452
Views
55
CrossRef citations to date
0
Altmetric
Review

Mycobacterium Leprae–Host-Cell Interactions and Genetic Determinants in Leprosy: an Overview

, , &
Pages 217-230 | Published online: 02 Mar 2011

Bibliography

  • Noordeen SK : Elimination of leprosy as a public health problem.Indian J. Lepr.66 , 1–10 (1994).
  • Britton WJ , LockwoodDN: Leprosy.Lancet363 , 1209–1219 (2004).
  • Ridley DS , JoplingWH: Classification of leprosy according to immunity. A five-group system.Int. J. Lepr.34 , 255–273 (1966).
  • Van Voorhis WC , KaplanG, SarnoENet al. : The cutaneous infiltrates of leprosy: cellular characteristics and the predominant T-cell phenotypes.N. Engl. J. Med.307 , 1593–1597 (1982).
  • Modlin RL , HofmanFM, TaylorCR, ReaTH: T lymphocyte subsets in the skin lesions of patients with leprosy.J. Am. Acad. Dermatol.8 , 182–189 (1983).
  • Wallach D , FlageulB, BachMA, CottenotF: The cellular content of dermal leprous granulomas: an immuno-histological approach.Int. J. Lepr.52 , 318–326 (1984).
  • WHO: Chemotherapy of leprosy for control programmes. World Health Organ. Tech. Rep. Ser. 675 , 1–33 (1982).
  • Walker SL , LockwoodDN: The clinical and immunological features of leprosy.Br. Med. Bull.77–78 , 103–121 (2006).
  • Lienhardt C , FinePE: Type 1 reaction, neuritis and disability in leprosy. What is the current epidemiological situation?Lepr. Rev.65 , 9–33 (1994).
  • Sarno EN , GrauGE, VieiraLM, NeryJA: Serum levels of tumour necrosis factor-α and interleukin-1 β during leprosy reactional states.Clin. Exp. Immunol.84 , 103–108 (1991).
  • Khanolkar-Young S , RaymentN, BrickellPMet al. : Tumour necrosis factor-α (TNF-α) synthesis is associated with the skin and peripheral nerve pathology of leprosy reversal reactions.Clin. Exp. Immunol.99 , 196–202 (1995).
  • Walker SL , LockwoodDN: Leprosy type 1 (reversal) reactions and their management.Lepr. Review79 , 372–386 (2008).
  • Lockwood DN : Steroids in leprosy type 1 reactions: mechanisms of action and effectiveness.Lepr. Rev.71(Suppl.) , S111–S114 (2000).
  • Croft RP , NichollsPG, SteyerbergEW, RichardusJH, WithingtonSG, SmithWC: A clinical prediction rule for nerve function impairment in leprosy patients revisited after 5 years of follow-up.Lepr. Rev.74 , 35–41 (2003).
  • Girdhar BK , GirdharA, ChakmaJK: Advances in the treatment of reactions in leprosy.Indian J. Lepr.79 , 121–134 (2007).
  • Walker SL , WatersMF, LockwoodDN: The role of thalidomide in the management of erythema nodosum leprosum.Lepr. Rev.78 , 197–215 (2007).
  • Sarno EN , NeryJAC, SampaioEP: Is pentoxifylline a viable alternative in the treatment of ENL?Int. J. Lepr.63 , 570–571 (1995).
  • Sales AM , deMatos HJ, NeryJA, DuppreNC, SampaioEP, SarnoEN: Double-blind trial of the efficacy of pentoxifylline vs thalidomide for the treatment of type II reaction in leprosy.Braz. J. Med. Biol. Res.40 , 243–248 (2007).
  • Kaur I , DograS, NarangT, DeD: Comparative efficacy of thalidomide and prednisolone in the treatment of moderate to severe erythema nodosum leprosum: a ramdomized study.Australas. J. Dermatol.50 , 181–185 (2009).
  • Saber M , Bourassa-FulopC, BouffardD, ProvostN: Canadian case report of erythema nodosum leprosum successfully treated with prednisone and thalidomide.J. Cutan. Med. Surg.14 , 95–99 (2010).
  • Teo SK : Properties of thalidomide and its analogues: implications for anticancer therapy.AAPS J.7 , E14–E19 (2005).
  • Lebrin F , SrunS, RaymondKet al. : Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia.Nat. Med.16 , 420–428 (2010).
  • Akhurst RJ : Taking thalidomide out of rehab.Nat. Med.16 , 370–372 (2010).
  • Ito T , AndoH, SuzukiTet al. : Identification of a primary target of thalidomide teratogenicity.Science327 , 1345–1350 (2010).
  • Sampaio EP , SarnoEN, GalillyR, CohnZA, KaplanG: Thalidomide selectively inhibits tumor necrosis factor α production by stimulated human monocytes.J. Exp. Med.173 , 699–703 (1991).
  • Moreira AL , SampaioEP, ZmuidzinasA, FrindtP, SmithKA, KaplanG: Thalidomide exerts its inhibitory action on tumor necrosis factor α by enhancing mRNA degradation.J. Exp. Med.177 , 1675–1680 (1993).
  • Anderson KC : Lenalidomide and thalidomide: mechanisms of action – similarities and differences.Semin. Hematol.42 , S3–S8 (2005).
  • Sampaio EP , KaplanG, MirandaAet al. : The influence of thalidomide on the clinical and immunological manifestation of erythema nodosum leprosum.J. Infect. Dis.168 , 408–414 (1993).
  • Moraes MO , SarnoEN, TelesRMet al. : Anti-inflammatory drugs block cytokine mRNA accumulation in the skin and improve the clinical condition of reactional leprosy patients.J. Invest. Dermatol.115 , 935–941 (2000).
  • Corral LG , MullerGW, MoreiraALet al. : Selection of novel analogs of thalidomide with enhanced tumor necrosis factor α inhibitory activity.Mol. Med.2 , 506–515 (1996).
  • Fujimoto H , NoguchiT, KobayashiH, MiyachiH, HashimotoY: Effects of immunomodulatory derivatives of thalidomide (IMiDs) and their analogs on cell-differentiation, cyclooxygenase activity and angiogenesis.Chem. Pharm. Bull. (Tokyo)54 , 855–860 (2006).
  • Gandhi AK , KangJ, CaponeLet al. : Dexamethasone synergizes with lenalidomide to inhibit multiple myeloma tumor growth, but reduces lenalidomide-induced immunomodulation of T and NK cell function.Curr. Cancer Drug Targets10 , 155–167 (2010).
  • Lockwood DN : Leprosy elimination: a virtual phenomenon or a reality?BMJ324 , 1516–1518 (2002).
  • Rao AG : Study of leprosy in children.Indian J. Lepr.81 , 195–197 (2009).
  • Balagon MF , CellonaRV, delaCruz ECet al.: Long-term risk of relapse of multibacillary leprosy after completion of 2-year multiple drug therapy (WHO-MDT) in Cebu, Philippines.Am. J. Trop. Med. Hyg.81 , 895–899 (2009).
  • Sampaio EP , CaneshiJRT, NeryJACet al. : Cellular immune response to Mycobacterium leprae infection in human immunodeficiency virus-infected individuals.Infect. Immun.63 , 1848–1854 (1995).
  • Nery JAC , SampaioEP, GalhardoMCGet al. : M. leprae–HIV co-infection: pattern of immune response in vivo and in vitro.Indian J. Lepr.72 , 155–167 (2000).
  • Sarno EN , IllarramendiX, NeryJAet al. : HIV–M. leprae interaction: can HAART modify the course of leprosy?Public Health Rep.123 , 206–212 (2008).
  • Deps PD , LockwoodDN: Leprosy occurring as immune reconstitution syndrome.Trans. R. Soc. Trop. Med. Hyg.102 , 966–968 (2008).
  • Couppie P , DomergueV, ClytiEet al. : Increased evidence of leprosy following HAART initiation: a manifestation of the immune reconstitution disease.AIDS23 , 1599–1600 (2009).
  • Rastogi N , LegrandE, SolaC: The mycobacteria: an introduction to nomenclature and pathogenesis.Rev. Sci. Tech.20 , 21–54 (2001).
  • Gutierrez MC , SupplyP, BroschR: Pathogenomics of mycobacteria.Genome Dyn.6 , 198–210 (2009).
  • Cole ST , BroschR, ParkhillJet al. : Deciphering the biology of M. tuberculosis from the complete genome sequence.Nature393 , 537–544 (1998).
  • Cole ST , EiglmeierK, ParkhillJet al. : Massive gene decay in the leprosy bacillus.Nature409 , 1007–1011 (2001).
  • Suzuki K , NakataN, BangPD, IshiiN, MakinoM: High level expression of pseudogenes in Mycobacterium leprae.FEMS Microbiol. Lett.259 , 208–214 (2006).
  • Han XY , SeoYH, SizerKCet al. : A new Mycobacterium species causing diffuse lepromatous leprosy.Am. J. Clin. Pathol.130 , 856–864 (2008).
  • Han XY , SizerKC, ThompsonEJet al. : Comparative sequence analysis of Mycobacterium leprae and the new leprosy-causing Mycobacterium lepromatosis.J. Bacteriol.191 , 6067–6074 (2009).
  • Monot M , HonoréN, GarnierTet al. : Comparative genomic and phylogeographic analysis of Mycobacterium leprae.Nat. Genet.41 , 1282–1289 (2009).
  • Maiden MC : Putting leprosy on the map.Nat. Genet.41 , 1264–1266 (2009).
  • Gillis T , VissaV, MatsuokaMet al. : Characterization of short tandem repeats for genotyping Mycobacterium leprae.Lepr. Rev.80 , 250–260 (2009).
  • Kimura M , SakamuriRM, GroathouseNAet al. : Rapid variable-number tandem-repeat genotyping for Mycobacterium leprae clinical specimens.J. Clin. Microbiol.47 , 1757–1766 (2009).
  • Monot M , HonoreN, BaliereCet al. : Are variable-number tandem repeats appropriate for genotyping Mycobacterium leprae?J. Clin. Microbiol.46 , 2291–2297 (2008).
  • Alter A , AlcaïsA, AbelL, SchurrE: Leprosy as a genetic model for susceptibility to common infectious diseases.Hum. Genet.123 , 227–235 (2008).
  • Alcaïs A , AlterA, AntoniGet al. : Stepwise replication identifies a low-producing lymphotoxin-α allele as a major risk factor for early-onset leprosy.Nat. Genet.39 , 517–522 (2007).
  • Santos AR , SuffysPN, VanderborghtPRet al. : TNFα and IL-10 promoter polymorphisms in leprosy: association with disease susceptibility.J. Infect. Dis.186 , 1687–1691 (2002).
  • Mira MT , AlcaisA, diPietrantonio Tet al.: Segregation of HLA/TNF region is linked to leprosy clinical spectrum in families displaying mixed leprosy subtypes.Genes Immun.4 , 67–73 (2003).
  • Misch EA , MacdonaldM, RanjitCet al. : Human TLR1 deficiency is associated with impaired mycobacterial signaling and protection from leprosy reversal reaction.PLoS Negl. Trop. Dis.2 , E231–E239 (2008).
  • Cardoso CC , PereiraAC, Brito-de-SouzaVNet al. : IFNG +874 T>A single nucleotide polymorphism is associated with leprosy among Brazilians.Hum. Genet.128 , 481–490 (2010).
  • Mira MT , AlcaïsA, NguyenVTet al. : Susceptibility to leprosy is associated with PARK2 and PACRG.Nature427 , 636–640 (2004).
  • Johnson C , LyleEA, OmuetiKOet al. : Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy.J. Immunol.178 , 7520–7524 (2007).
  • Bochud P-Y , HawnTR, AderemA: Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling.J. Immunol.170 , 3451–3454 (2003).
  • Bochud P -Y, Hawn TR, Siddiqui MR et al.: Toll-like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy. J. Infect. Dis.197 , 253–261 (2008).
  • Morrison NA , QiJC, TokitaAet al. : Prediction of bone density from vitamin D receptor alleles.Nature367 , 284–287 (1994).
  • van Etten E , VerlindenL, GiuliettiAet al. : The vitamin D receptor gene FokI polymorphism: functional impact on the immune system.Eur. J. Immunol.37 , 395–405 (2007).
  • Roy S , FrodshamA, SahaBet al. : Association of vitamin D receptor genotype with leprosy type.J. Infect. Dis.179 , 187–191 (1999).
  • Sapkota BR , MacdonaldM, BerringtonWRet al. : Association of TNF, MBL, and VDR polymorphisms with leprosy phenotypes.Hum. Immunol.71 , 992–998 (2010).
  • Goulart LR , FerreiraFR, GoulartIM: Interaction of TaqI polymorphism at exon 9 of the vitamin D receptor gene with the negative lepromin response may favor the occurrence of leprosy.FEMS Immunol. Med. Microbiol.48 , 91–98 (2006).
  • Zhang FR , HuangW, ChenSMet al. : Genomewide association study of leprosy.N. Engl. J. Med.361 , 2609–2618 (2009).
  • Berrington WR , MacdonaldM, KhadgeSet al. : Common polymorphisms in the NOD2 gene region are associated with leprosy and its reactive states.J. Infect. Dis.201 , 1422–1435 (2010).
  • van Beers SM , HattaM, KlatserPR: Patient contact is the major determinant in incident leprosy: implications for future control.Int. J. Lepr.67 , 119–128 (1999).
  • Moura RS , CaladoKL, OliveiraML, Bührer-SékulaS: Leprosy serology using PGL-I: a systematic review.Rev. Soc. Bras. Med. Trop.41(Suppl. 2) , 11–18 (2008).
  • Bührer-Sékula S , SmitsHL, GussenhovenGC, vanIngen CW, KlatserPR: A simple dipstick assay for the detection of antibodies to phenolic glycolipid-I of Mycobacterium leprae.Am. J. Trop. Med. Hyg.58 , 133–136 (1998).
  • Zenha EM , FerreiraMA, FossNT: Use of anti-PGL-1 antibodies to monitor therapy regimes in leprosy patients.Braz. J. Med. Biol. Res.42 , 968–972 (2009).
  • Bührer-Sékula S , IllarramendiX, TelesRBet al. : The additional benefit of the ML flow test to classify leprosy patients.Acta Trop.111 , 172–176 (2009).
  • Bührer-Sékula S , vanBeers S, OskamLet al.: The relation between seroprevalence of antibodies against phenolic glycolipid-I among school children and leprosy endemicity in Brazil.Rev. Soc. Bras. Med. Trop.41(Suppl. 2) , 81–88 (2008).
  • Martinez AN , BrittoCFPC, JardimMRet al. : Detection of Mycobacterium leprae DNA in skin biopsy samples of leprosy patients: evaluation of real time and conventional PCR targeting complex 85 genes.J. Clin. Microbiol.44 , 3154–3159 (2006).
  • Bang PD , SuzukiK, Phuongle Tet al.: Evaluation of polymerase chain reaction-based detection of Mycobacterium leprae for the diagnosis of leprosy.J. Dermatol.36 , 269–276 (2009).
  • Jardim MM , AntunesSG, WildenbeestJGet al. : PGL-I as an accessory test for the diagnosis of pure neural leprosy.Lepr. Rev.76 , 232–240 (2005).
  • Geluk A , vander Ploeg J, TelesROet al.: Rational combination of peptides derived from different Mycobacterium leprae proteins improves sensitivity for immunodiagnosis of M. leprae infection.Clin. Vaccine Immunol.15 , 522–533 (2008).
  • Spencer JS , DockrellHM, KimHJet al. : Identification of specific proteins and peptides in Mycobacterium leprae sui for the selective diagnosis of leprosy.J. Immunol.175 , 7930–7938 (2005).
  • Geluk A , vander Ploeg-van Schip JJ, vanMeijgaarden KEet al.: Enhancing sensitivity of detection of immune responses to Mycobacterium leprae peptides in whole-blood assays.Clin. Vaccine Immunol.17 , 993–1004 (2010).
  • Setia MS , SteinmausC, HoCS, RutherfordGW: The role of BCG in prevention of leprosy: a meta-analysis.Lancet Infect. Dis.6 , 162–170 (2006).
  • Düppre NC , CamachoLAB, CunhaSSet al. : Effectiveness of BCG vaccination among leprosy contacts: a cohort study.Trans. R. Soc. Trop. Med. Hyg.102 , 631–638 (2008).
  • Sharma P , MukherjeeR, TalwarGPet al. : Immunoprophylactic effects of the anti-leprosy Mw vaccine in household contacts of leprosy patients: clinical field trials with a follow up of 8–10 years.Lepr. Rev.76 , 127–143 (2005).
  • Merle CS , CunhaSS, RodriguesLC: BCG vaccination and leprosy protection: review of current evidence and status of BCG in leprosy control.Expert Rev. Vaccines9 , 209–222 (2010).
  • Moet FJ , PahanD, OskamL, RichardusJH: Effectiveness of single dose rifampicin in preventing leprosy in close contacts of patients with newly diagnosed leprosy: cluster randomised controlled trial.BMJ336 , 761–764 (2008).
  • Schuring RP , RichardusJH, PahanD, OskamL: Protective effect of the combination BCG vaccination and rifampicin prophylaxis in leprosy prevention.Vaccine27 , 7125–7128 (2009).
  • Bjune G , BarnetsonRS, RidleyDS, KronvallG: Lymphocyte transformation test in leprosy; correlation of the response with inflammation of lesions.Clin. Exp. Immunol.25 , 85–94 (1976).
  • Rea TH , LevanNE: Current concepts in the immunology of leprosy.Arch. Dermatol.113 , 345–352 (1977).
  • Khanolkar-Young S , RaymentN, BrickellPMet al. : Tumour necrosis factor-α (TNF-α) synthesis is associated with the skin and peripheral nerve pathology of leprosy reversal reactions.Clin. Exp. Immunol.99 , 196–202 (1995).
  • Little D , Khanolkar-YoungS, CoulthartA, SuneethaS, LockwoodDN: Immunohistochemical analysis of cellular infiltrate and gamma interferon, interleukin-12, and inducible nitric oxide synthase expression in leprosy type 1 (reversal) reactions before and during prednisolone treatment.Infect. Immun.69 , 3413–3417 (2001).
  • Stefani MM , GuerraJG, SousaALet al. : Potential plasma markers of Type 1 and Type 2 leprosy reactions: a preliminary report.BMC Infect. Dis.9 , 75–79 (2009).
  • Massone C , NunziE, Ribeiro-RodriguesRet al. : T regulatory cells and plasmocytoid dendritic cells in Hansen disease: a new insight into pathogenesis?Am. J. Dermatopathol.32 , 251–256 (2010).
  • Bjorvatn B , BarnetsonRS, KronvallG, ZublerRH, LambertPH: Immune complexes and complement hypercatabolism in patients with leprosy.Clin. Exp. Immunol.26 , 388–396 (1976).
  • Sreenivasan P , MisraRS, WilfredD, NathI: Lepromatous leprosy patients show T helper 1-like cytokine profile with differential expression of interleukin-10 during type 1 and 2 reactions.Immunology95 , 529–536 (1998).
  • Nath I , VemuriN, ReddiALet al. : The effect of antigen presenting cells on the cytokine profiles of s and reactional lepromatous leprosy patients.Immunol. Lett.75 , 69–76 (2000).
  • Moraes MO , SampaioEP, NeryJAC, SaraivaBCG, AlvarengaFBF, SarnoEN: Sequencial erythema nodosum leprosum and reversal reaction with similar lesional cytokine mRNA patterns in a borderline leprosy patient.Brit. J. Dermatol.144 , 175–181 (2001).
  • Kahawita IP , LockwoodDN: Towards understanding the pathology of erythema nodosum leprosum.Trans. R. Soc. Trop. Med. Hyg.102 , 329–337 (2008).
  • Oliveira RB , MoraesMO, OliveiraEB, SarnoEN, NeryJA, SampaioEP: Neutrophils isolated from leprosy patients release TNF-α and exhibit accelerated apoptosis in vitro.J. Leukoc. Biol.65 , 364–371 (1999).
  • Lee DJ , LiH, OchoaMTet al. : Integrated pathways for neutrophil recruitment and inflammation in leprosy.J. Infect. Dis.201 , 558–569 (2010).
  • Barnes PF , ChatterjeeD, BrennanPJ, ReaTH, ModlinRL: Tumor necrosis factor production in patients with leprosy.Infect. Immun.60 , 1441–1446 (1992).
  • Hernandez MO , NevesI, SalesJS, CarvalhoDS, SarnoEN, SampaioEP: Induction of apoptosis in monocytes by Mycobacterium lepraein vitro: a possible role for tumour necrosis factor-α.Immunology109 , 156–164 (2003).
  • Oliveira RB , SampaioEP, AntasPRZ, TelesRMB, AarestrupF, SarnoEN. Cytokines and Mycobacterium leprae induce apoptosis in human Schwann cells. J. Neuropathol. Exp. Neurol.64 , 882–890 (2005).
  • Fulco TO , LopesUG, SarnoEN, SampaioEP, SalibaAM: The proteasome function is required for Mycobacterium leprae-induced apoptosis and cytokine secretion.Immunol. Lett.110 , 82–85 (2007).
  • Oliveira RB , OchoaMT, SielingPAet al. : Expression of Toll-like receptor 2 on human Schwann cells: a mechanism of nerve damage in leprosy.Infect. Immun.71 , 1427–1433 (2003).
  • Lahiri R , RandhawaB, KrahenbuhlJL: Infection of mouse macrophages with viable Mycobacterium leprae does not induce apoptosis.J. Infect. Dis.201 , 1736–1742 (2010).
  • Rambukkana A , ZanazziG, TapinosN, SalzerJL: Contact-dependent demyelination by Mycobacterium leprae in the absence of immune cells.Science296 , 927–931 (2002).
  • Yan N , RiccaC, FletcherJ, GloverT, SeizingerBR, ManneV: Farnesyltransferase inhibitors block the neurofibromatosis type I (NF1) malignant phenotype.Cancer Res.55 , 3569–3575 (1995).
  • Marques MA , AntônioVL, SarnoEN, BrennanPJ, PessolaniMC: Binding of α2-laminins by pathogenic and non-pathogenic mycobacteria and adherence to Schwann cells.J. Med. Microbiol.50 , 23–28 (2001).
  • Ng V , ZanazziG, TimplRet al. : Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae.Cell103 , 511–524 (2000).
  • Rambukkana A , YamadaH, ZanazziGet al. : Role of α-dystroglycan as a Schwann cell receptor for Mycobacterium leprae.Science282 , 2076–2079 (1998).
  • Rambukkana A , SalzerJL, YurchencoPD, TuomanenEI: Neural targeting of Mycobacterium leprae mediated by the G domain of the laminin-α2 chain.Cell88 , 811–821 (1997).
  • Shimoji Y , NgV, MatsumuraK, FischettiVA, RambukkanaA: A 21-kDa surface protein of Mycobacterium leprae binds peripheral nerve laminin-2 and mediates Schwann cell invasion.Proc. Natl Acad. Sci. USA96 , 9857–9862 (1999).
  • Tapinos N , OhnishiM, RambukkanaA: ErbB2 receptor tyrosine kinase signaling mediates early demyelination induced by leprosy bacilli.Nat. Med.12 , 961–966 (2006).
  • Ribeiro-Resende VT , Ribeiro-GuimaraesML, LemesRMet al. : Involvement of 9-O-acetyl GD3 ganglioside in Mycobacterium leprae infection of Schwann cells.J. Biol. Chem.285(44) , 34086–34096 (2010).
  • Teles RM , AntunesSL, JardimMRet al. : Expression of metalloproteinases (MMP-2, MMP-9, and TACE) and TNF-α in the nerves of leprosy patients.J. Peripher. Nerv. Syst.12 , 195–204 (2007).
  • Oliveira AL , AntunesSL, TelesRMet al. : Schwann cells producing matrix metalloproteinases under Mycobacterium leprae stimulation may play a role in the outcome of leprous neuropathy.J. Neuropathol. Exp. Neurol.69 , 27–39 (2010).
  • Pereira RM , Calegari-SilvaTC, HernandezMOet al. : Mycobacterium leprae induces NF-κB-dependent transcription repression in human Schwann cells.Biochem. Biophys. Res. Commun.335 , 20–26 (2005).
  • Cardoso CC , MartinezAN, GuimarãesPEet al. : Ninjurin 1 asp110ala single nucleotide polymorphism is associated with protection in leprosy nerve damage.J. Neuroimmunol.190 , 131–138 (2007).
  • Schlesinger LS , HorwitzMA: Phagocytosis of Mycobacterium leprae by human monocyte-derived macrophages is mediated by complement receptors CR1 (CD35), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) and IFN-γ activation inhibits complement receptor function and phagocytosis of this bacterium.J. Immunol.147 , 1983–1994 (1991).
  • Prabhakaran K , HarrisEB, RandhawaB: Regulation by protein kinase of phagocytosis of Mycobacterium leprae by macrophages.J. Med. Microbiol.49 , 339–342 (2000).
  • Soilleux EJ , MorrisLS, LeslieGet al. : Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro.J. Leukoc. Biol.71 , 445–457 (2002).
  • Geijtenbeek TB , van Kooyk Y: Pathogens target DC-SIGN to influence their fate: DC-SIGN functions as a pathogen receptor with broad specificity. APMIS111 , 698–714 (2003).
  • Maeda N , NigouJ, HerrmannJLet al. : The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan.J. Biol. Chem.278 , 5513–5516 (2003).
  • Krutzik SR , TanB, LiHet al. : TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells.Nat. Med.11 , 653–660 (2005).
  • Soilleux EJ , SarnoEN, HernandezMOet al. : DC-SIGN association with the Th2 environment of lepromatous lesions: cause or effect?J. Pathol.209 , 182–189 (2006).
  • Barreiro LB , QuachH, KrahenbuhlJet al. : DC-SIGN interacts with Mycobacterium leprae but sequence variation in this lectin is not associated with leprosy in the Pakistani population.Hum. Immunol.67 , 102–107 (2006).
  • Teles RM , KrutzikSR, OchoaMT, OliveiraRB, SarnoEN, ModlinRL: IL-4 regulates the expression of CD209 and subsequent uptake of Mycobacterium leprae by Schwann cells in human leprosy.Infect. Immun.78 , 4634–4643 (2010).
  • Kaplan G , WeinsteinDE, SteinmanRMet al. : An analysis of in vitro T cell responsiveness in lepromatous leprosy.J. Exp. Med.162 , 917–929 (1985).
  • Sarno EN , EspinosaM, SampaioEPet al. : Immunological responsiveness to M. leprae and BCG antigens in 98 leprosy patients and their household contacts.Braz. J. Med. Biol. Res.21 , 461–470 (1988).
  • Sieling PA , JullienD, DahlemMet al. : CD1 expression by dendritic cells in human leprosy lesions: correlation with effective host immunity.J. Immunol.162 , 1851–1858 (1999).
  • Agrewala JN , KumarB, VohraH: Potential role of B7–1 and CD28 molecules in immunosuppression in leprosy.Clin. Exp. Immunol.111 , 56–63 (1998).
  • Krutzik SR , OchoaMT, SielingPAet al. : Activation and regulation of Toll-like receptors 2 and 1 in human leprosy.Nat. Med.9 , 525–532 (2003).
  • Jain M , PetzoldCJ, SchelleMWet al. : Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling.Proc. Natl Acad. Sci. USA104 , 5133–5138 (2007).
  • Sinsimer D , FallowsD, PeixotoB, KrahenbuhlJ, KaplanG, MancaC: Mycobacterium leprae actively modulates the cytokine response in naive human monocytes.Infect. Immun.78 , 293–300 (2010).
  • Alves L , deMendonça Lima L, daSilva Maeda Eet al.: Mycobacterium leprae infection of human Schwann cells depends on selective host kinases and pathogen-modulated endocytic pathways.FEMS Microbiol. Lett.238 , 429–437 (2004).
  • Sibley LD , KrahenbuhlJL: Mycobacterium leprae-burdened macrophages are refractory to activation by γ interferon.Infect. Immun.55 , 446–450 (1987).
  • Misra N , SelvakumarM, SinghSet al. : Monocyte derived IL-10 and PGE2 are associated with the absence of Th 1 cells and in vitro T cell suppression in lepromatous leprosy.Immunol. Lett.48 , 123–128 (1995).
  • Mellor AL , MunnDH: Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation?Immunol. Today20 , 469–473 (1999).
  • Uyttenhove C , PilotteL, ThéateIet al. : Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase.Nat. Med.9 , 1269–1274 (2003).
  • Popov A , SchultzeJL: IDO-expressing regulatory dendritic cells in cancer and chronic infection.J. Mol. Med.86 , 145–160 (2008).
  • Schröcksnadel K , WirleitnerB, WinklerC, FuchsD: Monitoring tryptophan metabolism in chronic immune activation.Clin. Chim. Acta364 , 82–90 (2006).
  • Liu PT , StengerS, LiHet al. : Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response.Science311 , 1770–1773 (2006).
  • Montoya D , CruzD, TelesRMBet al. : Divergence of macrophage phagocytic and antimicrobial programs in leprosy.Cell Host Microbe6 , 343–353 (2009).
  • Cruz D , WatsonAD, MillerCSet al. : Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy.J. Clin. Invest.118 , 2917–2928 (2008).
  • Almeida PE , SilvaAR, Maya-MonteiroCMet al. : Mycobacterium bovis Bacillus Calmette-Guérin infection induces TLR2-dependent peroxisome proliferator-activated receptor γ expression and activation: functions in inflammation, lipid metabolism, and pathogenesis.J. Immunol.183 , 1337–1345 (2009).
  • Sampaio EP , MoraesMO, NeryJAC, SantosAR, MattosHJ, SarnoEN: Pentoxifylline decreases in vivo and in vitro TNFα production in lepromatous leprosy patients with ENL.Clin. Exp. Immunol.111 , 300–308 (1998).
  • Teles RM , MoraesMO, GeraldoNT, SallesAM, SarnoEN, SampaioEP: Differential TNFα mRNA regulation detected in the epidermis of leprosy patients.Arch. Dermatol. Res.294 , 355–362 (2002).
  • Sarno EN , SampaioEP, MoreiraAL, AlvarengaFBF: Isolation and functional characterization of mononuclear phagocytes from human lepromatous lesion.Rev. Soc. Bras. Med. Trop.20 , 205–207 (1987).
  • Moura DF , TelesRM, Ribeiro-CarvalhoMMet al. : Long-term culture of multibacillary leprosy macrophages isolated from skin lesions: a new model to study Mycobacterium leprae–human cell interaction.Br. J. Dermatol.157 , 273–283 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.