144
Views
9
CrossRef citations to date
0
Altmetric
Review

Flagellar Kinesins in Protists

&
Pages 231-246 | Published online: 02 Mar 2011

Bibliography

  • Silverman M , LerouxM: Intraflagellar transport and the generation of dynamic, structurally and functionally diverse cilia.Trends Cell Biol.19(7) , 306–316 (2009).
  • Escalier D : New insights into the assembly of the periaxonemal structures in mammalian spermatozoa.Biol. Reprod.69(2) , 373–378 (2003).
  • Vale R : The molecular motor toolbox for intracellular transport.Cell112(4) , 467–480 (2003).
  • Wickstead B , GullK: A “holistic” kinesin phylogeny reveals new kinesin families and predicts protein functions.Mol. Biol. Cell17(4) , 1734–1743 (2006).
  • Hirokawa N , NodaY: Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics.Physiol. Rev.88(3) , 1089–1118 (2008).
  • Yildiz A , TomishigeM, ValeRD, SelvinPR: Kinesin walks hand-over-hand.Science303(5658) , 676–678 (2004).
  • Gennerich A , ValeRD: Walking the walk: how kinesin and dynein coordinate their steps.Curr. Opin. Cell Biol.21(1) , 59–67 (2009).
  • Moores C , MilliganR: Lucky 13-microtubule depolymerisation by kinesin-13 motors.J. Cell Sci.119 , 3905–3913 (2006).
  • Miki H , OkadaY, HirokawaN: Analysis of the kinesin superfamily: insights into structure and function.Trends Cell Biol.15(9) , 467–476 (2005).
  • Demonchy R , BlisnickT, DeprezCet al. : Kinesin 9 family members perform separate functions in the trypanosome flagellum.J. Cell Biol.187(5) , 615–622 (2009).
  • Lawrence CJ , DaweRK, ChristieKRet al. : A standardized kinesin nomenclature.J. Cell Biol.167(1) , 19–22 (2004).
  • Wickstead B , GullK, RichardsT: Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton.BMC Evol. Biol.10 , 110 (2010).
  • Deane J , ColeD, SeeleyE, DienerD, RosenbaumJ: Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles.Curr. Biol.11(20) , 1586–1590 (2001).
  • Pedersen L , RosenbaumJ: Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling.Curr. Top. Dev. Biol.85 , 23–61 (2008).
  • Craige B , TsaoC, DienerDet al. : Cep290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content.J. Cell Biol.190(5) , 927–940 (2010).
  • Kozminski K , JohnsonK, ForscherP, RosenbaumJ: A motility in the eukaryotic flagellum unrelated to flagellar beating.Proc. Natl Acad. Sci. USA90(12) , 5519–5523 (1993).
  • Pedersen L , GeimerS, RosenbaumJ: Dissecting the molecular mechanisms of intraflagellar transport in chlamydomonas.Curr. Biol.16(5) , 450–459 (2006).
  • Hendricks A , PerlsonE, RossJ, SchroederHW3rd , TokitoM, HolzbaurE: Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport.Curr. Biol.20(8) , 697–702 (2010).
  • Laib J , MarinJ, BloodgoodR, GuilfordW: The reciprocal coordination and mechanics of molecular motors in living cells.Proc. Natl Acad. Sci. USA106(9) , 3190–3195 (2009).
  • Cole D , DienerD, HimelblauA, BeechP, FusterJ, RosenbaumJ: Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons.J. Cell Biol.141(4) , 993–1008 (1998).
  • Pazour G , AgrinN, LeszykJ, WitmanG: Proteomic analysis of a eukaryotic cilium.J. Cell Biol.170(1) , 103–113 (2005).
  • Absalon S , BlisnickT, KohlLet al. : Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes.Mol. Biol. Cell19(3) , 929–944 (2008).
  • Scholey J : Intraflagellar transport motors in cilia: moving along the cell‘s antenna.J. Cell Biol.180(1) , 23–29 (2008).
  • Sloboda R : Intraflagellar transport and the flagellar tip complex.J. Cell Biochem.94(2) , 266–272 (2005).
  • Rosenbaum J , WitmanG: Intraflagellar transport.Nat. Rev. Mol. Cell Biol.3(11) , 813–825 (2002).
  • Qin H , DienerD, GeimerS, ColeD, RosenbaumJ: Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body.J. Cell Biol.164(2) , 255–266 (2004).
  • Marshall W , RosenbaumJ: Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control.J. Cell Biol.155(3) , 405–414 (2001).
  • Kozminski K , BeechP, RosenbaumJ: The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane.J. Cell Biol.131 , 1517–1527 (1995).
  • Kohl L , RobinsonD, BastinP: Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes.EMBO J.22(20) , 5336–5346 (2003).
  • Cole D , ChinnS, WedamanK, HallK, VuongT, ScholeyJM: Novel heterotrimeric kinesin-related protein purified from sea urchin eggs.Nature366(6452) , 268–270 (1993).
  • Vashishtha M , WaltherZ, HallJ: The kinesin-homologous protein encoded by the Chlamydomonas fla10 gene is associated with basal bodies and centrioles.J. Cell Sci.109 , 541–549 (1996).
  • Miller M , EsparzaJ, LippaA, LuxF, ColeDG, DutcherS: Mutant kinesin-2 motor subunits increase chromosome loss.Mol. Biol. Cell16(8) , 3810–3820 (2005).
  • Mueller J , PerroneC, BowerR, ColeD, PorterM: The fla3 kap subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport.Mol. Biol. Cell16(3) , 1341–1354 (2005).
  • Yamazaki H , NakataT, OkadaY, HirokawaN: Cloning and characterization of kap3: a novel kinesin superfamily-associated protein of kif3a/3b.Proc. Natl Acad. Sci. USA93(16) , 8443–8448 (1996).
  • Wedaman K , MeyerD, RashidD, ColeD, ScholeyJ: Sequence and submolecular localization of the 115-kd accessory subunit of the heterotrimeric kinesin-II (krp85/95) complex.J. Cell Biol.132(3) , 371–380 (1996).
  • Brunnbauer M , Mueller-PlanitzF, KosemSet al. : Regulation of a heterodimeric kinesin-2 through an unprocessive motor domain that is turned processive by its partner.Proc. Natl Acad. Sci. USA107(23) , 10460–10465 (2010).
  • Perkins L , HedgecockE, ThomsonJ, CulottiJ: Mutant sensory cilia in the nematode Caenorhabditis elegans.Dev. Biol.117(2) , 456–487 (1986).
  • Ou G , BlacqueO, SnowJ, LerouxM, ScholeyJ: Functional coordination of intraflagellar transport motors.Nature436(7050) , 583–587 (2005).
  • Signor D , WedamanK, RoseL, ScholeyJ: Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans.Mol. Biol. Cell10(2) , 345–360 (1999).
  • Snow J , OuG, GunnarsonAet al. : Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons.Nat. Cell Biol.6(11) , 1109–1113 (2004).
  • Berriman M , GhedinE, Hertz-FowlerCet al. : The genome of the african trypanosome Trypanosoma brucei.Science309(5733) , 416–422 (2005).
  • Brown J , MarsalaC, KosoyR, GaertigJ: Kinesin-II is preferentially targeted to assembling cilia and is required for ciliogenesis and normal cytokinesis in Tetrahymena.Mol. Biol. Cell10(10) , 3081–3096 (1999).
  • Awan A , BernsteinM, HamasakiT, SatirP: Cloning and characterization of kin5, a novel Tetrahymena ciliary kinesin II.Cell Motil. Cytoskeleton58(1) , 1–9 (2004).
  • Awan A , BellA, SatirP: Kin5 knockdown in Tetrahymena thermophila using RNAi blocks cargo transport of gef1.PLoS ONE4(3) , E4873 (2009).
  • Morris R , EnglishC, LouJet al. : Redistribution of the kinesin-II subunit kap from cilia to nuclei during the mitotic and ciliogenic cycles in sea urchin embryos.Dev. Biol.274(1) , 56–69 (2004).
  • Schonteich E , WilsonG, BurdenJet al. : The Rip11/Rab11-FIP5 and kinesin II complex regulates endocytic protein recycling.J. Cell Sci.121 , 3824–3833 (2008).
  • Loubery S , WilhelmC, HurbainI, NeveuS, LouvardD, CoudrierE: Different microtubule motors move early and late endocytic compartments.Traffic9(4) , 492–509 (2008).
  • Heinrich B , DeshlerJ: RNA localization to the balbiani body in xenopus oocytes is regulated by the energy state of the cell and is facilitated by kinesin II.RNA15(4) , 524–536 (2009).
  • Keil R , KiesslingC, HatzfeldM: Targeting of p0071 to the midbody depends on kif3.J. Cell Sci.122 , 1174–1183 (2009).
  • Nonaka S , TanakaY, OkadaYet al. : Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking kif3b motor protein.Cell95(6) , 829–837 (1998).
  • Bernstein M , BeechPl, KatzS, RosenbaumJ: A new kinesin-like protein (klp1) localized to a single microtubule of the Chlamydomonas flagellum.J. Cell Biol.125(6) , 1313–1326 (1994).
  • Yokoyama R , O‘tooleE, GhoshS, MitchellD: Regulation of flagellar dynein activity by a central pair kinesin.Proc. Natl Acad. Sci. USA101(50) , 17398–17403 (2004).
  • Aizawa H , SekineY, TakemuraR, ZhangZ, NangakuM, HirokawaN: Kinesin family in murine central nervous system.J. Cell Biol.119(5) , 1287–1296 (1992).
  • Ems-Mcclung SC , WalczakCE: Kinesin-13s in mitosis: key players in the spatial and temporal organization of spindle microtubules.Semin. Cell Dev. Biol.21(3) , 276–282 (2010).
  • Desai A , VermaS, MitchisonT, WalczakC: Kin I kinesins are microtubule-destabilizing enzymes.Cell96(1) , 69–78 (1999).
  • Maney T , HunterA, WagenbachM, WordemanL: Mitotic centromere-associated kinesin is important for anaphase chromosome segregation.J. Cell Biol.142(3) , 787–801 (1998).
  • Ogawa T , NittaR, OkadaY, HirokawaN: A common mechanism for microtubule destabilizers-m type kinesins stabilize curling of the protofilament using the class-specific neck and loops.Cell116(4) , 591–602 (2004).
  • Shipley K , Hekmat-NejadM, TurnerJet al. : Structure of a kinesin microtubule depolymerization machine.EMBO J.23(7) , 1422–1432 (2004).
  • Ovechkina Y , WagenbachM, WordemanL: K-loop insertion restores microtubule depolymerizing activity of a “Neckless” Mcak mutant.J. Cell Biol.159(4) , 557–562 (2002).
  • Walczak C , GanE, DesaiA, MitchisonT, Kline-SmithS: The microtubule-destabilizing kinesin xkcm1 is required for chromosome positioning during spindle assembly.Curr. Biol.12(21) , 1885–1889 (2002).
  • Kline-Smith S , KhodjakovA, HergertP, WalczakC: Depletion of centromeric mcak leads to chromosome congression and segregation defects due to improper kinetochore attachments.Mol. Biol. Cell15(3) , 1146–1159 (2004).
  • Maney T , WagenbachM, WordemanL: Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin.J. Biol. Chem.276(37) , 34753–34758 (2001).
  • Blaineau C , TessierM, DubessayPet al. : A novel microtubule-depolymerizing kinesin involved in length control of a eukaryotic flagellum.Curr. Biol.17(9) , 778–782 (2007).
  • Piao T , LuoM, WangLet al. : A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in chlamydomonas.Proc. Natl Acad. Sci. USA106(12) , 4713–4718 (2009).
  • Dubessay P , BlaineauC, BastienPet al. : Cell cycle-dependent expression regulation by the proteasome pathway and characterization of the nuclear targeting signal of a Leishmania major kin-13 kinesin.Mol. Microbiol.59(4) , 1162–1174 (2006).
  • Chan KY , MatthewsK, ErsfeldK: Functional characterisation and drug target validation of a mitotic kinesin-13 in Trypanosoma brucei.PLoS Pathog.6(8) , E1001050 (2010).
  • Chan KY , ErsfeldK: The role of the kinesin-13 family protein tbkif13–2 in flagellar length control of trypanosoma brucei.Mol. Biochem. Parasitol.174(2) , 137–140 (2010).
  • Erdmann M , ScholzA, MelzerI, SchmetzC, WieseM: Interacting protein kinases involved in the regulation of flagellar length.Mol. Biol. Cell17(4) , 2035–2045 (2006).
  • Dawson S , SagollaM, MancusoJet al. : Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis.Eukaryot. Cell6(12) , 2354–2364 (2007).
  • Mrug M , LiR, CuiX, SchoebT, ChurchillG, Guay-WoodfordL: Kinesin family member 12 is a candidate polycystic kidney disease modifier in the cpk mouse.J. Am. Soc. Nephrol.16(4) , 905–916 (2005).
  • Gresh L , FischerE, ReimannAet al. : A transcriptional network in polycystic kidney disease.EMBO J.23(7) , 1657–1668 (2004).
  • Hirokawa N , NodaY, TanakaY, NiwaS: Kinesin superfamily motor proteins and intracellular transport.Nat. Rev. Mol. Cell Biol.10(10) , 682–696 (2009).
  • Peden E , BarrM: The klp-6 kinesin is required for male mating behaviors and polycystin localization in Caenorhabditis elegans.Curr. Biol.15(5) , 394–404 (2005).
  • Huang K , DienerD, MitchellA, PazourG, WitmanG, RosenbaumJ: Function and dynamics of pkd2 in Chlamydomonas reinhardtii flagella.J. Cell Biol.179(3) , 501–514 (2007).
  • Narasimhulu S , KaoY, ReddyA: Interaction of arabidopsis kinesin-like calmodulin-binding protein with tubulin subunits: modulation by Ca2+-calmodulin.Plant J.12(5) , 1139–1149 (1997).
  • Narasimhulu S , ReddyA: Characterization of microtubule binding domains in the arabidopsis kinesin-like calmodulin binding protein.Plant Cell10(6) , 957–965 (1998).
  • Oppenheimer D , PollockM, VacikJet al. : Essential role of a kinesin-like protein in arabidopsis trichome morphogenesis.Proc. Natl Acad. Sci. USA94(12) , 6261–6266 (1997).
  • Bowser J , ReddyA: Localization of a kinesin-like calmodulin-binding protein in dividing cells of arabidopsis and tobacco.Plant J.12(6) , 1429–1437 (1997).
  • Dymek E , GodutiD, KramerT, SmithE: A kinesin-like calmodulin-binding protein in Chlamydomonas: evidence for a role in cell division and flagellar functions.J. Cell Sci.119 , 3107–3116 (2006).
  • Liem K , HeM, OcbinaP, AndersonK: Mouse kif7/costal2 is a cilia-associated protein that regulates sonic hedgehog signaling.Proc. Natl Acad. Sci. USA106(32) , 13377–13382 (2009).
  • Kohl L , BastinP: The flagellum of trypanosomes.Int. Rev. Cytol.244 , 227–285 (2005).
  • Branche C , KohlL, ToutiraisG, BuissonJ, CossonJ, BastinP: Conserved and specific functions of axoneme components in trypanosome motility.J. Cell Sci.119 , 3443–3455 (2006).
  • Lechtreck K , DelmotteP, RobinsonM, SandersonMJ, WitmanG: Mutations in hydin impair ciliary motility in mice.J. Cell Biol.180(3) , 633–643 (2008).
  • Sharma N , BerbariN, YoderB: Ciliary dysfunction in developmental abnormalities and diseases.Curr. Top. Dev. Biol.85 , 371–427 (2008).
  • Goetz S , AndersonK: The primary cilium: a signalling centre during vertebrate development.Nat. Rev. Genet.11(5) , 331–344 (2010).
  • Singla V , ReiterJ: The primary cilium as the cell‘s antenna: signaling at a sensory organelle.Science313(5787) , 629–633 (2006).
  • Bloodgood R : Sensory reception is an attribute of both primary cilia and motile cilia.J. Cell Sci.123 , 505–509 (2010).
  • Kitner M , PoulíckováA: Littoral diatoms as indicators for the eutrophication of shallow lakes.Hydrobiologia506–509, 519–524 (2003).
  • Madoni P , RomeoM: Acute toxicity of heavy metals towards freshwater ciliated protists.Environ. Pollut.141(1) , 1–7 (2006).
  • Sellner K , DoucetteG, KirkpatrickG: Harmful algal blooms: causes, impacts and detection.J. Ind. Microbiol. Biotechnol.30(7) , 383–406 (2003).
  • Berger L , HyattA, SpeareR, LongcoreJ: Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis.Dis. Aquat. Organ.68(1) , 51–63 (2005).
  • James T , KauffF, SchochCet al. : Reconstructing the early evolution of fungi using a six-gene phylogeny.Nature443(7113) , 818–822 (2006).
  • Wickstead B , GullK: Dyneins across eukaryotes: a comparative genomic analysis.Traffic8(12) , 1708–1721 (2007).
  • Avidor-Reiss T , MaerA, KoundakjianEet al. : Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis.Cell117(4) , 527–539 (2004).
  • Sinden R , CanningE, SpainB: Gametogenesis and fertilization in Plasmodium yoelii nigeriensis: a transmission electron microscope study.Proc. R. Soc. Lond. B Biol. Sci.193(1110) , 55–76 (1976).
  • Armbrust E , BergesJ, BowlerCet al. : The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism.Science306(5693) , 79–86 (2004).
  • Ferguson D : Toxoplasma gondii and sex: essential or optional extra?Trends Parasitol.18(8) , 351 (2002).
  • Lee J : De novo formation of basal bodies during cellular differentiation of Naegleria gruberi: progress and hypotheses.Semin. Cell Dev. Biol.21(2) , 156–162 (2010).
  • Schrevel J , BesseC: A functional flagella with a 6 + 0 pattern.J. Cell Biol.66(3) , 492–507 (1975).
  • Witman GB : Cell motility: deaf drosophila keep the beat.Curr. Biol.13(20) , R796–R798 (2003).
  • Mencarelli C , LupettiP, DallaiR: New insights into the cell biology of insect axonemes.Int. Rev. Cell Mol. Biol.268 , 95–145 (2008).
  • Pitnick S , SpicerG, MarkowT: How long is a giant sperm?Nature375(6527) , 109 (1995).
  • Aury J , JaillonO, DuretLet al. : Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia.Nature444(7116) , 171–178 (2006).
  • Pearson C , WineyM: Basal body assembly in ciliates: the power of numbers.Traffic10(5) , 461–471 (2009).
  • Iftode F , Fleury-AubussonA: Structural inheritance in Paramecium: ultrastructural evidence for basal body and associated rootlets polarity transmission through binary fission.Biol. Cell95(1) , 39–51 (2003).
  • Broadhead R , DaweHr, FarrHet al.: Flagellar motility is required for the viability of the bloodstream trypanosome.Nature440(7081) , 224–227 (2006).
  • Gluenz E , GingerMl, MckeanPG: Flagellum assembly and function during the Leishmania life cycle.Curr. Opin. Microbiol.13(4) , 473–479 (2010).
  • Sinden R , TalmanA, MarquesS, WassM, SternbergM: The flagellum in malarial parasites.Curr. Opin. Microbiol.13(4) , 491–500 (2010).
  • Dawson SC , HouseSA: Life with eight flagella: flagellar assembly and division in Giardia.Curr. Opin. Microbiol.13(4) , 480–490 (2010).
  • Kim C , BowieJ: Sam domains: uniform structure, diversity of function.Trends Biochem. Sci.28(12) , 625–628 (2003).
  • Oliver T , BergJ, CheneyR: Tails of unconventional myosins.Cell Mol. Life Sci.56(3–4) , 243–257 (1999).
  • Chishti A , KimA, MarfatiaSet al. : The ferm domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane.Trends Biochem. Sci.23(8) , 281–282 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.