206
Views
0
CrossRef citations to date
0
Altmetric
Review

Sensing by the Membrane-Bound Sensor Kinase DcuS: Exogenous Versus Endogenous Sensing of C4-Dicarboxylates in Bacteria

, , &
Pages 1383-1402 | Published online: 22 Sep 2010

Bibliography

  • Ruffner H , RastD: Die Biogenese von Tartrat in der Weinrebe.Z. Pflanzenphysiol.73 , 45–55 (1974).
  • Lukas H , ReimannJ, KimOB, GrimpoJ, UndenG: The regulation of aerobic and anaerobic D-malate metabolism of Escherichia coli by the LysR-type regulator DmlR (former YeaT).J. Bacteriol.192 , 2503–2511 (2010).
  • Golby P , DaviesS, KellyDJ, GuestJR, AndrewsSC: Identification and characterization of a two-component sensor-kinase and response-regulator system (DcuS–DcuR) controlling gene expression in response to C4-dicarboxylates in Escherichia coli.J. Bacteriol.181 , 1238–1248 (1999).
  • Zientz E , BongaertsJ, UndenG: Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR genes) two-component regulatory system.J. Bacteriol.180 , 5421–5425 (1998).
  • Davies SJ , GolbyP, OmraniDet al. : Inactivation and regulation of the aerobic C4-dicarboxylate transport gene (dctA) of Escherichia coli.J. Bacteriol.181 , 5624–5635 (1999).
  • Cole ST , CondonC, LemireBD, WeinerJH: Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur protein of Escherichia coli.Biochim. Biophys. Acta811 , 381–403 (1985).
  • Kröger A , BielS, SimonJ, GroßR, UndenG, LancasterCRD: Fumarate respiration of Wolinella succinogenes: enzymology, energetics, and coupling mechanism.Biochim. Biophys. Acta1553 , 23–28 (2002).
  • Cecchini G , SchröderI, GunsalusRP, MaklashinaE: Succinate dehydrogenase and fumarate reductase from Escherichia coli.Biochim. Biophys. Acta1553 , 140–157 (2002).
  • Kim OB , LuxS, UndenG: Anaerobic growth of Escherichia coli on D-tartrate is independent of D- or L-tartrate specific transporters and enzymes.Arch. Microbiol.188 , 583–589 (2007).
  • Kneuper H , ScheuPD, EtzkornMet al. : Sensing ligands by periplasmic sensing histidine kinases with sensory PAS domains.In: Sensory Mechanisms in Bacteria.SpiroS, DixonR (Eds). Horizon Press, Norwich, UK, 41–61 (2010).
  • Wolanin PM , ThomasonPA, StockJB: Histidine protein kinases: key signal transducers outside the animal kingdom.Genome Biol.3 , 3013 (2002).
  • Wolanin PM , StockJB: Transmembrane signalling and the regulation of histidine kinase activity. In: Histidine Kinases in Signal Transduction. Inouye M, Dutta R (Eds). Academic Press, San Diego, CA, USA, 73–122 (2003).
  • Mascher T , HelmannJD, UndenG: Stimulus perception in bacterial signal transducing histidine kinases.Microbiol. Mol. Biol. Rev.20 , 910–938 (2006).
  • Falke JJ , HazelbauerGL: Transmembrane signalling in bacterial chemoreceptors.Trends Biochem. Sci.26 , 257–265 (2001).
  • Ottemann KM , XiaoW, ShinYK, KoshlandDEJr: A piston model for transmembrane signalling of the aspartate receptor.Science285 , 1751–1754 (1999).
  • Taylor BL , ZhulinIB: PAS domains: internal sensors of oxygen, redox potential and light.Microbiol. Mol. Biol. Rev.63 , 479–506 (1999).
  • Cheung J , HendricksonWA: Crystal structures of C4-dicarboxylate ligand complexes with sensor domains of histidine kinases DcuS and DctB.J. Biol. Chem.283 , 30256–30265 (2008).
  • Reinelt S , HofmannT, GerharzT, BottM, MaddenDR: The structure of the periplasmic ligand-binding domain of the sensor kinase CitA reveals the first extracellular PAS domain.J. Biol. Chem.278 , 39189–39196 (2003).
  • Pappalardo L , JanauschIG, VijayanVet al. : The NMR structure of the sensory domain of he membraneous two-component fumarate sensor (histidine protein kinase) DcuS of Escherichia coli.J. Biol. Chem.178 , 39185–39188 (2003).
  • Galperin MY : Structural classification of bacterial response regulators: diversity of output domains and domain combinations.J. Bacteriol.188(12) , 4165–4168 (2006).
  • Kim D , ForstS: Genomic analysis of the histidine kinase family in bacteria and archaea.Microbiology147(5) , 1197–1212 (2001).
  • Dutta R , QinL, InouyeM: Histidine kinases: diversity of domain organisation.Mol. Microbiol.34(4) , 633–640 (1999).
  • Hamblin MJ , ShawJG, KellyDJ: Sequence analysis and interposon mutagenesis of a sensor-kinase (DctS) and response-regulator (DctR) controlling synthesis of the high-affinity C4-dicarboxylate transport system in Rhodobacter capsulatus.Mol. Gen. Genet.237 , 215–224 (1993).
  • Janausch IG , ZientzE, TranQH, KrögerA, UndenG: C4-dicarboxylate carriers and sensors in bacteria.Biochim. Biophys. Acta1553 , 39–56 (2002).
  • Etzkorn M , KneuperH, DünnwaldPet al. : Plasticity of the PAS domain and a potential role for signal transduction in the histidine kinase DcuS.Nat. Struct. Mol. Biol.15 , 1031–1039 (2008).
  • Kaspar S , PerozzoR, ReineltSet al. : The periplasmic domain of the histidine autokinase CitA functions as a highly specific citrate receptor.Mol. Microbiol.33 , 858–872 (1999).
  • Bott M , MeyerM, DimrothP: Regulation of anaerobic citrate metabolism in Klebsiella pneumoniae.Mol. Microbiol.18 , 533–546 (1995).
  • Bott M : Anaerobic citrate metabolism and its regulation in enterobacteria.Arch. Microbiol.167 , 78–88 (1997).
  • Kaspar S , BottM: The sensor kinase CitA (DpiB) of Escherichia coli functions as a high-affinity citrate receptor.Arch. Microbiol.177 , 313–321 (2002).
  • Kneuper H , JanauschIG, VijayanVet al. : The nature of the stimulus and of the fumarate binding site of the fumarate sensor DcuS of Escherichia coli.J. Biol. Chem.280 , 20596–20603 (2005).
  • Krämer J , FischerJ, ZientzEet al. : Citrate sensing by the C4-dicarboxylate/citrate sensor kinase DcuS of Escherichia coli: binding site and conversion of DcuS to a C4-dicarboxylate- or citrate-specific sensor.J. Bacteriol.189 , 4290–4298 (2007).
  • Yamamoto H , MurataM, SekiguchiJ: The CitST two-component system regulates the expression of the Mg-citrate transporter in Bacillus subtilis.Mol. Microbiol.37 , 898–912 (2000).
  • Asai K , BaikSH, KasaharaY, MoriyaS, OgasawaraN: Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis.Microbiology146 , 263–271 (2000).
  • Doan T , ServantP, TojoSet al. : The Bacillus subtilis ywkA gene encodes a malic enzyme and its transcription is activated by the YufL/YufM two-component system in response to malate.Microbiology149 , 2331–2343 (2003).
  • Tanaka K , KobayashiK, OgasawaraN: The Bacillus subtilis YufLM two-component system regulates the expression of the malate transporters MaeN (YufR) and YflS, and is essential for utilization of malate in minimal medium.Microbiology149 , 2317–2329 (2003).
  • Kyriakidis DA , TiligadaE: Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm.Amino Acids37(3) , 443–458 (2009).
  • Kramer G , WeissV: Functional dissection of the transmitter module of the histidine kinase NtrB in Escherichia coli.Proc. Natl Acad. Sci. USA96 , 604–609 (1999).
  • Reid CJ , PoolePS: Roles of DctA and DctB in signal detection by the dicarboxylic acid transport system of Rhizobium leguminosarum.J. Bacteriol.180 , 2660–2669 (1998).
  • Van Slooten JC , BhuvanasvariTV, BardinS, StanleyJ: Two C4-dicarboxylate transport systems in Rhiobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbiosis.Mol. Plant Microbe Interact.5(2) , 179–186 (1992).
  • Mavridou A , BarnyMA, PoolePet al. : Rhizobium leguminosarum nodulation gene (nod) expression is lowered by an allele-specific mutation in the dicarboxylate transport gene dctB.Microbiology141 , 103–111 (1995).
  • Jording D , SharmaPK, SchmidtR, EngelkeT, UhdeC, PühlerA: Regulatory aspects of the C4-dicarboxylate transport in Rhizobium meliloti – transcriptional activation and dependence on effective symbiosis.J. Plant. Physiol.141 , 18–27 (1992).
  • Gu BH , LeeJH, HooverTR, SchollD, NixonBT: Rhizobium meliloti dctD, a σ54-dependent transcriptional activator, may be negatively controlled by a subdomain in the C-terminal end of its two-component receiver module.Mol. Microbiol.13 , 51–66 (1994).
  • Lee JH , SchollD, NixonBT, HooverTR: Constitutive ATP hydrolysis and transcription activation by a stable, truncated form of Rhizobium meliloti DctD, a σ54-dependent transcriptional activator.J. Biol. Chem.269 , 20401–20409 (1994).
  • Janausch IG , Garcia-MorenoI, UndenG: Function of DcuS from Escherichia coli as a fumarate stimulated histidine protein kinase in vitro.J. Biol. Chem.277 , 39809–39814 (2002).
  • Zhou YF , NanB, NanJet al. : C4-dicarboxylate sensing mechanisms, revealed by the crystal structures of DctB sensor domain.J. Mol. Biol.383 , 49–61 (2008).
  • Ponting CP , AravindL: PAS: a multifunctional domain family comes to light.Curr. Biol.7 , R674–R677 (1997).
  • Gu YZ , HogeneschJB, BradfieldCA: The PAS superfamily: sensors of environmental and developmental signals.Annu. Rev. Pharmacol. Toxicol.40 , 519–561 (2000).
  • Chapman-Smith A , LutwycheJK, WhitelawML: Contribution of the Per/Arnt/Sim (PAS) domains to DNA binding by the basic helix–loop–helix PAS transcriptional regulators.J. Biol. Chem.279(7) , 5353–5362 (2004).
  • Slavny P , LittleR, SalinasP, ClarkeTA, DixonR: Quaterny structure changes in a second Per-Arnt-Sim domain mediate intramolecular redox signal relay in the NifL regulatory protein.Mol. Microbiol.75(1) , 61–75 (2010).
  • Gilles-Gonzalez MA , GonzalezG: Signal transduction by heme-containing PAS-domain proteins.J. Appl. Physiol.96 , 774–783 (2004).
  • Neiditch MB , FederleMJ, MillerST, BasslerBL, HughsonFM: Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2.Mol. Cell18 , 507–518 (2005).
  • Sevvana M , VijayanV, ZweckstetterMet al. : A ligand-induced switch in the periplasmic domain of sensor histidine kinase CitA.J. Mol. Biol.377 , 512–523 (2008).
  • Gerharz T , ReineltS, KasparS, ScapozzaL, BottM: Identification of basic amino acid residues important for citrate binding by the periplasmic receptor domain of the sensor kinase CitA.Biochemistry42 , 5917–5924 (2003).
  • Kleefeld A , AckermannB, BauerJ, KrämerJ, UndenG: The fumarate/succinate antiporter DcuB of Escherichia coli is a bifunctional protein with sites for regulation of DcuS dependent gene expression.J. Biol. Chem.284 , 265–275 (2009).
  • Ronson CW , AstwoodPM, DownieJA: Molecular cloning and genetic organization of C4-dicarboxylate transport genes from Rhizobium leguminosum.J. Bacteriol.160 , 903–909 (1984).
  • Yarosh OK , CharlesTC, FinanTM: Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti.Mol. Microbiol.3 , 813–823 (1989).
  • Jording D , UhdeC, SchmidtR, PühlerA: The C4-dicarboxylate transport system of Rhizobium meliloti and its role in nitrogen-fixation during symbiosis with alfalfa (medicago-sativa).Experientia50 , 874–883 (1994).
  • Forward JA , BehrendtMC, WybornNR, CrossR, KellyDJ: TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria.J. Bacteriol.179(17) , 5482–5493, (1997).
  • Tetsch L , JungK: The regulatory interplay between membrane-integrated sensors and transport proteins in bacteria.Mol. Microbiol.73(6) , 982–991 (2009).
  • Gardina PJ , BormansAF, MansonMD: A mechanism for simultaneous sensing of aspartate and maltose by the Tar chemoreceptor of Escherichia coli.Mol. Microbiol.29(5) , 1147–1154 (1998).
  • Antoine R , HuventI, ChemlalKet al. : The periplasmic binding protein of a tripartite tricarboxylate transporter is involved in signal transduction.J. Mol. Biol.351 , 799–809 (2005).
  • Tomomori C , TanakaT, DuttaRet al. : Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ.Nat. Struct. Biol.6 , 729–734 (1999).
  • Tanaka T , SahaSK, TomomoriCet al. : NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ.Nature396 , 88–92 (1998).
  • Marina A , WaldburgerCD, HendricksonW: Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein.EMBO J.24 , 4247–4259 (2005).
  • Key J , HeftiM, PurcellEB, MoffatK: Structure of the redox sensor domain of Azotobacter vinelandii NifL at atomic resolution: signaling, dimerization, and mechanism.Biochemistry46 , 3614–3623 (2007).
  • Scheu PD , LiaoYF, BauerJet al. : Oligomeric sensor kinase DcuS in the membrane of Escherichia coli and in proteoliposomes: chemical cross-linking and FRET spectroscopy.J. Bacteriol.192 , 3474–3483 (2010).
  • Grasberger B , MintonAP, DeLisiC, MetzgerH: Interaction between proteins localized in membranes.Proc. Natl Acad. Sci. USA83 , 6258–6262 (1986).
  • Draheim RR , BormansAF, LaiRZ, MansonMD: Tuning a bacterial chemoreceptor with protein–membrane interactions.Biochemistry45 , 14655–14664 (2006).
  • Lai WC , BeelBD, HazelbauerGL: Adaptational modification and ligand occupancy have opposite effects on positioning of the transmembrane signalling helix of a chemoreceptor.Mol. Microbiol.61 , 1081–1090 (2006).
  • Moore JO , HendricksonWA: Structural analysis of sensor domains from the TMAO-responsive histidine kinase receptors TorS.Structure17 , 1195–1204 (2009).
  • Abo-Amer AE , MunnJ, JacksonKet al. : DNA-interaction and phosphotransfer of the C4-dicarboxylate-responsive DcuS–DcuR two-component regulatory system from Escherichia coli.J. Bacteriol.186 , 1879–1889 (2004).
  • Six S , AndrewsSC, UndenG, GuestJR: Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct).J. Bacteriol.176 , 6470–6478 (1994).
  • Wolff C , ParkinsonJS: Aspartate taxis mutants of the Escherichia coli Tar chemoreceptor.J. Bacteriol.170(10) , 4509–4515 (1988).
  • Bowie JU , PaklaAA, SimonMI: The three-dimensional structure of the aspartate receptor from Escherichia coli.Acta Crystallogr. D Biol. Crystallogr.51 , 145–154 (1995).
  • Milburn MV , PrivéGG, MilliganDLet al. : Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand.Science254 , 1342–1347 (1991).
  • Zhang Y , GardinaPJ, KueblerAS, KangHS, ChristopherJA, MansonMD: Model of maltose-binding protein/chemoreceptor complex supports intrasubunit signaling mechanism.Proc. Natl Acad. Sci. USA96(3) , 939–944 (1999).
  • Björkman AM , DuntenP, SandgrenMO, DwarakanathVN, MowbraySL: Mutations that affect ligand binding to the Escherichia coli aspartate receptor: implications for transmembrane signaling.J. Biol. Chem.276(4) , 2808–2815 (2000).
  • Manson MD , BoosW, BassfordPJ Jr, Rasmussen BAD: Dependence of maltose transport and chemotaxis on the amount of maltose-binding protein. J. Biol. Chem.260(17) , 9727–9733 (1985).
  • Iwama T , ItoY, AokiHet al. : Differential recognition of citrate and a metal–citrate complex by the bacterial chemoreceptor Tcp.J. Biol. Chem.281 , 17727–17735 (2006).
  • Glekas GD , FosterRM, CatesJRet al. : A PAS domain binds asparagine in the chemotaxis receptor McpB in Bacillus subtilis.J. Biol. Chem.258(3) , 1870–1878 (2010).
  • Maddocks SE , OystonPC: Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins.Microbiology154(12) , 3609–3623 (2008).
  • Schell MA : Molecular biology of the LysR family of transcriptional regulators.Annu. Rev. Microbiol.47 , 597–626 (1993).
  • Oshima T , BivilleF: Functional identification of ygiP as a positive regulator of the ttdA ttdB ygjE operon.Microbiology152 , 2129–2135 (2006).
  • Kim OB , ReimannJ, LukasHet al. : Regulation of tartrate metabolism by TtdR and relation to the DcuS–DcuR-regulated C4-dicarboxylate metabolism of Escherichia coli.Microbiology155 , 3632–3640 (2009).
  • Kim OB , UndenG: The L-tartate/succinate antiporter TtdT (YgjE) of L-tartrate fermentation in Escherichia coli.J. Bacteriol.189 , 1597–1603 (2007).
  • Salomone JY , CrouzetP, DeRuffray P, OttenL: Characterization and distribution of tartrate utilization genes in the grapevine pathogen Agrobacterium vitis.Mol. Plant Microbe Interact.9(5) , 401–418 (1996).
  • Crouzet P , OttenL: Sequence and mutational analysis of a tartrate utilization operon from Agrobacterium vitis.J. Bacteriol.177(22) , 6518–6526 (1995).
  • Renault P , GaillardinC, HeslotH: Product of the Lactococcus lactis gene required for malolactic fermentation is homologous to a family of positive regulators.J. Bacteriol.171(6) , 3108–3114 (1989).
  • Daeschel MA : A pH control system based on malate decarboxylation for the cultivation of lactic acid bacteria.Appl. Environ. Microbiol.54 , 1627–1629 (1988).
  • Labarre C , DivièsC, GuzzoJ: Genetic organization of the mle locus and identification of a mleR-like gene from Leuconostoc oenos.Appl. Environ. Microbiol.62(12) , 4493–4498 (1996).
  • Martin MG , MagniC, de Mendoza D, López P: CitI, a transcription factor involved in regulation of citrate metabolism in lactic acid bacteria. J. Bacteriol.187 , 5146–5155 (2005).
  • Blancato VS , RepizoGD, SuárezCA, MagniC: Transcriptional regulation of the citrate gene cluster of Enterococcus faecalis involves the GntR family transcriptional activator CitO.J. Bacteriol.190 , 7419–7430 (2008).
  • Winkler HH : Kinetics of exogenous induction of the hexose-6-phosphate transport system of Escherichia coli.J. Bacteriol.107 , 74–78 (1971).
  • Bryson K , McGuffinLJ, MarsdenRL, WardJJ, SodhiJS, JonesDT: Protein structure prediction servers at University College London.Nucl. Acids Res.33 (Web Server Issue) , W36–W38 (2005).
  • Jones DT : Protein secondary structure prediction based on position-specific scoring matrices.J. Mol. Biol.292 , 195–202 (1999).
  • Larkin MA , BlackshieldsG, BrownNPet al. : Clustal W and Clustal X version 2.0.Bioinformatics23(21) , 2947–2948 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.