612
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of Secretory Immunoglobulin a and Secretory Component in the Protection of Mucosal Surfaces

Pages 817-829 | Published online: 05 May 2010

Bibliography

  • Nagler-Anderson C : Man the barrier! Strategic defences in the intestinal mucosa.Nat. Rev. Immunol.1(1) , 59–67 (2001).
  • Brandtzaeg P : Induction of secretory immunity and memory at mucosal surfaces.Vaccine25(30) , 5467–5484 (2007).
  • Mestecky J , MoroI, KerrMA, WoofJ: Mucosal immunoglobulins. In: Mucosal Immunology. Mestecky, J, Lamm ME, Strober W, Bienenstock J, McGhee JR, Mayer LL (Eds). Elsevier/Academic Press, Amsterdam, The Netherlands, 153–181 (2005).
  • Phalipon A , CorthésyB: Novel functions for mucosal SIgA of IgA. In: Mucosal immune defense: immunoglobulin A. Kaetzel CS (Ed.). Springer, NY, USA, 183–202 (2007).
  • Macpherson AJ , McCoyKD, JohansenFE, BrandtzaegP: The immune geography of IgA induction and function.Mucosal Immunol.1(1) , 11–22 (2008).
  • Kaetzel CS : The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces.Immunol. Rev.206 , 83–99 (2005).
  • Russell MW , KilianM: Biological activities of IgA. In: Mucosal Immunology. Mestecky, J, Lamm ME, Strober W, Bienenstock J, McGhee JR, Mayer LL (Eds). Elsevier/Academic Press, Amsterdam, The Netherlands, 267–290 (2005).
  • Mach J , HshiehT, HsiehD, GrubbsN, ChervonskyA: Development of intestinal M cells.Immunol. Rev.206 , 177–189 (2005).
  • Hase K , KawanoK, NochiTet al.: Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response.Nature462(7270) , 226–230 (2009).
  • Favre L , SpertiniF, CorthésyB: Secretory IgA possesses intrinsic modulatory properties stimulating mucosal and systemic immune responses.J. Immunol.175(5) , 2793–2800 (2005).
  • Fagarasan S , HonjoT: Regulation of IgA synthesis at mucosal surfaces.Curr. Opin. Immunol.16(3) , 277–283 (2004).
  • He B , XuW, SantiniPAet al.: Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL.Immunity26(6) , 812–826 (2007).
  • Tsuji M , KomatsuN, KawamotoSet al.: Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer‘s patches.Science323(5920) , 1488–1492 (2009).
  • Corthésy B : Roundtrip ticket for secretory IgA: role in mucosal homeostasis?J. Immunol.178(1) , 27–32 (2007).
  • Kilian M , MesteckyJ, RussellMW: Defense mechanisms involving Fc-dependent functions of immunoglobulin A and their subversion by bacterial immunoglobulin A proteases.Microbiol. Rev.52(2) , 296–303 (1988).
  • Chintalacharuvu KR , RainesM, MorrisonSL: Divergence of human α-chain constant region gene sequences. A novel recombinant α 2 gene.J. Immunol.152(11) , 5299–5304 (1994).
  • Chintalacharuvu KR , MorrisonSL: Residues critical for H-L disulfide bond formation in human IgA1 and IgA2.J. Immunol.157(8) , 3443–3449 (1996).
  • Grey HM , AbelCA, YountWJ, KunkelHG: A subclass of human γ-A-globulins (γ-A2) which lacks the disulfied bonds linking heavy and light chains.J. Exp. Med.128(6) , 1223–1236 (1968).
  • Koshland ME : The coming of age of the immunoglobulin J chain.Annu. Rev. Immunol.3 , 425–453 (1985).
  • Johansen FE , BraathenR, BrandtzaegP: Role of J chain in secretory immunoglobulin formation.Scand. J. Immunol.52(3) , 240–248 (2000).
  • Hexham JM , WhiteKD, CarayannopoulosLNet al.: A human immunoglobulin (Ig)A ca3 domain motif directs polymeric Ig receptor-mediated secretion.J. Exp. Med.189(4) , 747–752 (1999).
  • Frütiger S , HughesGJ, PaquetN, LüthiR, JatonJC: Disulfide bond assignement in human J chain and its covalent pairing with immunoglobulin M.Biochemistry31(50) , 12643–12647 (1992).
  • Hendrickson BA , ConnerDA, LaddDJet al.: Altered hepatic transport of immunoglobulin A in mice lacking the J chain.J. Exp. Med.182(6) , 1905–1911 (1995).
  • Hendrickson BA , RindisbacherL, CorthésyBet al.: Lack of association of secretory component with IgA in J chain-deficient mice.J. Immunol.157(2) , 750–754 (1996).
  • Eiffert H , QuentinE, WiederholdMet al.: Determination of the molecular structure of the human free secretory component.Prot. Chem. Hoppe-Seyler372(2) , 119–128 (1991).
  • Frütiger S , HughesGJ, FonckC, JatonJC: High and low molecular weight rabbit secretory components. Evidence for the deletion of the second and third domains in the smaller polypeptide.J. Biol. Chem.262(4) , 1712–1715 (1987).
  • Bakos MA , KuroskyA, GoldblumRM: Characterization of a critical binding site for human polymeric Ig on secretory component.J. Immunol.147(10) , 3419–3426 (1991).
  • Fallgreen-Gebauer E , GebauerW, BastianAet al.: The covalent linkage of SC to IgA: structure of secretory IgA.Biol. Chem. Hoppe-Seyler374(11) , 1023–1028 (1993).
  • Hughes GJ , FrütigerS, SavoyLA, ReasonAJ, MorrisHR, JatonJC: Human free secretory component is composed of the first 585 amino acid residues of the polymeric immunoglobulin receptor.FEBS Lett.410(2–3) , 443–446 (1997).
  • Lindh E , BjörkI: Binding of secretory component to dimers of immunoglobulin A in vitro. Mechanism of the covalent bond formation.Eur. J. Biochem.62(2) , 263–270 (1976).
  • Rindisbacher L , CottetS, WittekR, KraehenbuhlJP, Corthésy,B: Production of human secretory component with dimeric IgA binding capacity using viral expression systems.J. Biol. Chem.270(23) , 14220–14228 (1995).
  • Crottet P , CorthésyB: Mapping the interaction between murine IgA and murine secretory component carrying epitope substitutions reveals a role of domains II and III in covalent binding to IgA.J. Biol. Chem.274(44) , 31456–31462 (1999).
  • Endo T , MesteckyJ, KulhavyR, KobataA: Carbohydrate heterogeneity of human myeloma proteins of the IgA1 and IgA2 subclasses.Mol. Immunol.31(18) , 1415–1422 (1994).
  • Mattu TS , PleassRJ, WillisACet al.: The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fc α receptor interactions.J. Biol. Chem.273(4) , 2260–2272 (1998).
  • Royle L , RoosA, HarveyDJet al.: Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems.J. Biol. Chem.278(22) , 20140–20153 (2003).
  • Roque-Barreira MC , Campos-NetoA: Jacalin: an IgA-binding lectin.J. Immunol.134(3) , 1740–1743 (1985).
  • Arnold JN , WormaldMR, SimRB, RuddPM, DwekRA: The impact of glycosylation on the biological function and structure of human immunoglobulins.Annu. Rev. Immunol.25 , 21–50 (2007).
  • Taylor AK , WallR: Selective removal of a heavy-chain glycosylation sites causes immunoglobulin A degradation and reduced secretion.Mol. Cell. Biol.8 , 4197–4203 (1988).
  • Baenziger JU : Structure of the oligosaccharide of human J chain. Structure of the oligosaccharide of human J chain.J. Biol. Chem.254(10) , 4063–4071 (1979).
  • Hughes GJ , ReasonAJ, SavoyL, JatonJ, Frutiger-HughesS: Carbohydrate moieties in human secretory component.Biochim. Biophys. Acta1434(1) , 86–93 (1999).
  • Perrier C , SprengerN, CorthésyB: Glycans on secretory component participate in innate protection against mucosal pathogens.J. Biol. Chem.281(20) , 14280–14287 (2006).
  • Bonner A , AlmogrenA, FurtadoPB, KerrMA, PerkinsSJ: The nonplanar secretory IgA2 and near planar secretory IgA1 solution structures rationalize their different mucosal immune responses.J. Biol. Chem.284(8) , 5077–5087 (2009).
  • Bonner A , AlmogrenA, FurtadoPB, KerrMA, PerkinsSJ: Location of secretory component on the Fc edge of dimeric IgA1 reveals insight into the role of secretory IgA1 in mucosal immunity.Mucosal Immunol.2(1) , 74–84 (2009).
  • Bloth B , SvehagSE: Further studies on the ultrastructure of dimeric IgA of human origin.J. Exp. Med.133(5) , 1035–1042 (1971).
  • Brandtzaeg P , PrydzH: Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins.Nature311(5981) , 71–73 (1974).
  • Johansen FE , BraathenR, BrandtzaegP: The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA.J. Immunol.167(9) , 5185–5192 (2001).
  • Bonner A , PerrierC, CorthésyB, PerkinsSJ: Solution structure of human secretory component and implications for biological function.J. Biol. Chem.282(23) , 16969–16980 (2007).
  • Ladjeva I , PetermanJH, MesteckyJ: IgA subclasses of human colostral antibodies specific for microbial and food antigens.Clin. Exp. Immunol.78(1) , 85–90 (1989).
  • Angel J , FrancoMA, GreenbergHB: Rotavirus vaccines: recent developments and future considerations.Nat. Rev. Microbiol.5(7) , 529–539 (2007).
  • Burns JW , Siadat-PajouhM, KrishnaneyAA, GreenbergHB: Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity.Science72(5258) , 104–107 (1996).
  • Corthésy B , BenureauY, PerrierCet al.: Rotavirus anti-VP6 secretory immunoglobulin A contributes to protection via intracellular neutralization but not via immune exclusion.J. Virol.80(21) , 10692–10699 (2006).
  • O‘Neal CM , HarrimanGR, ConnerME: Protection of the villus epithelial cells of the small intestine from rotavirus infection does not require immunoglobulin A.J. Virol.74(9) , 4102–4109 (2000).
  • Franco MA , AngelJ, GreenbergHB: Immunity and correlates of protection for rotavirus vaccines.Vaccine24(15) , 2718–2731 (2006).
  • Suerbaum S , MichettiP: Helicobacter pylori infection.N. Engl. J. Med.347(15) , 1175–1186 (2002).
  • Malfertheiner P , ChanFK, McCollKE: Peptic ulcer disease.Lancet374(9699) , 1449–1461 (2009).
  • Covacci A , RappuoliR: Helicobacter pylori: after the genome, back to biology.J. Exp. Med.197(7) , 807–811 (2003).
  • Prinz C , HafsiN, VolandP: Helicobacter pylori virulence factors and the host immune response: implications for therapeutic vaccination.Trends Microbiol.11(3) , 134–138 (2003).
  • Del Giudice G , MalfertheinerP, RappuoliR: Development of vaccines against Helicobacter pylori.Expert Rev. Vaccines8(8) , 1037–1049 (2009).
  • Blanchard TG , CzinnSJ, MaurerR, ThomasWD, SomanG, NedrudJG: Urease-specific monoclonal antibodies prevent Helicobacter felis infection in mice.Infect. Immun.63(4) , 1394–1399 (1995).
  • Ahlstedt I , LindholmC, LönrothH, HamletA, SvennerholmAM, Quiding-JärbrinkM: Role of local cytokines in increased gastric expression of the secretory component in Helicobacter pylori infection.Infect. Immun.67(9) , 4921–4925 (1999).
  • Goto T , NishizonoA, FujiokaT, IkewakiJ, MifuneK, NasuM: Local secretory immunoglobulin A and postimmunization gastritis correlate with protection against Helicobacter pyloriinfection after oral vaccination of mice.Infect. Immun.67(5) , 2531–2539 (1999).
  • Ferrero RL , ThibergeJM, LabigneA: Local immunoglobulin G antibodies in the stomach may contribute to immunity against Helicobacter infection in mice.Gastroenterology113(1) , 185–194 (1997).
  • Casswall TH , NilssonHO, BjörckLet al.: Bovine anti-Helicobacter pylori antibodies for oral immunotherapy.Scand. J. Gastroenterol.37(12) , 1380–1385 (2002).
  • Kelly CP , PothoulakisC, LaMontJT: Clostridium difficile colitis.N. Engl. J. Med.330(4) , 257–262 (1994).
  • Lyerly DM , KrivanHC, WilkinsTD: Clostridium difficile: its disease and toxins.Clin. Microbiol. Rev.1(1) , 1–18 (1988).
  • Stubbe H , BerdozJ, KraehenbuhlJP, CorthésyB: Polymeric IgA is superior to monomeric IgA and IgG carrying the same variable domain in preventing Clostridium difficile toxin A damaging of T84 monolayers.J. Immunol.164(4) , 1952–1960 (2000).
  • Cottet S , Corthésy-TheulazI, SpertiniF, CorthésyB: Microaerophilic conditions permit to mimic in vitro events occurring during in vivoHelicobacter pylori infection and to identify Rho/Ras-associated proteins in cellular signaling.J. Biol. Chem.277(37) , 33978–33986 (2002).
  • Renegar KB , SmallPA: Passive transfer of local immunity to influenza-virus infection by IgA antibody.J. Immunol.146(6) , 1972–1978 (1991).
  • Renegar KB , SmallPA: Immunoglobulin A mediation of murine nasal anti-influenza virus immunity.J. Virol.65(4) , 2146–2148 (1991).
  • Takase H , MurakamiY, EndoA, IkeuchiT: Antibody responses and protection in mice immunized orally against influenza virus.Vaccine14(17–18) , 1651–1656 (1996).
  • Tamura S , FunatoH, HirabayashiYet al.: Cross-protection against influenza-A virus-infection by passively transferred respiratory-tract IgA antibodies to different hemagglutinin molecules.Eur. J. Immunol.21(6) , 1337–1344 (1991).
  • Mazanec MB , CoudretCL, FletcherDR: Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies.J. Virol.69(2) , 1339–1343 (1995).
  • Fujioka H , EmancipatorSN, AikawaMet al.: Immunocytochemical colocalization of specific immunoglobulin A with sendai virus protein in infected polarized epithelium.J. Exp. Med.188(7) , 1223–1229 (1998).
  • Kozlowski PA , NeutraMR: The role of mucosal immunity in prevention of HIV transmission.Curr. Mol. Med.3(3) , 217–228 (2003).
  • Bomsel M , HeymanM, HociniHet al.: Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti-HIV envelope protein dIgA or IgM.Immunity9(2) , 277–287 (1998).
  • Huang YT , WrightA, GaoX, KulickL, YanH, LammME: Intraepithelial cell neutralization of HIV-1 replication by IgA.J. Immunol.174(8) , 4828–4835 (2005).
  • Jackson S , MesteckyJ, MoldoveanuZ, SpearmanP: Collection and processing of human mucosal secretions. In: Mucosal Immunology. Ogra PL, Mestecky, J, Lamm ME, Strober W, Bienenstock J, McGhee JR (Eds). Academic Press, CA, USA, 1567–1575 (1999).
  • Wright A , LammME, HuangYT: Excretion of human immunodeficiency virus type 1 through polarized epithelium by immunoglobulin A.J. Virol.82(23) , 11526–11535 (2008).
  • Devito C , BrolidenK, KaulRet al.: Mucosal and plasma IgA from HIV-1-exposed uninfected individuals inhibit HIV-1 transcytosis across human epithelial cells.J. Immunol.165(9) , 5170–5176 (2000).
  • Moja P , TranchatC, TchouIet al.: Neutralization of human immunodeficiency virus type 1 (HIV-1) mediated by parotid IgA of HIV-1-infected patients.J. Infect. Dis.181(5) , 1607–1613 (2000).
  • Alfsen A , IniguezP, BouguyonE, BomselM: Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1.J. Immunol.166(10) , 6257–6265 (2001).
  • Mantis NJ , PalaiaJ, HessellAJet al.: Inhibition of HIV-1 infectivity and epithelial cell transfer by human monoclonal IgG and IgA antibodies carrying the b12 V region.J. Immunol.179(5) , 3144–3152 (2007).
  • Xu W , SantiniPA, SullivanJSet al.: HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits.Nat. Immunol.10(9) , 1008–1017 (2009).
  • Kaetzel CS , RobinsonJK, ChintalacharuvuKR, VaermanJP, LammME: The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA.Proc. Natl Acad. Sci. USA88(19) , 8796–8800 (1991).
  • Robinson JK , BlanchardTG, LevineAD, EmancipatorSN, LammME: A mucosal IgA-mediated excretory immune system in vivo.J. Immunol.166(6) , 3688–3692 (2001).
  • Kramer DR , CebraJJ: Early appearance of “natural” mucosal IgA responses and germinal centers in suckling mice developing in the absence of maternal antibodies.J. Immunol.154(5) , 2051–2062 (1995).
  • van der Waaij LA , LimburgPC, MesanderG, van der Waaij D: In vivo IgA coating of anaerobic bacteria in human faeces. Gut38(3) , 348–354 (1996).
  • Bos NA , JiangHQ, CebraJJ: T-cell control of the gut IgA response against commensal bacteria.Gut48(6) , 762–764 (2001).
  • Macpherson AJ , GattoD, SainsburyE, HarrimanGR, HengartnerH, ZinkernagelRM: A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria.Science288(5474) , 2222–2226 (2000).
  • Shroff KE , MeslinK, CebraJJ: Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut.Infect. Immun.63(10) , 3904–3913 (1995).
  • Cebra JJ : Influences of microbiota on intestinal immune system development.Am. J. Clin. Nutr.69(5) , S1046–S1051 (1999).
  • Macpherson AJ , UhrT: Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria.Science303(5664) , 1662–1665 (2004).
  • Kadaoui KA , CorthésyB: Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer‘s patches with restriction to mucosal compartment.J. Immunol.179(11) , 7751–7757 (2007).
  • Macpherson AJ , GeukingMB, McCoyKD: Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria.Immunology115(2) , 153–162 (2005).
  • Harris NL , SpoerriI, SchopferJFet al.: Mechanisms of neonatal mucosal antibody protection.J. Immunol.177(9) , 6256–6262 (2006).
  • Fagarasan S , MuramatsuM, SuzukiK, NagaokaH, HiaiH, HonjoT: Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora.Science298(5597) , 1424–1427 (2002).
  • Biesbrock AR , ReddyMS, LevineMJ: Interaction of a salivary mucin-secretory immunoglobulin A complex with mucosal pathogens.Infect. Immun.59(10) , 3492–3497 (1991).
  • Phalipon A , CorthésyB: Novel functions of the polymeric Ig receptor: well beyond transport of immunoglobulins.Trends Immunol.24(2) , 55–58 (2003).
  • Bollinger RR , EverettML, PalestrantD, LoveSD, LinSS, ParkerW: Human secretory immunoglobulin A may contribute to biofilm formation in the gut.Immunology109(4) , 580–587 (2003).
  • Macpherson AJ , SlackE: The functional interactions of commensal bacteria with intestinal secretory IgA.Curr. Opin. Gastroenterol.23(6) , 673–678 (2007).
  • Mowat AM : Anatomical basis of tolerance and immunity to intestinal antigens.Nat. Rev. Immunol.3(4) , 331–341 (2003).
  • Mestecky J , RussellMW, ElsonCO: Perspectives on mucosal vaccines: is mucosal tolerance a barrier?J. Immunol.179(9) , 5633–5638 (2007).
  • Freytag LC , ClementsJD: Mucosal adjuvants.Vaccine23(15) , 1804–1813 (2005).
  • Schubert C : Boosting our best shot.Nat. Med.15(9) , 984–988 (2009).
  • Zinkernagel RM : Maternal antibodies, childhood infections, and autoimmune diseases.N. Engl. J. Med.345(18) , 1331–1335 (2001).
  • Newburg DS , WalkerWA: Protection of the neonate by the innate immune system of developing gut and of human milk.Pediatr. Res.61(1) , 2–8 (2007).
  • Casswall TH , SarkerSA, FaruqueSMet al.: Treatment of enterotoxigenic and enteropathogenic Escherichia coli-induced diarrhoea in children with bovine immunoglobulin milk concentrate from hyperimmunized cows: a double-blind, placebo-controlled, clinical trial.Scand. J. Gastroenterol.35(7) , 711–718 (2000).
  • Houdebine LM : Production of pharmaceutical proteins by transgenic animals.Comp. Immunol. Microbiol. Infect. Dis.32(2) , 107–121 (2009).
  • Kamihira M , KawabeY, ShindoTet al.: Production of chimeric monoclonal antibodies by genetically manipulated chickens.J. Biotechnol.141(1–2) , 18–25 (2009).
  • Corthésy B : Recombinant secretory immunoglobulin A in passive immunotherapy: linking immunology and biotechnology.Curr. Pharm. Biotechnol.17(2) , 198–203 (2003).
  • Casadevall A , DadachovaE, PirofskiLA: Passive antibody therapy for infectious diseases.Nat. Rev. Microbiol.2(9) , 695–703 (2004).
  • Starlinger M , SchiesselR: Bicarbonate (HCO3) delivery to the gastroduodenal mucosa by the blood: its importance for mucosal integrity.Gut29(5) , 647–654 (1988).
  • Mohamed AH , HuntRH: The rationale of acid suppression in the treatment of acid-related disease.Aliment. Pharmacol. Ther.8(Suppl. 1) , 3–10 (1994).
  • Kaye RS , PurewalTS, AlparOH: Development and testing of particulate formulations for the nasal delivery of antibodies.J. Control Release135(2) , 127–135 (2009).
  • Corthésy B : Recombinant immunoglobulin A: powerful tools for fundamental and applied research.Trends Biotechnol.20(2) , 65–71 (2002).
  • Phalipon A , KaufmannM, MichettiPet al.: Monoclonal immunoglobulin A antibody directed against serotype-specific epitope of Shigella flexnerilipopolysaccharide protects against murine experimental shigellosis.J. Exp. Med.182(3) , 769–778 (1995).
  • Weltzin R , Traina-DorgeV, SoikeKet al.: Intranasal monoclonal IgA antibody to respiratory syncytial virus protects Rhesus monkeys against upper and lower respiratory tract infection.J. Infect. Dis.174(8) , 256–261 (1996).
  • Ma JK , HykmatBY, WycoffKet al.: Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans.Nat. Med.4(5) , 601–606 (1998).
  • Enriquez FJ , RiggsMW: Role of immunoglobulin A monoclonal antibodies against P23 in controlling murine Cryptosporidium parvum infection.Infect. Immun.66(9) , 4469–4473 (1998).
  • Phalipon A , CardonaA, KraehenbuhlJP, EdelmanL, SansonettiPJ, CorthésyB: Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo.Immunity17(1) , 107–115 (2002).
  • Hutchings AB , HelanderA, SilveyKJet al.: Secretory immunoglobulin A antibodies against the sigma1 outer capsid protein of reovirus type 1 Lang prevent infection of mouse Peyer‘s patches.J. Virol.78(2) , 947–957 (2004).
  • Williams A , ReljicR, NaylorIet al.: Passive protection with immunoglobulin A antibodies against tuberculous early infection of the lungs.Immunology111(3) , 328–333 (2004).
  • Yankov ID , PetrovDP, MladenovIVet al.: Protective efficacy of IgA monoclonal antibodies to O and H antigens in a mouse model of intranasal challenge with Salmonella enterica serotype enteritidis.Microbes Infect.6(10) , 901–910 (2004).
  • Gorrell RJ , Robins-BrowneRM: Antibody-mediated protection against infection with Helicobacter pylori in a suckling mouse model of passive immunity.Infect. Immun.77(11) , 5116–5129 (2009).
  • Halpern M , KoshlandME: The stoichiometry of J chain in human secretory IgA.J. Immunol.111(6) , 1653–1660 (1973).
  • Crottet P , CorthésyB: Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab´)2: a possible implication for mucosal defense.J. Immunol.161(10) , 5445–5453 (1998).
  • Boullier S , TanguyM, KadaouiKet al.: Secretory IgA-mediated neutralization of Shigella flexneri prevents intestinal tissue destruction by down-regulating inflammatory circuits.J. Immunol.183(9) , 5879–5885 (2009).
  • Wold AE , MesteckyJ, TomanaMet al.: Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin.Infect. Immun.58(9) , 3073–3077 (1990).
  • Mestecky J , RussellMW: Specific antibody activity, glycan heterogeneity and polyreactivity contribute to the protective activity of S-IgA at mucosal surfaces.Immunol. Lett.124(2) , 57–62 (2009).
  • Bos NA , BunJC, PopmaSHet al.: Monoclonal immunoglobulin A derived from peritoneal B cells is encoded by both germ line and somatically mutated VH genes and is reactive with commensal bacteria.Infect. Immun.64(2) , 616–623 (1996).
  • Dunn-Walters D , BoursierL, SpencerJ: Effect of somatic hypermutation on potential N-glycosylation sites in human immunoglobulin heavy chain variable regions.Mol. Immunol.37(3–4) , 107–113 (2000).
  • Schroten H , StapperC, PlogmannR, KöhlerH, HackreJ, HanischFG: Fab-independent antiadhesion effects of secretory immunoglobulin A on S-fimbriated Escherichia coli are mediated by sialyloligosaccharides.Infect. Immun.66(8) , 3971–3973 (1998).
  • Mantis NJ , Farrant,SA, MehtaS: Oligosaccharide side chains on human secretory IgA serve as receptors for ricin.J. Immunol.172(11) , 6838–6845 (2004).
  • Dallas SD , RolfeRD: Binding of Clostridium difficile toxin A to human milk secretory component.J. Med. Microbiol.47(10) , 879–888 (1998).
  • Langley R , WinesB, WilloughbyN, BasuI, ProftT, FraserJD: The staphylococcal superantigen-like protein 7 binds IgA and complement C5 and inhibits IgA-Fc α RI binding and serum killing of bacteria.J. Immunol.174(5) , 2926–2933 (2005).
  • Borén T , FalkP, RothKA, LarsonG, NormarkS: Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens.Science262(5141) , 1892–1895 (1993).
  • Falk P , RothKA, BorénT, WestblomTU, GordonJI, NormarkS: An in vitro adherence assay reveals that Helicobacter pylori exhibits cell lineage-specific tropism in the human gastric epithelium.Proc. Natl Acad. Sci. USA90(5) , 2035–2039 (1993).
  • Hammerschmidt S , TalaySR, BrandtzaegP, ChhatwalGS: SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component.Mol. Microbiol.25(6) , 1113–1124 (1997).
  • Rosenow C , RyanP, WeiserJNet al.: Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae.Mol. Microbiol.25(5) , 819–829 (1997).
  • Lu L , LammME, LiH, CorthésyB, ZhangJR: The human polymeric immunoglobulin receptor binds to Streptococcus pneumoniae via domains 3 and 4.J. Biol. Chem.278(48) , 48178–48187 (2003).
  • Elm C , BraathenR, BergmannSet al.: Ectodomains 3 and 4 of human polymeric immunoglobulin receptor (hpIgR) mediate invasion of Streptococcus pneumoniae into the epithelium.J. Biol. Chem.279(8) , 6296–6304 (2004).
  • Hammerschmidt S , TilligMP, WolffS, VaermanJP, ChhatwalGS: Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif.Mol. Microbiol.36(3) , 726–736 (2000).
  • Luo R , MannB, LewisWSet al.: Solution structure of choline binding protein A, the major adhesin of Streptococcus pneumoniae.EMBO J.24(1) , 34–43 (2005).
  • Zhang JR , MostovKE, LammMEet al.: The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells.Cell102(6) , 827–837 (2000).
  • Brock SC , McGrawPA, WrightPF, CroweJE: The human polymeric immunoglobulin receptor facilitates invasion of epithelial cells by Streptococcus pneumoniae in a strain-specific and cell type-specific manner.Infect. Immun.70(9) , 5091–5095 (2002).
  • Kaetzel CS . Polymeric Ig receptor: defender of the fort or Trojan horse? Curr. Biol.11(1) , R35–R38 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.