J. Mol. Biol.351 , 973–981 (2005).
  • Just I , HofmannF, AktoriesK: Molecular mechanism of action of the large clostridial cytotoxins. In: Bacterial Protein Toxins. Aktories K, Just I (Eds). Springer, Berlin, Germany, 307–331 (2000).
  • Busch C , SchömigK, HofmannF, AktoriesK: Characterization of the catalytic domain of Clostridium novyi α toxin.Infect. Immun.68 , 6378–6383 (2000).
  • Busch C , HofmannF, GerhardR, AktoriesK: Involvement of a conserved tryptophan residue in the UDP-glucose binding of large clostridial cytotoxin glycosyltransferases.J. Biol. Chem.275 , 13228–13234 (2000).
  • Jank T , GiesemannT, AktoriesK: Clostridium difficile glucosyltransferase toxin B-essential amino acids for substrate binding.J. Biol. Chem.282 , 35222–35231 (2007).
  • Jank T , ReinertDJ, GiesemannT, SchulzGE, AktoriesK: Change of the donor substrate specificity of Clostridium difficile toxin B by site-directed mutagenesis.J. Biol. Chem.280(45) , 37833–37838 (2005).
  • Mesmin B , RobbeK, GenyB et al.: A phosphatidylserine-binding site in the cytosolic fragment of Clostridium sordellii lethal toxin facilitates glucosylation of membrane-bound Rac and is required for cytotoxicity.J. Biol. Chem.279 , 49876–49882 (2004).
  • Müller S , von Eichel-Streiber C, Moos M: Impact of amino acids 22–27 of rho subfamily GTPases on glucosylation by the large clostridial cytotoxins TcsL-1522, TcdB-1470 and tcdB-8864. Eur. J. Biochem.266 , 1073–1080 (1999).
  • Barth H , PfeiferG, HofmannF, MaierE, BenzR, AktoriesK: Low pH-induced formation of ion channels by Clostridium difficile toxin B in target cells.J. Biol. Chem.276 , 10670–10676 (2001).
  • Fiorentini C , ThelestamM: Clostridium difficile toxin A and its effects on cells.Toxicon29 , 543–567 (1991).
  • Popoff MR , Chaves-OlarteE, LemichezE et al.: Ras, Rap, and rac small GTP-binding proteins are targets for Clostridium sordellii lethal toxin glucosylation.J. Biol. Chem.271 , 10217–10224 (1996).
  • Qa‘dan M , SpyresLM, BallardJD: pH-induced conformational changes in Clostridium difficile toxin B.Infect. Immun.68 , 2470–2474 (2000).
  • Qa‘dan M , SpyresLM, BallardJD: pH-induced cytopathic effects of Clostridium sordellii lethal toxin.Infect. Immun.69 , 5487–5493 (2001).
  • Giesemann T , JankT, GerhardR et al.: Cholesterol-dependent pore formation of Clostridium difficile toxin A.J. Biol. Chem.281 , 10808–10815 (2006).
  • Egerer M , GiesemannT, HerrmannC, AktoriesK: Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate.J. Biol. Chem.284 , 3389–3395 (2009).
  • Egerer M , GiesemannT, JankT, SatchellKJ, AktoriesK: Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity.J. Biol. Chem.282 , 25314–25321 (2007).
  • Reineke J , TenzerS, RupnikM et al.: Autocatalytic cleavage of Clostridium difficile toxin B.Nature446 , 415–419 (2007).
  • Just I , SelzerJ, WilmM, von Eichel-Streiber C, Mann M, Aktories K: Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature375 , 500–503 (1995).
  • Just I , WilmM, SelzerJ et al.: The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins.J. Biol. Chem.270 , 13932–13936 (1995).
  • Hermann C , AhmadianMR, HofmannF, JustI: Functional consequences of monoglucosylation of Ha-Ras at effector domain amino acid threonine 35.J. Biol. Chem.273 , 16134–16139 (1998).
  • Vetter IR , HofmannF, WohlgemuthS, HermannC, JustI: Structural consequences of monoglucosylation of Ha-Ras by Clostridium sordellii lethal toxin.J. Mol. Biol.301 , 1091–1095 (2000).
  • Genth H , AktoriesK, JustI: Monoglucosylation of RhoA at threonine 37 blocks cytosol membrane recycling.J. Biol. Chem.274 , 29050–29056 (1999).
  • Halabi-Cabezon I , HuelsenbeckJ, MayM et al.: Prevention of the cytopathic effect induced by Clostridium difficile Toxin B by active Rac1.FEBS Lett.582 , 3751–3756 (2008).
  • Chen ML , PothoulakisC, LaMontJT: Protein kinase C signaling regulates ZO-1 translocation and increased paracellular flux of T84 colonocytes exposed to Clostridium difficile toxin A.J. Biol. Chem.277 , 4247–4254 (2002).
  • Nusrat A , von Eichel-Streiber C, Turner JR, Verkade P, Madara JL, Parkos CA: Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect. Immun.69 , 1329–1336 (2001).
  • Boehm C , GibertM, GenyB, PopoffMR, RodriguezP: Modification of epithelial cell barrier permeability and intercellular junctions by Clostridium sordellii lethal toxin.Cell. Microbiol.8 , 1070–1085 (2006).
  • Geny B , KhumH, FittingC et al.: Clostridium sordellii lethal toxin kills mice by inducing a major increase in lung vascular permeability.Am. J. Pathol.170 , 1003–1017 (2007).
  • Nottrott S , SchoentaubeJ, GenthH, JustI, GerhardR: Clostridium difficile toxin A-induced apoptosis is p53-independent but depends on glucosylation of Rho GTPases.Apoptosis12 , 1443–1453 (2007).
  • Gerhard R , NottrottS, SchoentaubeJ, TatgeH, OllingA, JustI: Glucosylation of Rho GTPases by Clostridium difficile toxin A triggers apoptosis in intestinal epithelial cells.J. Med. Microbiol.57 , 765–770 (2008).
  • Kim H , RheeSH, PothoulakisC, LamontJT: Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand.Gastroenterology133 , 875–886 (2007).
  • Genth H , DregerSC, HuelsenbeckJ, JustI: Clostridium difficile toxins: more than mere inhibitors of Rho proteins.Int. J. Biochem. Cell Biol.40 , 592–597 (2008).
  • Matarrese P , FalzanoL, FabbriA et al.: Clostridium difficile toxin B causes apoptosis in epithelial cells by thrilling mitochondria: involvement of ATP-sensitive mitochondrial potassium channels.J. Biol. Chem.282 , 9029–9041 (2007).
  • Petit P , BreardJ, MontalescolV et al.: Lethal toxin from Clostridium sordellii induces apoptotic cell death by disruption of mitochondrial homeostasis in HL-60 cells.Cell. Microbiol.5 , 761–771 (2003).
  • Just I , GerhardR: Large clostridial cytotoxins.Rev. Physiol. Biochem. Pharmacol.152 , 23–47 (2004).
  • Gerhard R , TatgeH, GenthH et al.: Clostridium difficile toxin A induces expression of the stress-induced early gene product RhoB.J. Biol. Chem.280 , 1499–1505 (2005).
  • Huelsenbeck J , DregerSC, GerhardR, FritzG, JustI, GenthH: Upregulation of the immediate early gene product RhoB by exoenzyme C3 from Clostridium limosum and toxin B from Clostridium difficile.Biochemistry46 , 4923–4931 (2007).
  • Pothoulakis C , LamontJT: Microbes and microbial toxins: paradigms for microbial-mucosa interactions II. The integrated response of the intestine to Clostridium difficile toxins.Am. J. Physiol. Gastrointest. Liver Physiol.280 , G178–G183 (2001).
  • Savidge TC , PanWH, NewmanP, O‘BrienM, AntonPM, PothoulakisC: Clostridium difficile toxin B is an inflammatory enterotoxin in human intestine.Gastroenterology125 , 413–420 (2003).
  • Warny M , KeatesAC, KeatesS et al.: p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis.J. Clin. Invest.105 , 1147–1156 (2000).
  • Na X , ZhaoD, KoonHW et al.: Clostridium difficile toxin B activates the EGF receptor and the ERK/MAP kinase pathway in human colonocytes.Gastroenterology128 , 1002–1011 (2005).
  • Wershil B , CastagliuoloI, PothoulakisC: Mast cell involvement in Clostridium difficile toxin A-induced intestinal fluid secretion and neutrophil recruitment in mice.Gastroenterology114 , 956–964 (1998).
  • He D , HagenSJ, PothoulakisC et al.: Clostridium difficile toxin A causes early damage to mitochondria in cultured cells.Gastroenterology119 , 139–150 (2000).
  • Geny B , PopoffMR: Activation of a c-Jun-NH2-terminal kinase pathway by the lethal toxin from Clostridium sordellii, TcsL-82, occurs independently of the toxin intrinsic enzymatic activity and facilitates small GTPase glucosylation.Cell. Microbiol.11(7) , 1102–1113 (2009).
  • Ben El Hadj N , PopoffMR, MarvaudJC et al.: G-protein-stimulated phospholipase D activity is inhibited by lethal toxin from Clostridium sordellii in HL-60 cells.J. Biol. Chem.274 , 14021–14031 (1999).
  • Schmidt M , VosM, ThielM et al.: Specific inhibition of phorbol ester-stimulated phospholipase D by Clostridium sordellii lethal toxin and Clostridium difficile toxin B-1470 in HEK-293 cells.J. Biol. Chem.273 , 7413–7422 (1998).
  • Kim JH , LeeSD, HanJM et al.: Activation of phospholipase D1 by direct interaction with ADP-ribosylation factor 1 and RalA.FEBS J.430 , 231–235 (1998).
  • Luo JQ , LiuX, HammondSM et al.: RalA interacts directly with the Arf-responsive, PIP2-dependent phospholipase D1.Biochem. Biophys. Res. Commun.235 , 854–859 (1997).
  • Kelly CP , LaMontJT: Clostridium difficile – more difficult than ever.N. Engl. J. Med.359 , 1932–1940 (2008).
  • Voth DE , BallardJD: Clostridium difficile toxins: mechanism of action and role in disease.Clin. Microbiol. Rev.18 , 247–263 (2005).
  • Lyras D , O‘ConnorJR, HowarthPM et al.: Toxin B is essential for virulence of Clostridium difficile.Nature458(7242) , 1176–1179 (2009).
  • Songer JG : Clostridial diseases in domestic animals. In: Handbook on Clostridia. Dürre P (Ed.). CRC Press, Taylor and Francis Group, FL, USA, 527–542 (2005).
  • Clark S : Sudden death in periparturient sheep associated with Clostridium sordellii.Vet. Rec.153 , 340 (2003).
  • Lewis CJ , NaylorRD: Sudden death in sheep associated with Clostridium sordellii.Vet. Rec.142 , 417–421 (1998).
  • Lewis CJ , NaylorR: Sudden death in lambs associated with Clostridium sordellii infection.Vet. Rec.138 , 262 (1996).
  • Al-Mashat RR , TaylorDJ: Production of diarrhea and enteritic lesions in calves by the oral inoculation of pure cultures of Clostridium sordellii.Vet. Rec.112 , 141–146 (1983).
  • Richards SM , HuntBW: Clostridium sordellii in lambs.Vet. Rec.111 , 22 (1982).
  • Al-Mashat RR , TaylorDJ: Clostridium sordellii in enteritis in an adult sheep.Vet. Rec.112 , 19 (1983).
  • Popoff MR : Bacteriological examination in enterotoxaemia of sheep and lamb.Vet. Rec.114 , 324 (1984).
  • Bigalke H , ShoerLF: Clostridial neurotoxins. In: Bacterial Protein Toxins. Aktories K, Just I (Eds). Springer, Berlin, Germany, 407–443 (2000).
  • Herreros J , LalliG, MontecuccoC, SchiavoG: Pathophysiological properties of clostridial neurotoxins. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Freer JH (Eds). Academic Press, London, UK, 202–228 (1999).
  • Humeau Y , DoussauF, GrantNJ, PoulainB: How botulinum and tetanus neurotoxins block neurotransmitter.Biochimie82 , 427–446 (2000).
  • Meunier FA , HerrerosJ, SchiavoG, PoulainB, MolgoJ: Molecular mechanism of action of botulinal neurotoxins and the synaptic remodeling they induce in vivo at the skeletal neuromuscular junction. In: Handbook of Neurotoxicology. Massaro J (Ed.). Humana Press, NJ, USA, 305–347 (2002).
  • Meunier FA , SchiavoG, MolgoJ: Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular trasnmission.J. Physiol.96 , 105–113 (2002).
  • Poulain B , DousseauF, ColasanteC, DeloyeF, MolgoJ: Cellular and molecular mode of action of botulinum and tetanus neurotoxins.Adv. Organ Biol.2 , 285–313 (1997).
  • Poulain B , PopoffMR, MolgoJ: How do the botulinum neurotoxins block neurotransmitter release: from botulism to the molecular mechaism of action.Botulinum J.1 , 14–87 (2008).
  • Schiavo G , MatteoliM, MontecuccoC: Neurotoxins affecting neuroexocytosis.Physiol. Rev.80 , 717–766 (2000).
  • Hill KK , SmithTJ, HelmaCH et al.: Genetic diversity among botulinum neurotoxin-producing clostridial strains.J. Bacteriol.189 , 818–832 (2007).
  • Smith TJ , HillKK, FoleyBT et al.: Analysis of the neurotoxin complex genes in Clostridium botulinum A1–A4 and B1 strains: BoNT/A3, /Ba4 and /B1 clusters are located within plasmids.PLoS ONE2 , e1271 (2007).
  • Smith TJ , LouJ, GerenN et al.: Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization.Infect. Immun.73 , 5450–5457 (2005).
  • Arndt ER , JacobsonMJ, AbolaEE et al.: A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1–A4.J. Mol. Biol.362 , 733–742 (2006).
  • Chen Y , KorkealaH, AarnikunnasJ, LindstromM: Sequencing the botulinum neurotoxin gene and related genes in Clostridium botulinum type E strains reveals orfx3 and a novel type E neurotoxin subtype.J. Bacteriol.189 , 8643–8650 (2007).
  • Carter AT , PaulCJ, MasonDR et al.: Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum.BMC Genomics10 , 115 (2009).
  • Popoff MR , MarvaudJC: Structural and genomic features of clostridial neurotoxins. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Freer JH (Eds). Academic Press, London, UK, 174–201 (1999).
  • Hasegawa K , WatanabeT, SuzukiT et al.: A novel subunit structure of Clostridium botulinum serotype D toxin complex with three extended arms.J. Biol. Chem.282 , 24777–24783 (2007).
  • Lietzow MA , GielowET, LeD, ZhangJ, VerhagenMF: Subunit stoichiometry of the Clostridium botulinum type A neurotoxin complex determined using denaturing capillary electrophoresis.Protein J.27 , 420–425 (2008).
  • Call JE , CookePH, MillerAJ: In situ characterization of Clostridium botulinum neurotoxin synthesis and export.J. Appl. Bacteriol.79 , 257–263 (1995).
  • Emsley P , FotinouC, BlackI et al.: The structures of the Hc fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding.J. Biol. Chem.275 , 8889–8894 (2000).
  • Lacy DB , StevensRC: Sequence homology and structural analysis of the clostridial neurotoxins.J. Mol. Biol.291 , 1091–1104 (1999).
  • Lacy DB , TeppW, CohenAC, Das Gupta BR, Stevens RC: Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol.5 , 898–902 (1998).
  • Umland TC , WingertLM, SwaminathanS, FureyWF, SchmidtJJ, SaxM: The structure of the receptor binding fragment Hc of tetanus neurotoxin.Nat. Struct. Biol.4 , 788–792 (1997).
  • Fotinou C , EmsleyP, BlackI et al.: The crystal structure of tetanus toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin.J. Biol. Chem.276 , 3274–3281 (2001).
  • Breidenbach MA , BrungerAT: 2.3 Å crystal structure of tetanus neurotoxin light chain.Biochemistry44 , 7450–7457 (2005).
  • Fu Z , ChenS, BaldwinMR et al.: Light chain of botulinum neurotoxin serotype A: structural resolution of a catalytic intermediate.Biochemistry45 , 8903–8911 (2006).
  • Swaminathan S , EswaramoorthyS: Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B.Nat. Struct. Biol.7 , 693–699 (2000).
  • Stenmark P , DupuyJ, ImamuraA, KisoM, StevensRC: Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b – insight into the toxin–neuron interaction.PLoS Pathog.4 , e1000129 (2008).
  • Kumaran D , EswaramoorthyS, FureyW, NavazaJ, SaxM, SwaminathanS: Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation.J. Mol. Biol.386 , 233–245 (2009).
  • Maksymowych AB , SimpsonLL: Binding and transcytosis of botulinum neurotoxin by polarized human carcinoma cells.J. Biol. Chem.273 , 21950–21957 (1998).
  • Maksymowych AB , SimpsonLI: Structural features of the botulinum neurotoxin molecule that govern binding and transcytosis across polarized human intestinal epithelial cells.J. Pharmacol. Exp. Ther.210 , 633–641 (2004).
  • Ahsan CR , HajnoczkyG, MaksymowychAB, SimpsonLL: Visualization of binding and transcytosis of botulinum toxin by human intestinal epithelial cells.J. Pharmacol. Exp. Ther.315 , 1028–1035 (2005).
  • Couesnon A , PereiraY, PopoffMR: Receptor-mediated transcytosis of botulinum neurotoxin A through intestinal cell monolayers.Cell. Microbiol.10 , 375–387 (2008).
  • Matsumura T , JinY, KabumotoY et al.: The HA proteins of botulinum toxin disrupt intestinal epithelial intercellular junctions to increase toxin absorption.Cell. Microbiol.10 , 355–364 (2007).
  • Jin Y , TakegaharaY, SugawaraY, MatsumuraT, FujinagaY: Disruption of the epithelial barrier by botulinum haemagglutinin (HA) proteins – differences in cell tropism and the mechanism of action between HA proteins of types A or B, and HA proteins of type C.Microbiology155 , 35–45 (2009).
  • Wellhöner HH : Clostridial toxins and the central nervous system: studies on in situ tissues. In: Botulinum Neurotoxin and Tetanus Toxin. Simpson LL (Ed.). Academic Press, CA, USA, 231–253 (1989).
  • Manning KA , ErichsenJT, EvingerC: Retrograde transneuronal transport properties of fragment C of tetanus toxin.Neuroscience34 , 251–263 (1990).
  • Rossetto O , SevesoM, CaccinP, SchiavoG, MontecuccoC: Tetanus and botulinum neurotoxins: turning bad guys into good by research.Toxicon39 , 27–41 (2001).
  • Nishiki T , KamataY, NemotoY et al.: Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes.J. Biol. Chem.269 , 10498–10503 (1994).
  • Nishiki T , TokuyamaY, KamataY et al.: The high-affinity of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1B/GD1a.FEBS Lett.378 , 253–257 (1996).
  • Jin R , RummelA, BinzT, BrungerAT: Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity.Nature444 , 1092–1095 (2006).
  • Rummel A , KarnathT, HenkeT, BigalkeH, BinzT: Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G.J. Biol. Chem.279 , 30865–30870 (2004).
  • Dong M , RichardsDA, GoodnoughMC, TeppWH, JohnsonEA, ChapmanER: Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells.J. Cell Biol.162 , 1293–1303 (2003).
  • Dong M , YehF, TeppWH et al.: SV2 is the protein receptor for botulinum neurotoxin A.Science312 , 592–596 (2006).
  • Mahrhold S , RummelA, BigalkeH, DavletovB, BinzT: The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves.FEBS Lett.580 , 2011–2014 (2006).
  • Dong M , LiuH, TeppWH, JohnsonEA, JanzR, ChapmanER: Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons.Mol. Biol. Cell19 , 5226–5237 (2008).
  • Herreros J , LalliG, MontecuccoC, SchiavoG: Tetanus toxin fragment C binds to a protein present in neuronal cell lines and motoneurons.J. Neurosci.74 , 1941–1950 (2000).
  • Herreros J , NgT, SchiavoG: Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons.Mol. Biol. Cell12 , 2947–2960 (2001).
  • Munro P , KojimaH, DupontJL, BossuJL, PoulainB, BoquetP: High sensitivity of mouse neuronal cells to tetanus toxin requires a GPI-anchored protein.Biochem. Biophys. Res. Commun.289 , 623–629 (2001).
  • Rummel A , BadeS, AlvesJ, BigalkeH, BinzT: Two carbohydrate binding sites in the Hcc-domain of tetanus neurotoxin are required for toxicity.J. Mol. Biol.326 , 835–847 (2003).
  • Rummel A , EichnerT, WeilT et al.: Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept.Proc. Natl Acad. Sci. USA104 , 359–364 (2007).
  • Rummel A , MahrholdS, BigalkeH, BinzT: The Hcc-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction.Mol. Microbiol.51 , 631–643 (2004).
  • Tsukamoto K , KozaiY, IharaH et al.: Identification of the receptor-binding sites in the carboxyl-terminal half of the heavy chain of botulinum neurotoxin types C and D.Microb. Pathog.44 , 484–493 (2008).
  • Muraro L , TosattoS, MotterliniL, RossettoO, MontecuccoC: The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane.Biochem. Biophys. Res. Commun.380 , 76–80 (2009).
  • Yowler BC , SchengrundCL: Botulinum neurotoxin A changes conformation upon binding to ganglioside GT1b.Biochemistry43 , 9725–9731 (2004).
  • Chen C , BaldwinMR, BarbieriJT: Molecular basis for tetanus toxin coreceptor interactions.Biochemistry47 , 7179–7186 (2008).
  • Lalli G , BohnertS, DeinhardtK, VerasteguiC, SchiavoG: The journey of tetanus and botulinum neurotoxins in neurons.Trends Microbiol.11 , 431–437 (2003).
  • Lalli G , SchiavoG: Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neutrophin receptor p75NTR.J. Cell Biol.156 , 233–239 (2002).
  • Bohnert S , DeinhardtK, SalinasS, SchiavoG: Uptake and transport of clostridium neurotoxins. In: The Sourcebook of Comprehensive Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier Academic Press, Amsterdam, The Netherlands, 390–408 (2006).
  • Bohnert S , SchiavoG: Tetanus toxin is transported in a novel neuronal compartment characterized by a specialized pH regulation. 280(51) , 42336–42344 (2005).
  • Deinhardt K , BerminghausenO, WillisonHJ, HopkinsCR, SchiavoG: Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1.J. Cell Biol.174 , 459–471 (2006).
  • Deinhardt K , SalinasS, VerasteguiC et al.: Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway.Neuron52 , 293–305 (2006).
  • Li Y , ForanP, LawrenceG et al.: Recombinant forms of tetanus toxin engineered for examining and exploiting neuronal trafficking pathways.J. Biol. Chem.276 , 31394–31401 (2001).
  • Maskos U , KissaK, St Cloment C, Brulet P: Retrograde trans-synaptic transfer of green fluorescent protein allows the genetic mapping of neuronal circuits in transgenic mice. Proc. Natl Acad. Sci. USA99 , 10120–10125 (2002).
  • Galloux M , VitracH, MontagnerC et al.: Membrane interaction of botulinum neurotoxin A translocation (T) domain. The belt region is a regulatory loop for membrane interaction.J. Biol. Chem.283 , 27668–27676 (2008).
  • Koriazova LK , MontalM: Translocation of botulinum neurotoxin light chain protease through the heavy chain channel.Nat. Struct. Biol.10 , 13–18 (2003).
  • Fischer A , MontalM: Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes.J. Biol. Chem.282 , 29604–29611 (2007).
  • Montal M : Translocation of botulinum neurotoxin light chain protease by the heavy chain protein-conducting channel.Toxicon54(5) , 565–569 (2008).
  • Ratts R , TrujilloC, BhartiA, van der Spek J, Harrison R, Murphy JR: A conserved motif in transmembrane helix 1 of diphtheria toxin mediates catalytic domain delivery to the cytosol. Proc. Natl Acad. Sci. USA102 , 15635–15640 (2005).
  • Bhalla A , ChickaMC, TuckerWC, ChapmanER: Ca(2+)-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion.Nat. Struct. Mol. Biol.13 , 323–330 (2006).
  • Tucker WC , WeberT, ChapmanER: Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs.Science304 , 435–438 (2004).
  • Sakaba T , SteinA, JahnR, NeherE: Distinct kinetic changes in neurotransmitter release after SNARE protein cleavage.Science309 , 491–494 (2005).
  • Lynch KL , GeronaRR, KielarDM, MartensS, McMahonHT, MartinTF: Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion.Mol. Biol. Cell19 , 5093–5103 (2008).
  • Gerona RR , LarsenEC, KowalchykJA, MartinTF: The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes.J. Biol. Chem.275 , 6328–6336 (2000).
  • Poulain B , StilesBG, PopoffMR, MolgoJ: Attack of the nervous system by clostridial toxins: physical findings, cellular and molecular actions. In: The Sourcebook of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 348–389 (2006).
  • Foran PG , MohammedN, LiskGO et al.: Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, and E F compared with the long lasting type A.J. Biol. Chem.278 , 1363–1371 (2003).
  • O‘Sullivan GA , MohammedN, ForanPG, LawrenceGW, DollyJO: Rescue of exocytosis in botulinum toxin A-poisoned chromaffin cells by expression of cleavage-resistant SNAP-25.J. Biol. Chem.274 , 36897–36904 (1999).
  • Keller JE , NealeEA, OylerG, AdlerM: Persistence of botulinum neurotoxin action in cultured spinal cord cells.FEBS Lett.456 , 137–142 (1999).
  • Fernandez-Salas E , StewardLE, HoH et al.: Plasma membrane localization signals in the light chain of botulinum neurotoxin.Proc. Natl Acad. Sci. USA101 , 3208–3213 (2004).
  • Bajohrs M , RickmanC, BinzT, DavletovB: A molecular basis underlying differences in the toxicity of botulinum serotypes A and E.EMBO Rep.5 , 1090–1095 (2004).
  • Jankovic J : Botulinum toxin in clinical practice.J. Neurol. Neurosurg. Psychiatr.75 , 951–957 (2004).
  • Bihidayasiri R , TruongDD: Expanding use of botulinum toxin.J. Neurol. Sci.235 , 1–9 (2005).
  • Smith CP , SomogyiGT, BooneTB: Botulinum toxin in urology: evaluation using an evidence-based medicine approach.Nat. Clin. Pract. Urol.1 , 31–37 (2004).
  • Juzans P , ComellaJX, MolgoJ, FailleL, Angaut-PetitD: Nerve terminal sprouting in botulinum type-A treated mouse levator auris longus muscle.Neuromusc. Disord.6 , 177–185 (1996).
  • de Paiva A , MeunierF, MolgoJ, AokiKR, DollyJO: Functional repair of motor endpates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals.Proc. Natl Acad. Sci. USA96 , 3200–3205 (1999).
  • Meunier FA , LiskG, SesardicD, DollyJO: Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation.Mol. Cell. Neurosci.22 , 454–466 (2003).
  • Morbiato L , CarliL, JohnsonEA, MontecuccoC, MolgoJ, RossettoO: Neuromuscular paralysis and recovery in mice injected with botulinum neurotoxins A and C.Eur. J. Neurosci.25 , 2697–2704 (2007).
  • Stevens DL , TitballRW, JepsonM, BayerCR, Hayes-SchroerSM, BryantAE: Immunization with the C-domain of α-toxin prevents lethal infection, localizes tissue injury, and promotes host response to challenge with Clostridium perfringens.J. Infect. Dis.190 , 767–773 (2004).
  • Baldwin MR , TeppWH, PrzedpelskiA et al.: Subunit vaccine against the seven serotypes of botulism.Infect. Immun.76 , 1314–1318 (2008).
  • Tavallaie M , ChenalA, GilletD et al.: Interaction between the two subdomains of the C-terminal part of the botulinum neurotoxin A is essential for the generation of protective antibodies.FEBS Lett.572 , 299–306 (2004).
  • Aktories K : Toxins as tools. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 976–990 (2006).
  • Perier A , ChenalA, BabonA, MénezA, GilletD: Engineering of bacterial toxins for research and medicine. In: The Comprehensive Source Book of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 991–1007 (2006).
  • Figueiredo DM , HallewellRA, ChenLL et al.: Delivery of recombinant tetanus-superoxide dismutase proteins to central nervous sytem neurons by retrograde axonal transport.Exp. Neurol.145 , 546–554 (1997).
  • Kominsky SL , ValiM, KorzD et al.: Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4.Am. J. Pathol.164 , 1627–1633 (2004).
  • Michl P , BuchholzM, RolkeM et al.: Claudin-4: a new target for pancreatic cancer treatment using Clostridium perfringens enterotoxin.Gastroenterology121 , 678–684 (2001).
  • Jolivet-Reynaud C , EstradaJ, WestLA, AloufJE, ChedidL: Targeting of GM2-bearing tumor cells with the cytolytic Clostridium perfringens δ toxin.Anti Cancer Drugs4 , 65–75 (1993).
  • Hirschberg H , ZhangMJ, GachHM et al.: Targeted delivery of bleomycin to the brain using photo-chemical internalization of Clostridium perfringens ε prototoxin.J. Neurooncol. (2009) (Epub ahead of print).
  • Anne C , TurcaudS, BlommaertAG, DarchenF, JohnsonEA, RoquesBP: Partial protection against botulinum B neurotoxin-induced blocking of exocytosis by a potent inhibitor of its metallopeptidase activity.Chembiochem6 , 1375–1380 (2005).
  • Sukonpan C , OostT, GoodnoughM, TeppW, JohnsonEA, RichDH: Synthesis of substrates and inhibitors of botulinum neurotoxin type A metalloprotease.J. Pept. Res.63 , 181–193 (2004).
  • Couesnon A , ShimizuT, PopoffMR: Differential entry of botulinum neurotoxin A into neuronal and intestinal cells.Cell. Microbiol.11 , 289–308 (2009).
  • Titball RW , BasakAK: Membrane-damaging and cytotoxic phospholipases. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 516–534 (2006).
  • Brynestad S , GranumPE: Clostridium perfringens and foodborne infections.Int. J. Food Microbiol.74 , 195–202 (2002).
  • Smedley JG 3rd, Fisher DJ, Sayeed S, Chakrabarti G, McClane BA: The enteric toxins of Clostridium perfringens.Rev. Physiol. Biochem. Pharmacol.152 , 183–204 (2004).
  • Jestin A , PopoffMR, MaheS: Epizootiologic investigations of a diarrheic syndrom in fattening pigs.Am. J. Vet. Res.10 , 2149–2151 (1985).
  • Miwa N , NishinaT, KuboS, AtsumiM: Most probable number method combined with nested polymerase chain reaction for detection and enumeration of enterotoxigenic Clostridium perfringens in intestinal contents of cattle, pig and chicken.J. Vet. Med. Sci.59 , 89–92 (1997).
  • Collins JE , BergelandME, BouleyD, DucommunAL, FrancisDH, YeskeP: Diarrhea associated with Clostridium perfringens type A enterotoxin in neonatal pigs.J. Vet. Diagn. Invest.1 , 351–353 (1989).
  • Lindsay JA , MachAS, WilkinsonMA et al.: Clostridium perfringens type A cytotoxic-enterotoxin(s) as triggers for death in the sudden infant death syndrome: development of a toxico-infection hypothesis.Curr. Microbiol.27 , 51–59 (1993).
  • Lawrence G : The pathogenesis of pig-bel in Papua New Guinea. 1979.PNG Med. J.48 , 39–49 (2005).
  • Hatheway CL : Toxigenic clostridia.Clin. Microbiol. Rev.3 , 66–98 (1990).
  • Uzal FA , KellyWR: Enterotoxaemia in goats.Vet. Res. Commun.20 , 481–492 (1996).
  • Scholes SF , Welchman Dde B, Hutchinson JP, Edwards GT, Mitchell ES: Clostridium perfringens type D enterotoxaemia in neonatal lambs. Vet. Rec.160 , 811–812 (2007).
  • Rings DM : Clostridial disease associated with neurologic signs: tetanus, botulism, and enterotoxemia.Vet. Clin. North Am. Food Anim. Pract.20 , 379–391, vii–viii (2004).
  • Songer JG , MiskimminsDW: Clostridium perfringens type E enteritis in calves: two cases and a brief review of the literature.Anaerobe10 , 239–242 (2004).
  • Baskerville M , WoodM, SeamerJH: Clostridium perfringens type E enterotoxaemia in rabbits.Vet. Rec.107 , 18–19 (1980).
  • Kuijper E , de Weendt J, Kato H et al.: Nosocomial outbreak of Clostridium difficile-associated diarrhea due to a clindamycin-resistant enterotoxin A-negative strain. Eur. J. Clin. Microbiol. Infect. Dis.20 , 528–534 (2001).
  • Songer JG , AndersonMA: Clostridium difficile: an important pathogen of food animals.Anaerobe12 , 1–4 (2006).
  • Valiquette L , LowDE, PepinJ, McGeerA: Clostridium difficile infection in hospitals: a brewing storm.CMAJ171 , 27–29 (2004).
  • Weese JS , ToxopeusL, ArroyoL: Clostridium difficile associated diarrhoea in horses within the community: predictors, clinical presentation and outcome.Equine Vet. J.38 , 185–188 (2006).
  • Oldfield EC 3rd: Clostridium difficile-associated diarrhea: resurgence with a vengeance. Rev. Gastroenterol. Disord.6 , 79–96 (2006).
  • Goorhuis A , BakkerD, CorverJ et al.: Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078.Clin. Infect. Dis.47 , 1162–1170 (2008).
  • Songer JG , UzalFA: Clostridial enteric infections in pigs.J. Vet. Diagn. Invest.17 , 528–536 (2005).
  • Hookman P , BarkinJS: Clostridium difficile associated infection, diarrhea and colitis.World J. Gastroenterol.15 , 1554–1580 (2009).
  • McFarland LV : Antibiotic-associated diarrhea: epidemiology, trends and treatment.Future Microbiol.3 , 563–578 (2008).
  • Kuijper EJ , CoignardB, TullP: Emergence of Clostridium difficile-associated disease in North America and Europe.Clin. Microbiol. Infect.12(Suppl. 6) , 2–18 (2006).
  • Chew SS , LubowskiDZ: Clostridium septicum and malignancy.ANZ J. Surg.71 , 647–649 (2001).
  • Kornbluth AA , DanzigJB, BernsteinLH: Clostridium septicum infection and associated malignancy report of two cases and review of the literature.Medicine (Baltimore)68 , 30–37 (1989).
  • Schamber GJ , BergIE, MolesworthJR: Braxy or bradsot-like abomastitis caused by Clostridium septicum in a calf.Can. Vet. J.27 , 194 (1986).
  • Borriello SP : Clostridial disease of the gut.Clin. Infect. Dis.20(Suppl. 2) , S242–S250 (1995).
  • Borriello SP , CarmanRJ: Association of ι-like toxin and Clostridium spiroforme with both spontaneous and antibiotic-associated diarrhea and colitis in rabbits.J. Clin. Microbiol.17 , 414–418 (1983).
  • Domingo RM , HallerJS, GruenthalM: Infant botulism: two recent cases and literature review.J. Child Neurol.23 , 1336–1346 (2008).
  • Fu SW , WangCH: An overview of type E botulism in China.Biomed. Environ. Sci.21 , 353–356 (2008).
  • Brook I : Infant botulism.J. Perinatol.27 , 175–180 (2007).
  • Sobel J : Botulism.Clin. Infect. Dis.41 , 1167–1173 (2005).
  • McLauchlin J , GrantKA, LittleCL: Food-borne botulism in the United Kingdom.J. Public Health (Oxf.)28 , 337–342 (2006).
  • Aureli P , GiovannaF, PourshabanM: Foodborne botulism in Italy.Lancet348 , 1594 (1996).
  • Eklund MW , DowellJ: Avian Botulism. Charles C Thomas, Springfield, IL, USA (1987).
  • Smart JL : Type C botulism in intensively farmed turkeys.Vet. Rec.113 , 198–200 (1983).
  • Smart JL , RobertsTA: An outbreak of type C botulism in broiler chickens.Vet. Rec.100 , 378–380 (1977).
  • Degernes LA : Waterfowl toxicology: a review.Vet. Clin. North Am. Exot. Anim. Pract.11 , 283–300, vi (2008).
  • Gerber V , StraubR, FreyJ: Equine botulism and acute pasture myodystrophy: new soil-borne emerging diseases in Switzerland?.Schweiz. Arch. Tierheilkd.148 , 553–559 (2006).
  • Galey FD : Botulism in the horse.Vet. Clin. North Am. Equine Pract.17 , 579–588 (2001).
  • Wobeser G : Avian botulism – another perspective.J. Wildl. Dis.33 , 181–186 (1997).
  • Whitlock RH , BuckleyC: Botulism.Vet. Clin. North Am. Equine Pract.13 , 107–128 (1997).
  • Bongers JH , TetenburgGJ: Botulism in waterfowl.Vet. Q.18(Suppl. 3) , S156–S157 (1996).
  • Bergert H , IllertT, FriedrichK, OckertD: Fulminant liver failure following infection by Clostridium perfringens.Surg. Infect. (Larchmt)5 , 205–209 (2004).
  • Temple AM , ThomasNJ: Gas gangrene secondary to Clostridium perfringens in pediatric oncology patients.Pediatr. Emerg. Care20 , 457–459 (2004).
  • Halpin TF , MolinariJA: Diagnosis and management of clostridium perfringens sepsis and uterine gas gangrene.Obstet. Gynecol. Surv.57 , 53–57 (2002).
  • Present DA , MeislinR, ShafferB: Gas gangrene. A review.Orthop. Rev.19 , 333–341 (1990).
  • Rood JI : Virulence genes of Clostridium perfringens.Annu. Rev. Microbiol.52 , 333–360 (1998).
  • O‘Rourke F , SharrockK, PellyM: Clostridium septicum: a malignant pathogen.J. Infect.41 , 286–288 (2000).
  • Smith-Slatas CL , BourqueM, SalazarJC: Clostridium septicum infections in children: a case report and review of the literature.Pediatrics117 , e796–e805 (2006).
  • Barnham M , WeightmanN: Clostridium septicum infection and hemolytic uremic syndrome.Emerg. Infect. Dis.4 , 321–324 (1998).
  • Dirks C , HornH, ChristensenL, PedersenC: CNS infection with Clostridium septicum.Scand. J. Infect. Dis.32 , 320–322 (2000).
  • Stevens DL , MusherDM, WatsonDA et al.: Spontaneous, nontraumatic gangrene due to Clostridium septicum.Rev. Infect. Dis.12 , 286–296 (1990).
  • Clostridium sordellii toxic shock syndrome after medical abortion with mifepristone and intravaginal misoprostol – United States and Canada, 2001–2005. MMWR Morb. Mortal. Wkly Rep.54 , 724(2005).
  • Miech RP : Pathophysiology of mifepristone-induced septic shock due to Clostridium sordellii.Ann. Pharmacother.39 , 1483–1488 (2005).
  • Wiebe E , GuilbertE, JacotF, ShannonC, WinikoffB: A fatal case of Clostridium sordellii septic shock syndrome associated with medical abortion.Obstet. Gynecol.104 , 1142–1144 (2004).
  • Kimura AC , HigaJI, LevinRM, SimpsonG, VargasY, VugiaDJ: Outbreak of necrotizing fasciitis due to Clostridium sordellii among black-tar heroin users.Clin. Infect. Dis.38 , e87–e91 (2004).
  • Sinave C , Le Templier G, Blouin D, Leveille F, Deland E: Toxic shock syndrome due to Clostridium sordellii: a dramatic postpartum and postabortion disease. Clin. Infect. Dis.35 , 1441–1443 (2002).
  • Rorbye C , PetersenIS, NilasL: Postpartum Clostridium sordellii infection associated with fatal toxic shock syndrome.Acta Obstet. Gynecol. Scand.79 , 1134–1135 (2000).
  • Abdulla A , YeeL: The clinical spectrum of Clostridium sordellii bacteraemia: two case reports and a review of the literature.J. Clin. Pathol.53 , 709–712 (2000).
  • Bitti A , MastrantonioP, SpigagliaP et al.: A fatal postpartum Clostridium sordellii associated toxic shock syndrome.J. Clin. Pathol.50 , 259–260 (1997).
  • Cunniffe JG : Clostridium sordellii bacteraemia.J. Infect.33 , 127–129 (1996).
  • Spera RV Jr, Kaplan MH, Allen SL: Clostridium sordellii bacteremia: case report and review. Clin. Infect. Dis.15 , 950–954 (1992).
  • Buchman AL , PonsilloM, NagamiPH: Empyema caused by Clostridium sordellii, a rare form of pleuropulmonary disease.J. Infect.22 , 171–174 (1991).
  • McGregor JA , SoperDE, LovellG, ToddJK: Maternal deaths associated with Clostridium sordellii infection.Am. J. Obstet. Gynecol.161 , 987–995 (1989).
  • Fischer M , BhatnagarJ, GuarnerJ et al.: Fatal toxic shock syndrome associated with Clostridium sordellii after medical abortion.N. Engl. J. Med.353 , 2352–2360 (2005).
  • Rushdy AA , WhiteJM, RamsayME: Tetanus in England and Wales, 1984–2000.Epidemiol. Infect.130 , 71–77 (2003).
  • Simonsen O , BlochAV, HeronI: Epidemiology of tetanus in Denmark 1920–1982.Scand. J. Infect. Dis.19 , 437–444 (1987).
  • Christenson B , BöttigerM: Epidemiology and immunity to tetanus in Sweden.Scand. J. Infect. Dis.19 , 429–435 (1987).
  • Izurieta H , SutterRW, StrebelPM et al.: Tetanus surveillance – United States, 1991–1994.MMWR Morb. Mortal. Wkly Rep.46 , 15–25 (1997).
  • Tetanus among injecting-drug users – California, 1997. Morb. Mortal. Wkly Rep.47 , 149–151 (1998).
  • Vandelaer J , BirminighamM, GasseF, KurianM, ShawC, GarnierS: Tetanus in developing countries: an update on the maternal and neonatal tetanus elimination initiative.Vaccine21 , 3442–3445 (2003).
  • Gibson K , Bonaventure Uwineza J, Kiviri W, Parlow J: Tetanus in developing countries: a case series and review. Can. J. Anaesth.56 , 307–315 (2009).
  • Merson MH , DowellRR: Epidemiologic, clinical, and laboratory aspects of wound botulism.N. Engl. J. Med.289 , 1005–1010 (1973).
  • Brett MM , HallasG, MpamugoO: Wound botulism in the UK and Ireland.J. Med. Microbiol.53 , 555–561 (2004).
  • Werner SB , PassaroD, McGeeJ, SchechterR, VugiaDJ: Wound botulism in California, 1951–1998: recent epidemic in heroin injectors.Clin. Infect. Dis.31 , 1018–1024 (2000).
  • Akbulut D , DennisJ, GentM et al.: Wound botulism in injectors of drugs: upsurge in cases in England during 2004.Euro Surveill.10 , 172–174 (2005).
  • Kalka-Moll WM , AurbachU, SchaumannR, SchwarzR, SeifertH: Wound botulism in injection drug users.Emerg. Infect. Dis.13 , 942–943 (2007).
  • Burnens A : Cases of wound botulism in Switzerland.Euro Surveill.4 , n5 (2000).
  • Alouf JE , GeoffroyC: The family of the antigenically-related cholesterol-binding (‘sulphydryl-activated‘) cytolytic toxins. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Freer JH (Eds). Academic Press, London, UK, 147–186 (1991).
  • Alouf JE : Cholesterol-binding cytolytic protein toxins.Int. J. Med. Microbiol.290 , 351–356 (2000).
  • Basak A , PopoffMR, TitballRW, ColeAR: Clostridium perfringens ε-toxin. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 631–642 (2006).
  • McClane BA : Clostridium perfringens enterotoxin. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 763–778 (2006).
  • Titball RW , RoodJI: Bacterial phospholipases. In: Bacterial Protein Toxins. Aktories K, Just I (Eds). Springer, Berlin, Germany, 529–556 (2000).
  • Chaves-Olarte E , LowP, FreerP et al.: A novel cytotoxin from Clostridium difficile serogroup F is a functional hybrid between two other large clostridial toxins.J. Biol. Chem.274 , 11046–11052 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.