236
Views
0
CrossRef citations to date
0
Altmetric
Review

Immune Evasion by Kaposi‘s Sarcoma-Associated Herpesvirus

, , , &
Pages 1349-1365 | Published online: 22 Sep 2010

Bibliography

  • Chang Y , CesarmanE, PessinMSet al. : Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi‘s sarcoma.Science266(5192) , 1865–1869 (1994).
  • Jung JU , ChoiJK, EnsserA, BiesingerB: Herpesvirus saimiri as a model for gammaherpesvirus oncogenesis.Semin. Cancer Biol.9(3) , 231–239 (1999).
  • Alexander L , DenekampL, KnappA, AuerbachMR, DamaniaB, DesrosiersRC: The primary sequence of rhesus monkey rhadinovirus isolate 26–95: sequence similarities to Kaposi‘s sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577.J. Virol.74(7) , 3388–3398 (2000).
  • Russo JJ , BohenzkyRA, ChienMCet al. : Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8).Proc. Natl Acad. Sci. USA93(25) , 14862–14867 (1996).
  • Neipel F , AlbrechtJC, FleckensteinB: Cell-homologous genes in the Kaposi‘s sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity?J. Virol.71(6) , 4187–4192 (1997).
  • Albrecht JC , NicholasJ, BillerDet al. : Primary structure of the Herpesvirus saimiri genome.J. Virol.66(8) , 5047–5058 (1992).
  • Wang FZ , AkulaSM, Sharma-WaliaN, ZengL, ChandranB: Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence.J. Virol.77(5) , 3131–3147 (2003).
  • Akula SM , WangFZ, VieiraJ, ChandranB: Human herpesvirus 8 interaction with target cells involves heparan sulfate.Virology282(2) , 245–255 (2001).
  • Birkmann A , MahrK, EnsserAet al. : Cell surface heparan sulfate is a receptor for human herpesvirus 8 and interacts with envelope glycoprotein K8.1.J. Virol.75(23) , 11583–11593 (2001).
  • Pertel PE : Human herpesvirus 8 glycoprotein B (gB) , gH, and gL can mediate cell fusion.J. Virol.76(9) , 4390–4400 (2002).
  • Kaleeba JA , BergerEA: Kaposi‘s sarcoma-associated herpesvirus fusion-entry receptor: cystine transporter xCT.Science311(5769) , 1921–1924 (2006).
  • Sun R , LinSF, GradovilleL, YuanY, ZhuF, MillerG: A viral gene that activates lytic cycle expression of Kaposi‘s sarcoma-associated herpesvirus.Proc. Natl Acad. Sci. USA95(18) , 10866–10871 (1998).
  • Gradoville L , GerlachJ, GroganEet al. : Kaposi‘s sarcoma-associated herpesvirus open reading frame 50/Rta protein activates the entire viral lytic cycle in the HH-B2 primary effusion lymphoma cell line.J. Virol.74(13) , 6207–6212 (2000).
  • Lukac DM , RenneR, KirshnerJR, GanemD: Reactivation of Kaposi‘s sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein.Virology252(2) , 304–312 (1998).
  • Renne R , ZhongW, HerndierBet al. : Lytic growth of Kaposi‘s sarcoma-associated herpesvirus (human herpesvirus 8) in culture.Nat. Med.2(3) , 342–346 (1996).
  • Duprez R , LacosteV, BriereJet al. : Evidence for a multiclonal origin of multicentric advanced lesions of Kaposi sarcoma.J. Natl Cancer Inst.99(14) , 1086–1094 (2007).
  • Samols MA , HuJ, SkalskyRL, RenneR: Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi‘s sarcoma-associated herpesvirus.J. Virol.79(14) , 9301–9305 (2005).
  • Cai X , LuS, ZhangZ, GonzalezCM, DamaniaB, CullenBR: Kaposi‘s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells.Proc. Natl Acad. Sci. USA102(15) , 5570–5575 (2005).
  • Grundhoff A , SullivanCS, GanemD: A combined computational and microarray-based approach identifies novel microRNAs encoded by human γ-herpesviruses.RNA12(5) , 733–750 (2006).
  • Pfeffer S , SewerA, Lagos-QuintanaMet al. : Identification of microRNAs of the herpesvirus family.Nat. Methods2(4) , 269–276 (2005).
  • Cai X , CullenBR: Transcriptional origin of Kaposi‘s sarcoma-associated herpesvirus microRNAs.J. Virol.80(5) , 2234–2242 (2006).
  • Lu F , StedmanW, YousefM, RenneR, LiebermanPM: Epigenetic regulation of Kaposi‘s sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway.J. Virol.84(6) , 2697–2706 (2010).
  • Lei X , BaiZ, YeFet al. : Regulation of NF-κB inhibitor IκBα and viral replication by a KSHV microRNA.Nat. Cell Biol.12(2) , 193–199 (2010).
  • Bellare P , GanemD: Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation.Cell Host Microbe6(6) , 570–575 (2009).
  • Marshall V , ParksT, BagniRet al. : Conservation of virally encoded microRNAs in Kaposi sarcoma--associated herpesvirus in primary effusion lymphoma cell lines and in patients with Kaposi sarcoma or multicentric Castleman disease.J. Infect. Dis.195(5) , 645–659 (2007).
  • Sun R , LinSF, GradovilleL, MillerG: Polyadenylylated nuclear RNA encoded by Kaposi sarcoma-associated herpesvirus.Proc. Natl Acad. Sci. USA93(21) , 11883–11888 (1996).
  • Conrad NK , SteitzJA: A Kaposi‘s sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts.EMBO J.24(10) , 1831–1841 (2005).
  • Morgan BP , MarchbankKJ, LonghiMP, HarrisCL, GallimoreAM: Complement: central to innate immunity and bridging to adaptive responses.Immunol. Lett.97(2) , 171–179 (2005).
  • Dunkelberger JR , SongWC: Complement and its role in innate and adaptive immune responses.Cell Res.20(1) , 34–50 (2010).
  • Blom AM : Strategies developed by bacteria and virus for protection from the human complement system.Scand. J. Clin. Lab. Invest.64(5) , 479–496 (2004).
  • Spiller OB , RobinsonM, O‘DonnellEet al. : Complement regulation by Kaposi‘s sarcoma-associated herpesvirus ORF4 protein.J. Virol.77(1) , 592–599 (2003).
  • Fodor WL , RollinsSA, Bianco-CaronSet al. : The complement control protein homolog of Herpesvirus saimiri regulates serum complement by inhibiting C3 convertase activity.J. Virol.69(6) , 3889–3892 (1995).
  • Kapadia SB , MolinaH, van BerkelV, SpeckSH, VirginHWIV: Murine gammaherpesvirus 68 encodes a functional regulator of complement activation.J. Virol.73(9) , 7658–7670 (1999).
  • Okroj M , MarkL, StokowskaAet al. : Characterization of the complement inhibitory function of rhesus rhadinovirus complement control protein (RCP).J. Biol. Chem.284(1) , 505–514 (2009).
  • Isaacs A , LindenmannJ: Virus interference. I. The interferon.Proc. R. Soc. Lond. B Biol. Sci.147(927) , 258–267 (1957).
  • Pestka S , KrauseCD, WalterMR: Interferons, interferon-like cytokines, and their receptors.Immunol. Rev.202 , 8–32 (2004).
  • Muller U , SteinhoffU, ReisLFet al. : Functional role of type I and type II interferons in antiviral defense.Science264(5167) , 1918–1921 (1994).
  • Weber F , KochsG, HallerO: Inverse interference: how viruses fight the interferon system.Viral Immunol.17(4) , 498–515 (2004).
  • Dupuis S , JouanguyE, Al-HajjarSet al. : Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency.Nat. Genet.33(3) , 388–391 (2003).
  • Samuel CE : Antiviral actions of interferons.Clin. Microbiol. Rev.14(4) , 778–809 (2001).
  • Moore PS , BoshoffC, WeissRA, ChangY: Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV.Science274(5293) , 1739–1744 (1996).
  • Jenner RG , AlbaMM, BoshoffC, KellamP: Kaposi‘s sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays.J. Virol.75(2) , 891–902 (2001).
  • Parravicini C , ChandranB, CorbellinoMet al. : Differential viral protein expression in Kaposi‘s sarcoma-associated herpesvirus-infected diseases: Kaposi‘s sarcoma, primary effusion lymphoma, and multicentric Castleman‘s disease.Am. J. Pathol.156(3) , 743–749 (2000).
  • Dittmer DP : Transcription profile of Kaposi‘s sarcoma-associated herpesvirus in primary Kaposi‘s sarcoma lesions as determined by real-time PCR arrays.Cancer Res.63(9) , 2010–2015 (2003).
  • Rivas C , ThlickAE, ParraviciniC, MoorePS, ChangY: Kaposi‘s sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53.J. Virol.75(1) , 429–438 (2001).
  • Cunningham C , BarnardS, BlackbournDJ, DavisonAJ: Transcription mapping of human herpesvirus 8 genes encoding viral interferon regulatory factors.J. Gen. Virol.84(Pt 6) , 1471–1483 (2003).
  • Lee HR , KimMH, LeeJS, LiangC, JungJU: Viral interferon regulatory factors.J. Interferon Cytokine Res.29(9) , 621–627 (2009).
  • Takaoka A , TamuraT, TaniguchiT: Interferon regulatory factor family of transcription factors and regulation of oncogenesis.Cancer Sci.99(3) , 467–478 (2008).
  • Flowers CC , FlowersSP, NabelGJ: Kaposi‘s sarcoma-associated herpesvirus viral interferon regulatory factor confers resistance to the antiproliferative effect of interferon-a.Mol. Med.4(6) , 402–412 (1998).
  • Zimring JC , GoodbournS, OffermannMK: Human herpesvirus 8 encodes an interferon regulatory factor (IRF) homolog that represses IRF-1-mediated transcription.J. Virol.72(1) , 701–707 (1998).
  • Tamura T , YanaiH, SavitskyD, TaniguchiT: The IRF family transcription factors in immunity and oncogenesis.Annu. Rev. Immunol.26 , 535–584 (2008).
  • Park J , LeeMS, YooSMet al. : Identification of the DNA sequence interacting with Kaposi‘s sarcoma-associated herpesvirus viral interferon regulatory factor 1.J. Virol.81(22) , 12680–12684 (2007).
  • Burysek L , YeowWS, LubyovaBet al. : Functional analysis of human herpesvirus 8-encoded viral interferon regulatory factor 1 and its association with cellular interferon regulatory factors and p300.J. Virol.73(9) , 7334–7342 (1999).
  • Li M , LeeH, GuoJet al. : Kaposi‘s sarcoma-associated herpesvirus viral interferon regulatory factor.J. Virol.72(7) , 5433–5440 (1998).
  • Li M , DamaniaB, AlvarezX, OgryzkoV, OzatoK, JungJU: Inhibition of p300 histone acetyltransferase by viral interferon regulatory factor.Mol. Cell Biol.20(21) , 8254–8263 (2000).
  • Lin R , GeninP, MamaneYet al. : HHV-8 encoded vIRF-1 represses the interferon antiviral response by blocking IRF-3 recruitment of the CBP/p300 coactivators.Oncogene20(7) , 800–811 (2001).
  • Fuld S , CunninghamC, KlucherK, DavisonAJ, BlackbournDJ: Inhibition of interferon signaling by the Kaposi‘s sarcoma-associated herpesvirus full-length viral interferon regulatory factor 2 protein.J. Virol.80(6) , 3092–3097 (2006).
  • Areste C , MutocheluhM, BlackbournDJ: Identification of caspase-mediated decay of interferon regulatory factor-3, exploited by a Kaposi sarcoma-associated herpesvirus immunoregulatory protein.J. Biol. Chem.284(35) , 23272–23285 (2009).
  • Burysek L , PithaPM: Latently expressed human herpesvirus 8-encoded interferon regulatory factor 2 inhibits double-stranded RNA-activated protein kinase.J. Virol.75(5) , 2345–2352 (2001).
  • Burysek L , YeowWS, PithaPM: Unique properties of a second human herpesvirus 8-encoded interferon regulatory factor (vIRF-2).J. Hum. Virol.2(1) , 19–32 (1999).
  • Joo CH , ShinYC, GackM, WuL, LevyD, JungJU: Inhibition of interferon regulatory factor 7 (IRF7)-mediated interferon signal transduction by the Kaposi‘s sarcoma-associated herpesvirus viral IRF homolog vIRF3.J. Virol.81(15) , 8282–8292 (2007).
  • Wies E , HahnAS, SchmidtKet al. : The Kaposi‘s Sarcoma-associated herpesvirus-encoded vIRF-3 inhibits cellular IRF-5.J. Biol. Chem.284(13) , 8525–8538 (2009).
  • Wies E , MoriY, HahnAet al. : The viral interferon-regulatory factor-3 is required for the survival of KSHV-infected primary effusion lymphoma cells.Blood111(1) , 320–327 (2008).
  • Cloutier N , FlamandL: Kaposi sarcoma-associated herpesvirus latency-associated nuclear antigen inhibits interferon (IFN) β expression by competing with IFN regulatory factor-3 for binding to IFNB promoter.J. Biol. Chem.285(10) , 7208–7221 (2010).
  • Lefort S , Soucy-FaulknerA, GrandvauxN, FlamandL: Binding of Kaposi‘s sarcoma-associated herpesvirus K-bZIP to interferon-responsive factor 3 elements modulates antiviral gene expression.J. Virol.81(20) , 10950–10960 (2007).
  • Zhu FX , KingSM, SmithEJ, LevyDE, YuanY: A Kaposi‘s sarcoma-associated herpesviral protein inhibits virus-mediated induction of type I interferon by blocking IRF-7 phosphorylation and nuclear accumulation.Proc. Natl Acad. Sci. USA99(8) , 5573–5578 (2002).
  • Yu Y , WangSE, HaywardGS: The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation.Immunity22(1) , 59–70 (2005).
  • Baggiolini M : Chemokines and leukocyte traffic.Nature392(6676) , 565–568 (1998).
  • Fernandez EJ , LolisE: Structure, function, and inhibition of chemokines.Annu. Rev. Pharmacol. Toxicol.42 , 469–499 (2002).
  • Ransohoff RM : Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology.Immunity31(5) , 711–721 (2009).
  • Laing KJ , SecombesCJ: Chemokines.Dev. Comp. Immunol.28(5) , 443–460 (2004).
  • McFadden G , MurphyPM: Host-related immunomodulators encoded by poxviruses and herpesviruses.Curr. Opin. Microbiol.3(4) , 371–378 (2000).
  • Murphy PM : Viral exploitation and subversion of the immune system through chemokine mimicry.Nat. Immunol.2(2) , 116–122 (2001).
  • Sozzani S , LuiniW, BianchiGet al. : The viral chemokine macrophage inflammatory protein-II is a selective Th2 chemoattractant.Blood92(11) , 4036–4039 (1998).
  • Stine JT , WoodC, HillMet al. : KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells.Blood95(4) , 1151–1157 (2000).
  • Dairaghi DJ , FanRA, McMasterBE, HanleyMR, SchallTJ: HHV8-encoded vMIP-I selectively engages chemokine receptor CCR8. Agonist and antagonist profiles of viral chemokines.J. Biol. Chem.274(31) , 21569–21574 (1999).
  • Iellem A , MarianiM, LangRet al. : Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells.J. Exp. Med.194(6) , 847–853 (2001).
  • Kledal TN , RosenkildeMM, CoulinFet al. : A broad-spectrum chemokine antagonist encoded by Kaposi‘s sarcoma-associated herpesvirus.Science277(5332) , 1656–1659 (1997).
  • Weber KS , GroneHJ, RockenMet al. : Selective recruitment of Th2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II.Eur. J. Immunol.31(8) , 2458–2466 (2001).
  • Chen S , BaconKB, LiLet al. : In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar-Kyoto (WKY) rats by vMIP-II.J. Exp. Med.188(1) , 193–198 (1998).
  • Liu C , OkruzhnovY, LiH, NicholasJ: Human herpesvirus 8 (HHV-8)-encoded cytokines induce expression of and autocrine signaling by vascular endothelial growth factor (VEGF) in HHV-8-infected primary-effusion lymphoma cell lines and mediate VEGF-independent antiapoptotic effects.J. Virol.75(22) , 10933–10940 (2001).
  • Choi YB , NicholasJ: Induction of angiogenic chemokine CCL2 by human herpesvirus 8 chemokine receptor.Virology397(2) , 369–378 (2010).
  • Chung YH , MeansRE, ChoiJK, LeeBS, JungJU: Kaposi‘s sarcoma-associated herpesvirus OX2 glycoprotein activates myeloid-lineage cells to induce inflammatory cytokine production.J. Virol.76(10) , 4688–4698 (2002).
  • Wright GJ , CherwinskiH, Foster-CuevasMet al. : Characterization of the CD200 receptor family in mice and humans and their interactions with CD200.J. Immunol.171(6) , 3034–3046 (2003).
  • Rijkers ES , de RuiterT, BaridiA, VeningaH, HoekRM, MeyaardL: The inhibitory CD200R is differentially expressed on human and mouse T and B lymphocytes.Mol. Immunol.45(4) , 1126–1135 (2008).
  • Minas K , LiversidgeJ: Is the CD200/CD200 receptor interaction more than just a myeloid cell inhibitory signal?Crit. Rev. Immunol.26(3) , 213–230 (2006).
  • Foster-Cuevas M , WrightGJ, PuklavecMJ, BrownMH, BarclayAN: Human herpesvirus 8 K14 protein mimics CD200 in down-regulating macrophage activation through CD200 receptor.J. Virol.78(14) , 7667–7676 (2004).
  • Rezaee SA , GracieJA, McInnesIB, BlackbournDJ: Inhibition of neutrophil function by the Kaposi‘s sarcoma-associated herpesvirus vOX2 protein.AIDS19(16) , 1907–1910 (2005).
  • Neipel F , AlbrechtJC, EnsserAet al. : Human herpesvirus 8 encodes a homolog of interleukin-6.J. Virol.71(1) , 839–842 (1997).
  • Nishimoto N , KishimotoT: Interleukin 6: from bench to bedside.Nat. Clin. Pract. Rheumatol.2(11) , 619–626 (2006).
  • Molden J , ChangY, YouY, MoorePS, GoldsmithMA: A Kaposi‘s sarcoma-associated herpesvirus-encoded cytokine homolog (vIL-6) activates signaling through the shared gp130 receptor subunit.J. Biol. Chem.272(31) , 19625–19631 (1997).
  • Breen EC , GageJR, GuoBet al. : Viral interleukin 6 stimulates human peripheral blood B cells that are unresponsive to human interleukin 6.Cell. Immunol.212(2) , 118–125 (2001).
  • Staskus KA , SunR, MillerGet al. : Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi‘s sarcoma, primary effusion lymphoma, and multicentric Castleman‘s disease.J. Virol.73(5) , 4181–4187 (1999).
  • Brousset P , CesarmanE, MeggettoF, LamantL, DelsolG: Colocalization of the viral interleukin-6 with latent nuclear antigen-1 of human herpesvirus-8 in endothelial spindle cells of Kaposi‘s sarcoma and lymphoid cells of multicentric Castleman‘s disease.Hum. Pathol.32(1) , 95–100 (2001).
  • Cannon JS , NicholasJ, OrensteinJMet al. : Heterogeneity of viral IL-6 expression in HHV-8-associated diseases.J. Infect. Dis.180(3) , 824–828 (1999).
  • Nicholas J , RuvoloV, ZongJet al. : A single 13-kilobase divergent locus in the Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genome contains nine open reading frames that are homologous to or related to cellular proteins.J. Virol.71(3) , 1963–1974 (1997).
  • Chen D , SandfordG, NicholasJ: Intracellular signaling mechanisms and activities of human herpesvirus 8 interleukin-6.J. Virol.83(2) , 722–733 (2009).
  • Aoki Y , JaffeES, ChangYet al. : Angiogenesis and hematopoiesis induced by Kaposi‘s sarcoma-associated herpesvirus-encoded interleukin-6.Blood93(12) , 4034–4043 (1999).
  • Chatterjee M , OsborneJ, BestettiG, ChangY, MoorePS: Viral IL-6-induced cell proliferation and immune evasion of interferon activity.Science298(5597) , 1432–1435 (2002).
  • Rosenkilde MM , KledalTN, Brauner-OsborneH, SchwartzTW: Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-74.J. Biol. Chem.274(2) , 956–961 (1999).
  • Bais C , SantomassoB, CosoOet al. : G-protein-coupled receptor of Kaposi‘s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator.Nature391(6662) , 86–89 (1998).
  • Sodhi A , MontanerS, PatelVet al. : The Kaposi‘s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1α.Cancer Res.60(17) , 4873–4880 (2000).
  • Montaner S , SodhiA, PeceS, MesriEA, GutkindJS: The Kaposi‘s sarcoma-associated herpesvirus G protein-coupled receptor promotes endothelial cell survival through the activation of Akt/protein kinase B.Cancer Res.61(6) , 2641–2648 (2001).
  • Bais C , Van Geelen A, Eroles P et al.: Kaposi‘s sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/KDR. Cancer Cell3(2) , 131–143 (2003).
  • Arvanitakis L , Geras-RaakaE, VarmaA, GershengornMC, CesarmanE: Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation.Nature385(6614) , 347–350 (1997).
  • Virgin HW , LatreilleP, WamsleyPet al. : Complete sequence and genomic analysis of murine gammaherpesvirus 68.J. Virol.71(8) , 5894–5904 (1997).
  • Paulsen SJ , RosenkildeMM, Eugen-OlsenJ, KledalTN: Epstein–Barr virus-encoded BILF1 is a constitutively active G protein-coupled receptor.J. Virol.79(1) , 536–546 (2005).
  • Davis-Poynter NJ , LynchDM, VallyHet al. : Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus.J. Virol.71(2) , 1521–1529 (1997).
  • Paulose-Murphy M , HaNK, XiangCet al. : Transcription program of human herpesvirus 8 (kaposi‘s sarcoma-associated herpesvirus).J. Virol.75(10) , 4843–4853 (2001).
  • Beisser PS , GraulsG, BruggemanCA, VinkC: Deletion of the R78 G protein-coupled receptor gene from rat cytomegalovirus results in an attenuated, syncytium-inducing mutant strain.J. Virol.73(9) , 7218–7230 (1999).
  • McFadden G , LalaniA, EverettH, NashP, XuX: Virus-encoded receptors for cytokines and chemokines.Semin. Cell Dev. Biol.9(3) , 359–368 (1998).
  • Parry CM , SimasJP, SmithVPet al. : A broad spectrum secreted chemokine binding protein encoded by a herpesvirus.J. Exp. Med.191(3) , 573–578 (2000).
  • Webb LM , AlcamiA: Virally encoded chemokine binding proteins.Mini Rev. Med. Chem.5(9) , 833–848 (2005).
  • Seet BT , McFaddenG: Viral chemokine-binding proteins.J. Leukoc. Biol.72(1) , 24–34 (2002).
  • Carfi A , SmithCA, SmolakPJ, McGrewJ, WileyDC: Structure of a soluble secreted chemokine inhibitor vCCI (p35) from cowpox virus.Proc. Natl Acad. Sci. USA96(22) , 12379–12383 (1999).
  • Danial NN , KorsmeyerSJ: Cell death: critical control points.Cell116(2) , 205–219 (2004).
  • Green DR : Apoptotic pathways: ten minutes to dead.Cell121(5) , 671–674 (2005).
  • Maiuri MC , ZalckvarE, KimchiA, KroemerG: Self-eating and self-killing: crosstalk between autophagy and apoptosis.Nat. Rev. Mol. Cell Biol.8(9) , 741–752 (2007).
  • Levine B , YuanJ: Autophagy in cell death: an innocent convict?J. Clin. Invest.115(10) , 2679–2688 (2005).
  • Thorburn J , MooreF, RaoAet al. : Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway in immortal epithelial cells.Mol. Biol. Cell16(3) , 1189–1199 (2005).
  • Mills KR , ReginatoM, DebnathJ, QueenanB, BruggeJS: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro.Proc. Natl Acad. Sci. USA101(10) , 3438–3443 (2004).
  • Levine B : Eating oneself and uninvited guests: autophagy-related pathways in cellular defense.Cell120(2) , 159–162 (2005).
  • Arico S , PetiotA, BauvyCet al. : The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway.J. Biol. Chem.276(38) , 35243–35246 (2001).
  • Jia L , DourmashkinRR, AllenPD, GrayAB, NewlandAC, KelseySM: Inhibition of autophagy abrogates tumour necrosis factor a induced apoptosis in human T-lymphoblastic leukaemic cells.Br. J. Haematol.98(3) , 673–685 (1997).
  • Lum JJ , DeBerardinisRJ, ThompsonCB: Autophagy in metazoans: cell survival in the land of plenty.Nat. Rev. Mol. Cell Biol.6(6) , 439–448 (2005).
  • Feng Z , ZhangH, LevineAJ, JinS: The coordinate regulation of the p53 and mTOR pathways in cells.Proc. Natl Acad. Sci. USA102(23) , 8204–8209 (2005).
  • Pyo JO , JangMH, KwonYKet al. : Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death.J. Biol. Chem.280(21) , 20722–20729 (2005).
  • Fakhari FD , DittmerDP: Charting latency transcripts in Kaposi‘s sarcoma-associated herpesvirus by whole-genome real-time quantitative PCR.J. Virol.76(12) , 6213–6223 (2002).
  • Dittmer D , LagunoffM, RenneR, StaskusK, HaaseA, GanemD: A cluster of latently expressed genes in Kaposi‘s sarcoma-associated herpesvirus.J. Virol.72(10) , 8309–8315 (1998).
  • Grundhoff A , GanemD: Mechanisms governing expression of the v-FLIP gene of Kaposi‘s sarcoma-associated herpesvirus.J. Virol.75(4) , 1857–1863 (2001).
  • Bieleski L , TalbotSJ: Kaposi‘s sarcoma-associated herpesvirus vCyclin open reading frame contains an internal ribosome entry site.J. Virol.75(4) , 1864–1869 (2001).
  • Low W , HarriesM, YeH, DuMQ, BoshoffC, CollinsM: Internal ribosome entry site regulates translation of Kaposi‘s sarcoma-associated herpesvirus FLICE inhibitory protein.J. Virol.75(6) , 2938–2945 (2001).
  • Belanger C , GravelA, TomoiuAet al. : Human herpesvirus 8 viral FLICE-inhibitory protein inhibits Fas-mediated apoptosis through binding and prevention of procaspase-8 maturation.J. Hum. Virol.4(2) , 62–73 (2001).
  • Chaudhary PM , JasminA, EbyMT, HoodL: Modulation of the NF-κ B pathway by virally encoded death effector domains-containing proteins.Oncogene18(42) , 5738–5746 (1999).
  • Liu L , EbyMT, RathoreN, SinhaSK, KumarA, ChaudharyPM: The human herpes virus 8-encoded viral FLICE inhibitory protein physically associates with and persistently activates the IκB kinase complex.J. Biol. Chem.277(16) , 13745–13751 (2002).
  • Field N , LowW, DanielsMet al. : KSHV vFLIP binds to IKK-γ to activate IKK.J. Cell. Sci.116(Pt 18) , 3721–3728 (2003).
  • Chugh P , MattaH, SchamusSet al. : Constitutive NF-κB activation, normal Fas-induced apoptosis, and increased incidence of lymphoma in human herpes virus 8 K13 transgenic mice.Proc. Natl Acad. Sci. USA102(36) , 12885–12890 (2005).
  • Grossmann C , PodgrabinskaS, SkobeM, GanemD: Activation of NF-κB by the latent vFLIP gene of Kaposi‘s sarcoma-associated herpesvirus is required for the spindle shape of virus-infected endothelial cells and contributes to their proinflammatory phenotype.J. Virol.80(14) , 7179–7185 (2006).
  • Sun Q , MattaH, LuG, ChaudharyPM: Induction of IL-8 expression by human herpesvirus 8 encoded vFLIP K13 via NF-κB activation.Oncogene25(19) , 2717–2726 (2006).
  • Ye FC , ZhouFC, XieJPet al. : Kaposi‘s sarcoma-associated herpesvirus latent gene vFLIP inhibits viral lytic replication through NF-κB-mediated suppression of the AP-1 pathway: a novel mechanism of virus control of latency.J. Virol.82(9) , 4235–4249 (2008).
  • Zhao J , PunjV, MattaHet al. : K13 blocks KSHV lytic replication and deregulates vIL6 and hIL6 expression: a model of lytic replication induced clonal selection in viral oncogenesis.PLoS One2(10) , E1067 (2007).
  • Sun Q , ZachariahS, ChaudharyPM: The human herpes virus 8-encoded viral FLICE-inhibitory protein induces cellular transformation via NF-κB activation.J. Biol. Chem.278(52) , 52437–52445 (2003).
  • Lee JS , LiQ, LeeJYet al. : FLIP-mediated autophagy regulation in cell death control.Nat. Cell Biol.11(11) , 1355–1362 (2009).
  • Korsmeyer SJ : BCL-2 gene family and the regulation of programmed cell death.Cancer Res.59(7 Suppl.) , S1693–S1700 (1999).
  • Cheng EH , NicholasJ, BellowsDSet al. : A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak.Proc. Natl Acad. Sci. USA94(2) , 690–694 (1997).
  • Sarid R , SatoT, BohenzkyRA, RussoJJ, ChangY: Kaposi‘s sarcoma-associated herpesvirus encodes a functional Bcl-2 homologue.Nat. Med.3(3) , 293–298 (1997).
  • Huang Q , PetrosAM, VirginHW, FesikSW, OlejniczakET: Solution structure of a Bcl-2 homolog from Kaposi sarcoma virus.Proc. Natl Acad. Sci. USA99(6) , 3428–3433 (2002).
  • Polster BM , PevsnerJ, HardwickJM: Viral Bcl-2 homologs and their role in virus replication and associated diseases.Biochim. Biophys. Acta1644(2–3) , 211–227 (2004).
  • Cuconati A , WhiteE: Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection.Genes Dev.16(19) , 2465–2478 (2002).
  • Bellows DS , ChauBN, LeeP, LazebnikY, BurnsWH, HardwickJM: Antiapoptotic herpesvirus Bcl-2 homologs escape caspase-mediated conversion to proapoptotic proteins.J. Virol.74(11) , 5024–5031 (2000).
  • Loh J , HuangQ, PetrosAMet al. : A surface groove essential for viral Bcl-2 function during chronic infection in vivo.PLoS Pathog.1(1) , E10 (2005).
  • Wang GH , GarveyTL, CohenJI: The murine γherpesvirus-68 M11 protein inhibits Fas- and TNF-induced apoptosis.J. Gen. Virol.80(Pt 10) , 2737–2740 (1999).
  • Pattingre S , TassaA, QuXet al. : Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy.Cell122(6) , 927–939 (2005).
  • Pattingre S , LevineB. Bcl-2 inhibition of autophagy: a new route to cancer?Cancer Res.66(6) , 2885–2888 (2006).
  • Ku B , WooJS, LiangCet al. : Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine γ-herpesvirus 68.PLoS Pathog.4(2) , E25 (2008).
  • Xiaofei E , HwangS, OhSet al. : Viral Bcl-2-mediated evasion of autophagy aids chronic infection of gammaherpesvirus 68.PLoS Pathog.5(10) , E1000609 (2009).
  • Akira S , UematsuS, TakeuchiO: Pathogen recognition and innate immunity.Cell124(4) , 783–801 (2006).
  • Beutler BA : TLRs and innate immunity.Blood113(7) , 1399–1407 (2009).
  • Janeway CA Jr , MedzhitovR: Innate immune recognition.Annu. Rev. Immunol.20 , 197–216 (2002).
  • Kawai T , AkiraS: TLR signaling.Semin. Immunol.19(1) , 24–32 (2007).
  • Kumar H , KawaiT, AkiraS: Toll-like receptors and innate immunity.Biochem. Biophys. Res. Commun.388(4) , 621–625 (2009).
  • West J , DamaniaB: Upregulation of the TLR3 pathway by Kaposi‘s sarcoma-associated herpesvirus during primary infection.J. Virol.82(11) , 5440–5449 (2008).
  • Lagos D , VartRJ, GratrixFet al. : Toll-like receptor 4 mediates innate immunity to Kaposi sarcoma herpesvirus.Cell Host Microbe4(5) , 470–483 (2008).
  • Gregory SM , WestJA, DillonPJ, HilscherC, DittmerDP, DamaniaB: Toll-like receptor signaling controls reactivation of KSHV from latency.Proc. Natl Acad. Sci. USA106(28) , 11725–11730 (2009).
  • Ambroziak JA , BlackbournDJ, HerndierBGet al. : Herpes-like sequences in HIV-infected and uninfected Kaposi‘s sarcoma patients.Science268(5210) , 582–583 (1995).
  • Wilson SJ , TsaoEH, WebbBLet al. : X box binding protein XBP-1s transactivates the Kaposi‘s sarcoma-associated herpesvirus (KSHV) ORF50 promoter, linking plasma cell differentiation to KSHV reactivation from latency.J. Virol.81(24) , 13578–13586 (2007).
  • Yu F , FengJ, HaradaJN, ChandaSK, KenneySC, SunR: B cell terminal differentiation factor XBP-1 induces reactivation of Kaposi‘s sarcoma-associated herpesvirus.FEBS Lett.581(18) , 3485–3488 (2007).
  • Dalton-Griffin L , WilsonSJ, KellamP: X-box binding protein 1 contributes to induction of the Kaposi‘s sarcoma-associated herpesvirus lytic cycle under hypoxic conditions.J. Virol.83(14) , 7202–7209 (2009).
  • Schroder M , KaufmanRJ: The mammalian unfolded protein response.Annu. Rev. Biochem.74 , 739–789 (2005).
  • Reimold AM , PonathPD, LiYSet al. : Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1.J. Exp. Med.183(2) , 393–401 (1996).
  • Jenner RG , MaillardK, CattiniNet al. : Kaposi‘s sarcoma-associated herpesvirus-infected primary effusion lymphoma has a plasma cell gene expression profile.Proc. Natl Acad. Sci. USA100(18) , 10399–10404 (2003).
  • Kaletsky RL , FrancicaJR, Agrawal-GamseC, BatesP: Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein.Proc. Natl Acad. Sci. USA106(8) , 2886–2891 (2009).
  • Van Damme N , GoffD, KatsuraCet al. : The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein.Cell Host Microbe3(4) , 245–252 (2008).
  • Neil SJ , ZangT, BieniaszPD: Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu.Nature451(7177) , 425–430 (2008).
  • Mansouri M , ViswanathanK, DouglasJLet al. : Molecular mechanism of BST2/tetherin downregulation by K5/MIR2 of Kaposi‘s sarcoma-associated herpesvirus.J. Virol.83(19) , 9672–9681 (2009).
  • Jia B , Serra-MorenoR, NeidermyerWet al. : Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2.PLoS Pathog.5(5) , E1000429 (2009).
  • Zhang F , WilsonSJ, LandfordWCet al. : Nef proteins from simian immunodeficiency viruses are tetherin antagonists.Cell Host Microbe6(1) , 54–67 (2009).
  • Le Tortorec A , NeilSJ: Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein.J. Virol.83(22) , 11966–11978 (2009).
  • Micheletti F , MoniniP, FortiniCet al. : Identification of cytotoxic T lymphocyte epitopes of human herpesvirus 8.Immunology106(3) , 395–403 (2002).
  • Alcami A , KoszinowskiUH: Viral mechanisms of immune evasion.Trends Microbiol.8(9) , 410–418 (2000).
  • Ambagala AP , SolheimJC, SrikumaranS: Viral interference with MHC class I antigen presentation pathway: the battle continues.Vet Immunol. Immunopathol.107(1–2) , 1–15 (2005).
  • Coscoy L , GanemD: Kaposi‘s sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis.Proc. Natl Acad. Sci. USA97(14) , 8051–8056 (2000).
  • Ishido S , WangC, LeeBS, CohenGB, JungJU: Downregulation of major histocompatibility complex class I molecules by Kaposi‘s sarcoma-associated herpesvirus K3 and K5 proteins.J. Virol.74(11) , 5300–5309 (2000).
  • Lehner PJ , HoerS, DoddR, DuncanLM: Downregulation of cell surface receptors by the K3 family of viral and cellular ubiquitin E3 ligases.Immunol. Rev.207 , 112–125 (2005).
  • Coscoy L : Immune evasion by Kaposi‘s sarcoma-associated herpesvirus.Nat. Rev. Immunol.7(5) , 391–401 (2007).
  • Coscoy L , SanchezDJ, GanemD: A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition.J. Cell Biol.155(7) , 1265–1273 (2001).
  • Sanchez DJ , CoscoyL, GanemD: Functional organization of MIR2, a novel viral regulator of selective endocytosis.J. Biol. Chem.277(8) , 6124–6130 (2002).
  • Wang X , LybargerL, ConnorsR, HarrisMR, HansenTH: Model for the interaction of gherpesvirus 68 RING-CH finger protein mK3 with major histocompatibility complex class I and the peptide-loading complex.J. Virol.78(16) , 8673–8686 (2004).
  • Lagos D , TrotterMW, VartRJet al. : Kaposi sarcoma herpesvirus-encoded vFLIP and vIRF1 regulate antigen presentation in lymphatic endothelial cells.Blood109(4) , 1550–1558 (2007).
  • Goodbourn S , DidcockL, RandallRE: Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures.J. Gen. Virol.81(Pt 10) , 2341–2364 (2000).
  • Li Q , MeansR, LangS, JungJU: Downregulation of γ interferon receptor 1 by Kaposi‘s sarcoma-associated herpesvirus K3 and K5.J. Virol.81(5) , 2117–2127 (2007).
  • Chambers CA , AllisonJP: Costimulatory regulation of T cell function.Curr. Opin. Cell Biol.11(2) , 203–210 (1999).
  • Sperling AI , BluestoneJA: The complexities of T-cell co-stimulation: CD28 and beyond.Immunol. Rev.153 , 155–182 (1996).
  • Dustin ML , SpringerTA: T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1.Nature341(6243) , 619–624 (1989).
  • Coscoy L , GanemD: A viral protein that selectively downregulates ICAM-1 and B7-2 and modulates T cell costimulation.J. Clin. Invest.107(12) , 1599–1606 (2001).
  • Renne R , DittmerD, KedesDet al. : Experimental transmission of Kaposi‘s sarcoma-associated herpesvirus (KSHV/HHV-8) to SIV-positive and SIV-negative rhesus macaques.J. Med. Primatol.33(1) , 1–9 (2004).
  • Parsons CH , AdangLA, OverdevestJet al. : KSHV targets multiple leukocyte lineages during long-term productive infection in NOD/SCID mice.J. Clin. Invest.116(7) , 1963–1973 (2006).
  • Dittmer D , StoddartC, RenneRet al. : Experimental transmission of Kaposi‘s sarcoma-associated herpesvirus (KSHV/HHV-8) to SCID-hu Thy/Liv mice.J. Exp. Med.190(12) , 1857–1868 (1999).
  • Foreman KE , FriborgJ, ChandranBet al. : Injection of human herpesvirus-8 in human skin engrafted on SCID mice induces Kaposi‘s sarcoma-like lesions.J. Dermatol. Sci.26(3) , 182–193 (2001).
  • Mutlu AD , CavallinLE, VincentLet al. : In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi‘s sarcoma.Cancer Cell11(3) , 245–258 (2007).
  • Chang H , WachtmanLM, PearsonCBet al. : Non-human primate model of Kaposi‘s sarcoma-associated herpesvirus infection.PLoS Pathog.5(10) , E1000606 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.