242
Views
0
CrossRef citations to date
0
Altmetric
Review

Induction of apoptosis by Shiga toxins

Pages 431-453 | Published online: 08 Mar 2010

Bibliography

  • Sandvig K : Shiga toxins.Toxicon39 , 1629–1635 (2001).
  • Gyles CL : Shiga toxin-producing Escherichia coli: an overview.J. Anim. Sci.85 , E45–E62 (2007).
  • Fraser ME , ChernaiaMM, KozlovYV, JamesMNG: Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 Å resolution.Nat. Struct. Biol.1 , 59–64 (1994).
  • Fraser ME , FujinagaM, CherneyMM et al.: Structure of Shiga toxin type 2 (Stx2) from Escherichia coli O157:H7.J. Biol. Chem.279 , 27511–27517 (2004).
  • Endo Y , TsurugiK, YutsudoT, TakedaY, OgasawaraT, IgarashiK: Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes: RNA N-glycosidase activity of the toxins.Eur. J. Biochem.171 , 45–50 (1988).
  • Correll CC , MunishkinA, Chan Y-L, Ren Z, Wool IG, Steitz TA: Crystal structure of the ribosomal RNA domain necessary for binding elongation factors. Proc. Natl Acad. Sci. USA95 , 13436–13441 (1998).
  • Lingwood CA : Shiga toxin receptor glycolipid binding: pathology and utility. In: Methods in Molecular Medicine Volume 73 E. coli Shiga Toxin Methods and Protocols. Philpott D, Ebel F (Eds). Humana Press Inc., Totowa, NJ, USA, 165–186 (2003).
  • Nyholm P -G, Magnusson G, Zheng Z, Norel R, Binnington-Boyd B, Lingwood CA: Two distinct binding sites for globotriaosyl ceramide on verotoxins: identification by molecular modelling and confirmation using deoxy analogues and a new glycolipid receptor for all verotoxins. Chem. Biol.3 , 263–275 (1996).
  • Bast DJ , BanerjeeL, ClarkC, ReedRJ, BruntonJL: The identification of three biologically relevant globotriaosylceramide receptor binding sites on the verotoxin 1 B subunit.Mol. Microbiol.32 , 953–960 (1999).
  • Allison HE : Stx-phages: drivers and mediators of the evolution of STEC and STEC-like pathogens.Future Microbiol.2 , 155–174 (2007).
  • Wagner PL , WaldorMK: Bacteriophage control of bacterial virulence.Infect. Immun.70 , 3985–3993 (2002).
  • Herold S , KarchH, SchmidtH: Shiga toxin-encoding bacteriophages – genomes in motion.Int. J. Med. Microbiol.294 , 115–121 (2004).
  • Sandvig K , Garred Ø, Prydz K, Kozlov JV, Hansen SH, van Deurs B: Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature358 , 510–511 (1992).
  • Khine AA , TamP, NutikkaA, LingwoodCA: Brefeldin A and filipin distinguish two globotriaosyl ceramide/verotoxin-1 intracellular trafficking pathways involved in Vero cell cytotoxicity.Glycobiology14 , 701–712 (2004).
  • Torgersen ML , LauvrakSU, SandvigK: The A-subunit of surface-bound Shiga toxin stimulates clathrin-dependent uptake of the toxin.FEBS J.272 , 4103–4113 (2005).
  • Römer W , BerlandL, ChambonV et al.: Shiga toxin induces tubular membrane invaginations for its uptake into cells.Nature450 , 670–675 (2007).
  • Pudymaitis A , ArmstrongG, LingwoodCA: Verotoxin-resistant cell clones are deficient in the glycolipid globotriosylceramide: differential basis of phenotype.Archiv. Biochem. Biophys.286 , 448–452 (1991).
  • Schweppe CH , BielaszewskaM, PohlentzG et al.: Glycosphingolipids in vascular endothelial cells: relationship of heterogeneity in Gb3Cer/CD77 receptor expression with differential Shiga toxin 1 cytotoxicity.Glycoconj. J.25 , 291–304 (2008).
  • Stricklett PK , HughesAK, ErgonulZ, KohanDE: Molecular basis for up-regulation by inflammatory cytokines of Shiga toxin 1 cytotoxicity and globotriaosylceramide expression.J. Infect. Dis.186 , 976–982 (2002).
  • Falguiéres T , MallardF, BaronC et al.: Targeting of Shiga toxin B-subunit to retrograde transport route in association with detergent-resistant membranes.Mol. Biol. Cell12 , 2453–2468 (2001).
  • Spilsberg B , LlorenteA, SandvigK: Polyunsaturated fatty acids regulate Shiga toxin transport.Biochem. Biophys. Res. Commun.364 , 283–288 (2007).
  • Müthing J , SchweppeCH, KarchH, FriedrichAW: Shiga toxins, glycosphingolipid diversity and endothelial cell injury.Thromb. Haemost.101 , 252–264 (2009).
  • Katagiri YU , MoriT, NakajimaH et al.: Activation of Src family kinase Yes induced by Shiga toxin binding to globotriaosylceramide (Gb3/CD77) in low density, detergent-insoluble microdomains.J. Biol. Chem.274 , 35278–35282 (1999).
  • Mori T , KiyokawaN, KatagiriYU et al.: Globotriaosyl ceramide (CD77/Gb3) in the glycolipid-enriched membrane domain participates in B-cell receptor-mediated apoptosis by regulating Lyn kinase activity in human B-cells.Exp. Hematol.28 , 1260–1268 (2000).
  • Lauvrak SU , WälchliS, IversenTG et al.: Shiga toxin regulates its entry in a Syk-dependent manner.Mol. Biol. Cell17 , 1096–1109 (2006).
  • Torgersen ML , WälchliS, GrimmerS, SkanlandSS, SandvigK: Protein kinase Cd is activated by Shiga toxin and regulates its transport.J. Biol. Chem.282 , 16317–16328 (2007).
  • Wälchli S , SkanlandSS, GregersTF et al.: The MAP kinase p38 links Shiga toxin dependent signaling and trafficking.Mol. Biol. Cell19 , 95–104 (2008).
  • Haicheur N , BismuthE, BossetS et al.: The B-subunit of Shiga toxin fused to a tumor antigen elicits CTL and targets dendritic cells to allow MHC class I restricted presentation of peptides derived from exogenous antigens.J. Immunol.165 , 3301–3308 (2000).
  • Fuchs E , HaasAK, SpoonerRA, YoshimuraS, LordJM, BarrFA: Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways.J. Cell Biol.177 , 1133–1143 (2007).
  • McKenzie J , JohannesL, TaguchiT, SheffD: Passage through the Golgi is necessary for Shiga toxin B subunit to reach the endoplasmic reticulum.FEBS J.276 , 1581–1595 (2009).
  • Saenz JB , DoggettTA, HaslamDB: Identification and characterization of small molecules that inhibit intracellular toxin transport.Infect. Immun.75 , 4552–4561 (2007).
  • Pavelka M , NeumüllerJ, EllingerA: Retrograde traffic in the biosynthetic-secretory route.Histochem. Cell Biol.129 , 277–288 (2008).
  • Tam PJ , LingwoodCA: Membrane-cytosolic translocation of verotoxin A1 subunit in target cells.Microbiology153 , 2700–2710 (2007).
  • Garred Ø, van Deurs B, Sandvig K: Furin-induced cleavage and activation of Shiga toxin. J. Biol. Chem.270 , 10817–10821 (1995).
  • Garred Ø, Dubinina E, Holm PK et al.: Role of processing and intracellular transport for optimal toxicity of Shiga toxin and toxin mutants. Exp. Cell Res.218 , 39–49 (1995).
  • Lord JM , RobertsLM, LencerWI: Entry of protein toxins into mammalian cells by crossing the endoplasmic reticulum membrane: co-opting basic mechanisms of endoplasmic reticulum-associated degradation.Curr. Topics Microbiol. Immunol.300 , 149–168 (2005).
  • Smith DC , SillenceDJ, FalguièresT et al.: The association of Shiga-like toxin with detergent-resistant membranes is modulated by glucosylceramide and is an essential requirement in the endoplasmic reticulum for a cytotoxic effect.Mol. Biol. Cell17 , 1375–1387 (2006).
  • LaPointe P , WeiX, GariepyJ: A role for the protease sensitive loop region of Shiga-like toxin 1 in the retrotranslocation of its A1 domain from the endoplasmic reticulum lumen.J. Biol. Chem.280 , 23310–23318 (2005).
  • Yu M , HaslamDB: Shiga toxin is transported from the endoplasmic reticulum following interaction with the luminal chaperone HEDJ/ERdj3.Infect. Immun.73 , 2524–2532 (2005).
  • Falguiéres T , JohannesL: Shiga toxin B-subunit binds to the chaperone BiP and the nucleolar protein B23.Biol. Cell98 , 125–134 (2006).
  • Lee S -Y, Lee M-S, Cherla RP, Tesh VL: Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells. Cell. Microbiol.10 , 770–780 (2008).
  • Strockbine NA , JacksonMP, SungLM, HolmesRK, O‘BrienAD: Cloning and sequencing of the genes for Shiga toxin from Shigella dysenteriae type 1.J. Bacteriol.170 , 1116–1122 (1988).
  • Jackson MP , NeillRJ, O‘BrienAD, HolmesRK, NewlandJW: Nucleotide sequence analysis and comparison of the structural genes for Shiga-like toxin I and Shiga-like toxin II encoded by bacteriophages from Escherichia coli 933.FEMS Microbiol. Lett.44 , 109–114 (1987).
  • McCluskey AJ , PoonGMK, Bolewska-PedyczakE et al.: The catalytic subunit of Shiga-like toxin 1 interacts with ribosomal stalk proteins and is inhibited by their conserved C-terminal domain.J. Mol. Biol.378 , 375–386 (2008).
  • Kotloff KL , WinickoffJP, IvanoffB et al.: Global burden of Shigella infections: implications for vaccine development and implementation of control strategies.Bull. WHO77 , 651–666 (1999).
  • Fontaine A , ArondelJ, SansonettiPJ: Role of Shiga toxin in the pathogenesis of bacillary dysentery studied by using a Tox- mutant of Shigella dysenteriae 1.Infect. Immun.56 , 3099–3109 (1988).
  • Schroeder GN , HilbiH: Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion.Clin. Microbiol. Rev.21 , 134–156 (2008).
  • Tesh VL : Foodborne enterohemorrhagic Escherichia coli infections. In: Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions. Beier RC, Pillai SD, Phillips TD, Ziprin RL (Eds). Blackwell Publishing, Ames, IA, USA, 27–42 (2004).
  • Karmali MA , MascarenhasM, ShenS et al.: Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease.J. Clin. Microbiol.41 , 4930–4940 (2003).
  • Mead PS , SlutskerL, DietzV et al.: Food-related illness and death in the United States.Emerg. Infect. Dis.5 , 607–625 (1999).
  • Tarr PI , GordonCA, ChandlerWI: Shiga toxin-producing Escherichia coli and haemolytic uraemic syndrome.Lancet365 , 1073–1086 (2005).
  • Orth D , GrifK, KhanAB, NaimA, DierichMP, WürznerR: The Shiga toxin genotype rather than the amount of Shiga toxin or the cytotoxicity of Shiga toxin in vitro correlates with the appearance of the hemolytic uremic syndrome.Diagn. Microbiol. Infect. Dis.59 , 235–242 (2007).
  • Proulx F , TeshVL: Renal diseases in the pediatric intensive care unit: thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. In: Pediatric Critical Care Medicine: Basic Science and Clinical Evidence. Wheeler DS, Wong HR, Shanley TP (Eds). Springer Verlag, London, UK, 1189–1204 (2007).
  • Scheiring J , AndreoliSP, ZimmerhacklLB: Treatment and outcome of Shiga toxin-associated hemolytic uremic syndrome (HUS).Pediatr. Nephrol.23 , 1749–1760 (2008).
  • Elmore S : Apoptosis: a review of programmed cell death.Toxicol. Pathol.35 , 495–516 (2007).
  • Kroemer G , GaluzziL, BrennerC: Mitochondrial membrane permeabilization in cell death.Physiol. Rev.87 , 99–163 (2007).
  • Szegezdi E , MacDonaldDC, ChonghaileTN, GuptaS, SamaliA: Bcl-2 family on guard at the ER.Am. J. Physiol. Cell Physiol.296 , C941–C953 (2009).
  • Boya P , KroemerG: Lysosomal membrane permeabilization in cell death.Oncogene27 , 6434–6451 (2008).
  • Kyriakis JM , AvruchJ: Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation.Physiol. Rev.81 , 807–869 (2001).
  • Pearson G , RobinsonF, Beers-GibsonT et al.: Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions.Endocr. Rev.22 , 153–183 (2001).
  • Wada T , PenningerJM: Mitogen-activated protein kinases in apoptosis regulation.Oncogene23 , 2838–2849 (2004).
  • Iordanov MS , PribnowD, MagunJL et al.: Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the α-sarcin/ricin loop in the 28S rRNA.Mol. Cell. Biol.17 , 3373–3381 (1997).
  • Smith WE , KaneAV, CampbellST, AchesonDWK, CochranBH, ThorpeCM: Shiga toxin 1 triggers a ribotoxic stress response leading to p38 and JNK activation and induction of apoptosis in intestinal epithelial cells.Infect. Immun.71 , 1497–1504 (2003).
  • Foster GH , TeshVL: Shiga toxin 1-induced activation of c-Jun NH(2)-terminal kinase and p38 in the human monocytic cell line THP-1: possible involvement in the production of TNF-α.J. Leukoc. Biol.71 , 107–114 (2002).
  • Cherla RP , Lee S-Y, Mees PL, Tesh VL: Shiga toxin 1-induced cytokine production is mediated by MAP kinase pathways and translation initiation factor eIF4E in the macrophage-like THP-1 cell line. J. Leukoc. Biol.79 , 397–407 (2006).
  • Allan LA , ClarkePR: Apoptosis and autophagy: regulation of caspase-9 by phosphorylation.FEBS J.276 , 6063–6073 (2009).
  • Deng X , XiaoL, LangW, GaoF, RuvoloP, MayWS: Novel role for JNK as a stress-activated Bcl2 kinase.J. Biol. Chem.276 , 23681–23688 (2001).
  • Mathura VS , SomanKV, VarmaTK, BraunW: A multimeric model for murine anti-apoptotic protein Bcl-2 and structural insights for its regulation by post-translational modification.J. Mol. Model.9 , 298–303 (2003).
  • DeChiara G , MarcocciME, TorciaM et al.: Bcl-2 phosphorylation by p38 MAPK: identification of target sites and biological consequences.J. Biol. Chem.281 , 21353–21361 (2006).
  • Jones NL : Detection of Shiga toxin-mediated programmed cell death and delineation of death signaling pathways. In: Methods in Molecular Medicine Volume 73: E. coli Shiga Toxin Methods and Protocols. Philpott D, Ebel F (Eds), Humana Press Inc., Totowa, NJ, USA, 229–241 (2003).
  • Inward CD , WilliamsJ, ChantI et al.: Verocytotoxin-1 induces apoptosis in Vero cells.J. Infect.30 , 213–218 (1995).
  • Cherla RP , Lee S-Y, Tesh VL: Shiga toxins and apoptosis. FEMS Microbiol. Lett.228 , 159–166 (2003).
  • Schüller S , FrankelG, PhillipsAD: Interaction of Shiga toxin from Escherichia coli with human intestinal epithelial cell lines and explants: Stx2 induces epithelial damage in organ culture.Cell. Microbiol.6 , 289–301 (2004).
  • Schüller S , HeuschkelR, TorrenteF, KaperJB, PhillipsAD: Shiga toxin binding in normal and inflamed human intestinal mucosa.Microbes Infect.9 , 35–39 (2007).
  • Philpott DJ , AckerleyCA, KiliaanAJ, KarmaliMA, PerdueMH, ShermanPM: Translocation of verotoxin-1 across T84 monolayers: mechanism of bacterial toxin penetration of epithelium.Am. J. Physiol. Gastrointest. Liver Physiol.273 , G1349–G1358 (1997).
  • Hurley BP , JacewiczM, ThorpeCM et al.: Shiga toxins 1 and 2 translocate differently across polarized intestinal epithelial cells.Infect. Immun.67 , 6670–6677 (1999).
  • Malyukova I , MurrayKF, ZhuC et al.: Macropinocytosis in Shiga toxin 1 uptake by human intestinal epithelial cells and transcellular transcytosis.Am. J. Physiol. Gastrointest. Liver Physiol.296 , G78–G92 (2009).
  • Takeda T , DohiS, IgarashiT, YamanakaT, YoshiyaK, KobayashiN: Impairment by verotoxin of tubular function contributes to the renal damage seen in haemolytic uraemic syndrome.J. Infect.27 , 339–341 (1993).
  • Jones NL , IslurA, HaqR et al.: Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the Bcl-2 family.Am. J. Physiol. Gastrointest. Liver Physiol.278 , G811–G819 (2000).
  • Wilson C , FosterGH, BitzanMM: Silencing of Bak ameliorates apoptosis of human proximal tubular epithelial cells by Escherichia coli-derived Shiga toxin 2.Infection33 , 362–367 (2005).
  • Ching JCY , JonesNL, CeponisPJM, KarmaliMA, ShermanPM: Escherichia coli Shiga-like toxins induce apoptosis and cleavage of poly(ADP-ribose) polymerase via in vitro activation of caspases.Infect. Immun.70 , 4669–4677 (2002).
  • Suzuki A , DoiH, MatsuzawaF et al.: Bcl-2 antiapoptotic protein mediates verotoxin II-induced cell death: possible association between Bcl-2 and tissue failure by E. coli O157:H7.Genes Dev.14 , 1734–1740 (2000).
  • Fujii J , MatsuiT, HeatherlyDP et al.: Rapid apoptosis induced by Shiga toxin in HeLa cells.Infect. Immun.71 , 2724–2735 (2003).
  • Nakagawa I , NakataM, KawabataS, HamadaS: Regulated expression of the Shiga toxin B gene induces apoptosis in mammalian fibroblastic cells.Mol. Microbiol.33 , 1190–1199 (1999).
  • Jandhyala DM , AhluwallaA, ObrigT, ThorpeCM: ZAK: a MAP3kinase that transduces Shiga toxin- and ricin-induced proinflammatory cytokine expression.Cell. Microbiol.10 , 1468–1477 (2008).
  • Sood A , MathewR, TrachtmanH: Cytoprotective effect of curcumin in human proximal tubule epithelial cells exposed to Shiga toxin.Biochem. Biophys. Res. Commun.283 , 36–41 (2001).
  • Bhattacharjee RN , Park K-S, Uematsu S et al.: Escherichia coli verotoxin 1 mediates apoptosis in human HCT116 colon cancer cells by inducing overexpression of the GADD family of genes and S phase arrest. FEBS Lett.579 , 6604–6610 (2005).
  • Brigotti M , AlfieriR, SestiliP et al.: Damage to nuclear DNA induced by Shiga toxin 1 and ricin in human endothelial cells.FASEB J.16 , 365–372 (2002).
  • Arab S , LingwoodCA: Intracellular targeting of the endoplasmic reticulum/nuclear envelope by retrograde transport may determine cell hypersensitivity to verotoxin via globotriaosyl ceramide fatty acid isoform traffic.J. Cell. Physiol.177 , 646–660 (1998).
  • Fujii J , WoodK, MatsudaF et al.: Shiga toxin 2 causes apoptosis in human brain microvascular endothelial cells via C/EBP homologous protein.Infect. Immun.76 , 3679–3689 (2008).
  • Matussek A , LauberJ, BergauA et al.: Molecular and functional analysis of Shiga toxin-induced response patterns in human vascular endothelial cells.Blood102 , 1323–1332 (2003).
  • Erwert RD , WinnRK, HarlanJM, BannermanDD: Shiga-like toxin inhibition of FLICE-like inhibitory protein expression sensitizes endothelial cells to bacterial lipopolysaccharide-induced apoptosis.J. Biol. Chem.277 , 40567–40574 (2002).
  • Chang DW , XingZ, PanY et al.: c-FLIPL is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis.EMBO J.21 , 3704–3714 (2002).
  • Erwert RD , EitingKT, TupperJC, WinnRK, HarlanJM, BannermanDD: Shiga toxin induces decreased expression of the anti-apoptotic protein Mcl-1 concomitant with the onset of endothelial apoptosis.Microb. Pathog.35 , 87–93 (2003).
  • Molostvov G , MorrisA, RoseP, BasuS: Interaction of cytokines and growth factor in the regulation of verotoxin-induced apoptosis in cultured human endothelial cells.Br. J. Haematol.113 , 891–897 (2001).
  • Hoey DEE , SharpL, CurrieC, LingwoodCA, GallyDL, SmithDGE: Verotoxin 1 binding to intestinal crypt epithelial cells results in localization to lysosomes and abrogation of toxicity.Cell. Microbiol.5 , 85–97 (2003).
  • Kniep B , MonnerDA, SchwuléraU, MühlradtPF: Glycosphingolipids of the globo-series are associated with the monocytic lineage of human myeloid cells.Eur. J. Biochem.149 , 187–191 (1985).
  • Kojio S , Zhang H-M, Ohmura M, Gondaira F, Kobayashi N, Yamamoto T: Caspase-3 activation and apoptosis induction coupled with the retrograde transport of Shiga toxin: inhibition by brefeldin A. FEMS Immunol. Med. Microbiol.29 , 275–281 (2000).
  • Harrison LM , CherlaRP, van den Hoogen C, van Haaften WCE, Lee S-Y, Tesh VL: Comparative evaluation of apoptosis induced by Shiga toxin 1 and/or lipopolysaccharides in human monocytic and macrophage-like cells. Microb. Pathog.38 , 63–76 (2005).
  • Ramegowda B , TeshVL: Differentiation-associated toxin receptor modulation, cytokine production, and sensitivity to Shiga-like toxins in human monocytes and monocytic cell lines.Infect. Immun.64 , 1173–1180 (1996).
  • Lee S -Y, Cherla RP, Caliskan I, Tesh VL: Shiga toxin 1 induces apoptosis in the human myelogenous leukemia cell line THP-1 by a caspase-8-dependent, tumor necrosis factor receptor-independent mechanism. Infect. Immun.73 , 5115–5126 (2005).
  • Babu US , GainesDM, WuY, WestphalCD, PereiraM, RaybourneRB: Use of flow cytometry in an apoptosis assay to determine pH and temperature stability of Shiga-like toxin 1.J. Microbiol. Meth.75 , 167–171 (2008).
  • Lee S -Y, Cherla RP, Tesh VL: Simultaneous induction of apoptotic and survival signaling pathways in macrophage-like THP-1 cells by Shiga toxin 1. Infect. Immun.75 , 1291–1302 (2007).
  • Zhou H -R, Islam Z, Pestka JJ: Induction of competing apoptotic and survival signaling pathways in the macrophage by the ribotoxic trichothecene deoxynivalenol. Toxicol. Sci.87 , 113–122 (2005).
  • Szegezdi E , LogueSE, GormanAM, SamaliA: Mediators of endoplasmic reticulum stress-induced apoptosis.EMBO Rep.7 , 880–885 (2006).
  • Lee M -S, Cherla RP, Leyva-Illades D, Tesh VL: Bcl-2 regulates the onset of Shiga toxin 1-induced apoptosis in THP-1 cells. Infect. Immun.77 , 5233–5244 (2009).
  • Wolfson JJ , MayKL, ThorpeCM, JandhyalaDM, PatonJC, PatonAW: Subtilase cytotoxin activates PERK, IRE1 and ATF6 endoplasmic reticulum stress signaling pathways.Cell. Microbiol.10 , 1775–1766 (2008).
  • Liu J , AkahoshiT, SasahanaT et al.: Inhibition of neutrophil apoptosis by verotoxin 2 derived from Escherichia coli O157:H7.Infect. Immun.67 , 6203–6205 (1999).
  • Flagler MJ , StrasserJE, ChalkCL, WeissAA: Comparative analysis of the abilities of Shiga toxins 1 and 2 to bind to and influence neutrophil apoptosis.Infect. Immun.75 , 760–765 (2007).
  • Greiner TP , MulveyGL, MarcatoP, ArmstrongGD: Differential binding of Shiga toxin 2 to human and murine neutrophils.J. Med. Microbiol.56 , 1423–1430 (2007).
  • Brigotti M , CarnicelliD, RavanelliE et al.: Interactions between Shiga toxins and human polymorphonuclear leukocytes.J. Leukoc. Biol.84 , 1019–1027 (2008).
  • te Loo DMWM , MonnensLAH, van der Velden TJAM et al.: Binding and transfer of verocytotoxin by polymorphonuclear leukocytes in hemolytic uremic syndrome. Blood95 , 3396–3402 (2000).
  • te Loo DMWM , van Hinsbergh VWM, van den Heuvel LPWJ, Monnens LAH: Detection of verocytotoxin bound to circulating polymorphonuclear leukocytes of patients with hemolytic uremic syndrome. J. Am. Soc. Nephrol.12 , 800–806 (2001).
  • Brigotti M , CaprioliA, TozziAE et al.: Shiga toxins present in the gut and in the polymorphonuclear leukocytes circulating in the blood of children with hemolytic-uremic syndrome.J. Clin. Microbiol.44 , 313–317 (2006).
  • Kiyokawa N , MoriT, TaguchiT et al.: Activation of the caspase cascade during Stx1-induced apoptosis in Burkitt‘s lymphoma cells.J. Cell. Biochem.81 , 128–142 (2001).
  • Tétaud C , FalguièresT, CarlierK et al.: Two distinct Gb3/CD77 signaling pathways leading to apoptosis are triggered by anti-Gb3/CD77 mAb and verotoxin-1.J. Biol. Chem.278 , 45200–45208 (2003).
  • Gordon J , ChallaA, LevensJM et al.: CD40 ligand, Bcl-2, and Bcl-xL spare group I Burkitt lymphoma cells from CD77-directed killing via verotoxin-1 B chain but fail to protect against the holotoxin.Cell Death Diff.7 , 785–794 (2000).
  • Fujii J , KinoshitaY, KitaT et al.: Magnetic resonance imaging and histopathological study of brain lesions in rabbits given intravenous verotoxin 2.Infect. Immun.64 , 5053–5060 (1996).
  • Fujii J , KitaT, YoshidaS et al.: Direct evidence of neuron impairment by oral infection with verotoxin-producing Escherichia coli O157:H- in mitomycin-treated mice.Infect. Immun.62 , 3447–3453 (1994).
  • Mizuguchi M , TanakaS, FujiiI et al.: Neuronal and vascular pathology produced by verocytotoxin-2 in the rabbit central nervous system.Acta Neuropathol.91 , 254–262 (1996).
  • Takahashi K , FunataN, IkutaF, SatoS: Neuronal apoptosis and inflammatory responses in the central nervous system of a rabbit treated with Shiga toxin-2.BMC J. Neuroinflamm.5 , 11 (2008).
  • Lee DY , ParkKW, JinBK: Thrombin induces neurodegeneration and microglial activation in the cortex in vivo and in vitro: proteolytic and non-proteolytic actions.Biochem. Biophys. Res. Commun.346 , 727–738 (2006).
  • Ren J , UtsunomiyaI, TaguchiK et al.: Localization of verotoxin receptors in nervous system.Brain Res.825 , 183–188 (1999).
  • Okuda T , TokudaN, NumataS et al.: Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins.J. Biol. Chem.281 , 10230–10235 (2006).
  • Obata F , TohyamaK, BonevAD et al.: Shiga toxin 2 affects the central nervous system through receptor globotriaosylceramide localized to neurons.J. Infect. Dis.198 , 1398–1406 (2008).
  • Karpman D , HåkanssonA, Perez M-TR et al.: Apoptosis of renal cortical cells in the hemolytic-uremic syndrome: in vivo and in vitro studies. Infect. Immun.66 , 636–644 (1998).
  • te Loo DMWM , MonnensLAH, van den Heuvel LPWJ, Gubler MC, Kockx MM: Detection of apoptosis in kidney biopsies of patients with D+ hemolytic uremic syndrome. Pediatr. Res.49 , 413–416 (2001).
  • Fernandez GC , GomezSA, RamosMV et al.: The functional state of neutrophils correlates with the severity of renal dysfunction in children with hemolytic uremic syndrome.Pediatr. Res.61 , 123–127 (2007).
  • Johansson D , KosovacE, MoharerJ et al.: Expression of verotoxin-1 receptor Gb3 in breast cancer tissue and verotoxin-1 signal transduction to apoptosis.BMC Cancer9 , 67 (2009).
  • Salhia B , RutkaJT, LingwoodC, NutikkaA, van Furth WR: The treatment of malignant meningioma with verotoxin. Neoplasia4 , 304–311 (2002).
  • Viels T , DransartE, NematiF et al.: In vivo tumor targeting by the B-subunit of Shiga toxin.Mol. Imaging7 , 239–247 (2008).
  • Chandra D , ChoyG, DengX, BhatiaB, DanielP, TangDG: Association of active caspase 8 with the mitochondrial membrane during apoptosis: potential roles in cleaving BAP31 and caspase 3 and mediating mitochondrion-endoplasmic reticulum cross talk in etoposide-induced cell death.Mol. Cell. Biol.24 , 6592–6607 (2004).
  • Breckinridge DG , StojanovicM, MarcellusRC, ShoreGC: Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol.J. Cell Biol.160 , 1115–1127 (2003).
  • Fulda S : Caspase-8 in cancer biology and therapy.Cancer Lett.281 , 128–133 (2009).
  • Alcivar A , HuS, TangJ, YangX: DEDD and DEDD2 associate with caspase-8/10 and signal cell death.Oncogene22 , 291–297 (2003).
  • Schulze S , TchikovV, Schneider-BrachertW: Regulation of TNFR1 and CD95 signalling by receptor compartmentalization.Nat. Rev. Mol. Cell Biol.9 , 655–662 (2008).
  • Valmiki MG , RamosJW: Death effector domain-containing proteins.Cell. Mol. Life Sci.66 , 814–830 (2009).
  • von Haefen C , WiederT, EssmannF, Schulze-OsthoffK, DörkenB, DanielPT: Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8 driven mitochondrial amplification loop.Oncogene22 , 2236–2247 (2003).
  • Donepudi M , MacSweeneyA, BriandC, GrütterMG: Insights into the regulatory mechanism for caspase 8 activation.Mol. Cell11 , 543–549 (2003).
  • Melton-Celsa AR , O‘BrienAD: Structure, biology and relative toxicity of Shiga toxin family members for cells and animals. In: Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains. Kaper JB, O‘Brien AD (Eds). ASM Press, Washington, DC, USA, 121–128 (1998).
  • Zhang W , BielaszewskaM, KucziusT, KarchH: Identification, characterization and distribution of a Shiga toxin 1 gene variant (stx1c) in Escherichia coli strains isolated from humans.J. Clin. Microbiol.40 , 1441–1446 (2002).
  • Bürk C , DietrichR, AçarG, MoravekM, BülteM, MärtlbauerE: Identification and characterization of a new variant of Shiga toxin 1 in Escherichia coli ONT:H19 of bovine origin.J. Clin. Microbiol.41 , 2106–2112 (2003).
  • Jelacic JK , DamrowT, ChenGS et al.: Shiga toxin-producing Escherichia coli in Montana: bacterial genotypes and clinical profiles.J. Infect. Dis.188 , 719–729 (2003).
  • Melton-Celsa AR , Kokai-KunJF, O‘BrienAD: Activation of Shiga toxin type 2d (Stx2d) by elastase involves cleavage of the C-terminal two amino acids of the A2 peptide in the context of the appropriate B pentamer.Mol. Microbiol.43 , 207–215 (2002).
  • Schmidt H , ScheefJ, MorabitoS, CaprioliA, WielerLH, KarchH: A new Shiga toxin 2 variant (Stx2f) from Escherichia coli isolated from pigeons.Appl. Environ. Microbiol.66 , 1205–1208 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.