218
Views
0
CrossRef citations to date
0
Altmetric
Review

Mechanisms of Antifungal Drug Resistance in Candida Dubliniensis

, , &
Pages 935-949 | Published online: 03 Jun 2010

Bibliography

  • Coleman DC , BennettDE, SullivanDJ et al.: Oral Candida in HIV infection and AIDS: new perspectives/new approaches.Crit. Rev. Microbiol.19(2) , 61–82 (1993).
  • Sullivan DJ , HenmanMC, MoranGP et al.: Molecular genetic approaches to identification, epidemiology and taxonomy of non-albicans Candida species.J. Med. Microbiol.44(6) , 399–408 (1996).
  • Kibbler CC , SeatonS, BarnesRA et al.: Management and outcome of bloodstream infections due to Candida species in England and Wales.J. Hosp. Infect.54(1) , 18–24 (2003).
  • Chakrabarti A , ChatterjeeSS, RaoKL et al.: Recent experience with fungaemia: change in species distribution and azole resistance.Scand. J. Infect. Dis.41(4) , 275–284 (2009).
  • Lass-Flörl C : The changing face of epidemiology of invasive fungal disease in Europe.Mycoses52(3) , 197–205 (2009).
  • Sullivan DJ , WesternengTJ, HaynesKA, BennettDE, ColemanDC: Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals.Microbiology141(7) , 1507–1521 (1995).
  • Coleman DC , SullivanDJ, BennettDE, MoranGP, BarryHJ, ShanleyDB: Candidiasis: the emergence of a novel species, Candida dubliniensis.AIDS11(5) , 557–567 (1997).
  • Sullivan D , HaynesK, BilleJ et al.: Widespread geographic distribution of oral Candida dubliniensis strains in human immunodeficiency virus-infected individuals.J. Clin. Microbiol.35(4) , 960–964 (1997).
  • Coleman D , SullivanD, HarringtonB et al.: Molecular and phenotypic analysis of Candida dubliniensis: a recently identified species linked with oral candidosis in HIV-infected and AIDS patients.Oral Dis.2(S1) , S96–S101 (1997).
  • Sullivan D , ColemanD: Candida dubliniensis: characteristics and identification.J. Clin. Microbiol.36(2) , 329–334 (1998).
  • Sullivan DJ , MoranG, DonnellyS et al.: Candida dubliniensis: an update.Rev. Iberoam. Micol.16(2) , 72–76 (1999).
  • Polacheck I , StrahilevitzJ, SullivanD, DonnellyS, SalkinIF, ColemanDC: Recovery of Candida dubliniensis from non-human immunodeficiency virus-infected patients in Israel.J. Clin. Microbiol.38(1) , 170–174 (2000).
  • Pontón J , RüchelR, ClemonsKV et al.: Emerging pathogens.Med. Mycol.38(S1) , 225–236 (2000).
  • Willis AM , CoulterWA, SullivanDJ et al.: Isolation of C. dubliniensis from insulin-using diabetes mellitus patients.J. Oral Pathol. Med.29(2) , 86–90 (2000).
  • Milan EP , de Laet Sant‘ Ana P, de Azevedo Melo AS et al.: Multicenter prospective surveillance of oral Candida dubliniensis among adult Brazilian human immunodeficiency virus-positive and AIDS patients. Diagn. Microbiol. Infect. Dis.41(1–2) , 29–35 (2001).
  • Moragues MD , OmaetxebarriaMJ, ElguezabalN et al.: Serological differentiation of experimentally induced Candida dubliniensis and Candida albicans infections.J. Clin. Microbiol.39(8) , 2999–3001 (2001).
  • Boyle BM , SullivanDJ, ForkinC, MulcahyF, KeaneCT, ColemanDC: Candida dubliniensis candidaemia in an HIV-positive patient in Ireland.Int. J. STD AIDS13(1) , 55–57 (2002).
  • Martinez M , López-RibotJL, KirkpatrickWR, CocoBJ, BachmannSP, PattersonTF: Replacement of Candida albicans with C. dubliniensis in human immunodeficiency virus-infected patients with oropharyngeal candidiasis treated with fluconazole.J. Clin. Microbiol.40(9) , 3135–3139 (2002).
  • Gee SF , JolyS, SollDR et al.: Identification of four distinct genotypes of Candida dubliniensis and detection of microevolution in vitro and in vivo.J. Clin. Microbiol.40(2) , 556–574 (2002).
  • Bagg J , SweeneyMP, LewisMA et al.: High prevalence of non-albicans yeasts and detection of anti-fungal resistance in the oral flora of patients with advanced cancer.Palliat. Med.17(6) , 477–481 (2003).
  • Fotedar R , Al-HedaithySS: Candida dubliniensis at a university hospital in Saudi Arabia.J. Clin. Microbiol.41(5) , 1907–1911 (2003).
  • Montour L , TeyR, XuJ: Isolation of Candida dubliniensis in an aboriginal community in Ontario, Canada.J. Clin. Microbiol.41(7) , 3423–3426 (2003).
  • Silva V , CabreraM, DíazMC, AbarcaC, HermosillaG: Prevalence of Candida albicans serotypes in blood isolates in Chile, and first report of Candida dubliniensis candidemia.Rev. Iberoam. Micol.20(2) , 46–51 (2003).
  • Yang CW , BarkhamTM, ChanFY, WangY: Prevalence of Candida species, including Candida dubliniensis, in Singapore.J. Clin. Microbiol.41(1) , 472–474 (2003).
  • Sullivan DJ , MoranGP, PinjonE et al.: Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans.FEMS Yeast Res.4(4–5) , 369–376 (2004).
  • Binolfi A , BiasoliMS, LuqueAG, ToselloME, MagaróHM: High prevalence of oral colonization by Candida dubliniensis in HIV-positive patients in Argentina.Med. Mycol.43(5) , 431–437 (2005).
  • Carr MJ , ClarkeS, O‘ConnellF, SullivanDJ, ColemanDC, O‘ConnellB: First reported case of endocarditis caused by Candida dubliniensis.J. Clin. Microbiol.43(6) , 3023–3026 (2005).
  • Chan-Tack KM : Fatal Candida dubliniensis septicemia in a patient with AIDS.Clin. Infect. Dis.40(8) , 1209–1210 (2005).
  • Jabra-Rizk MA , JohnsonJK, ForrestG, MankesK, MeillerTF, VeneziaRA: Prevalence of Candida dubliniensis fungemia at a large teaching hospital.Clin. Infect. Dis.41(7) , 1064–1067 (2005).
  • Melkusovà S , LisalovàM, PavlìkP, BujdàkovàH: The first clinical isolates of Candida dubliniensis in Slovakia.Mycopathologia159(3) , 369–371(2005).
  • Mubareka S , VinhDC, SancheSE: Candida dubliniensis bloodstream infection: a fatal case in a lung transplant recipient.Transpl. Infect. Dis.7(3–4) , 146–149 (2005).
  • Sullivan DJ , MoranGP, ColemanDC: Candida dubliniensis: ten years on.FEMS Microbiol. Lett.253(1) , 9–17 (2005).
  • Tay ST , ChaiHC, NaSL, NgKP: Molecular subtyping of clinical isolates of Candida albicans and identification of Candida dubliniensis in Malaysia.Mycopathologia159(3) , 325–329 (2005).
  • Brito Gamboa A , MendozaM, FernándezA, DíazE: Detection of Candida dubliniensis in patients with candidiasis in Caracas, Venezuela.Rev. Iberoam. Micol.23(2) , 81–84 (2006).
  • Tekeli A , AkanOA, KoyuncuE, DolapciI, UysalS: Initial Candida dubliniensis isolate in Candida spp. positive haemocultures in Turkey between 2001 and 2004.Mycoses49(1) , 60–64 (2006).
  • Erköse G , ErturanZ: Oral Candida colonization of human immunodeficiency virus infected subjects in Turkey and its relation with viral load and CD4+ T-lymphocyte count.Mycoses50(6) , 485–490 (2007).
  • Jewtuchowicz VM , MujicaMT, BruscaMI et al.: Phenotypic and genotypic identification of Candida dubliniensis from subgingival sites in immunocompetent subjects in Argentina.Oral Microbiol. Immunol.23(6) , 505–509 (2008).
  • McManus BA , ColemanDC, MoranG et al.: Multilocus sequence typing reveals that the population structure of Candida dubliniensis is significantly less divergent than that of Candida albicans.J. Clin. Microbiol.46(2) , 652–664 (2008).
  • Alvarez MI , SuárezBL, CaicedoLD: Isolation of Candida dubliniensis for the first time in Cali, Colombia, and its identification with phenotyping methods.Mycopathologia167(1) , 19–24 (2009).
  • Chunchanur SK , NadgirSD, HaleshLH, PatilBS, KausarY, ChandrasekharMR: Detection and antifungal susceptibility testing of oral Candida dubliniensis from human immunodeficiency virus-infected patients.Indian J. Pathol. Microbiol.52(4) , 501–504 (2009).
  • de Araújo Navas EA , InocêncioAC, AlmeidaJD et al.: Oral distribution of Candida species and presence of oral lesions in Brazilian leprosy patients under multidrug therapy.J. Oral Pathol. Med.38(10) , 764–767 (2009).
  • Gasparoto TH , DionísioTJ, de Oliveira CE et al.: Isolation of Candida dubliniensis from denture wearers. J. Med. Microbiol.58(7) , 959–962 (2009).
  • Khlif M , SellamiH, SellamiA et al.: Candida dubliniensis: first identification in Sfax Hospital, Tunisia.Mycoses52(2) , 171–175 (2009).
  • Song X , SunJ, St⊘reG, HansenBF, OlsenI: Colony morphologies, species, and biotypes of yeasts from thrush and denture stomatitis.Acta Odontol. Scand.28 , 1–8 (2009).
  • Donnelly SM , SullivanDJ, ShanleyDB, ColemanDC: Phylogenetic analysis and rapid identification of Candida dubliniensis based on analysis of ACT1 intron and exon sequences.Microbiology145(8) , 1871–1882 (1999).
  • Gilfillan GD , SullivanDJ, HaynesK, ParkinsonT, ColemanDC, GowNA: Candida dubliniensis: phylogeny and putative virulence factors.Microbiology144(4) , 829–838 (1998).
  • Pinjon E , SullivanD, SalkinI, ShanleyD, ColemanD: Simple, inexpensive, reliable method for differentiation of Candida dubliniensis from Candida albicans.J. Clin. Microbiol.36(7) , 2093–2095 (1998).
  • Pincus DH , ColemanDC, PruittWR et al.: Rapid identification of Candida dubliniensis with commercial yeast identification systems.J. Clin. Microbiol.37(11) , 3533–3539 (1999).
  • Al Mosaid A , SullivanD, SalkinIF, ShanleyD, ColemanDC: Differentiation of Candida dubliniensis from Candida albicans on staib agar and caffeic acid–ferric citrate agar.J. Clin. Microbiol.39(1) , 323–327 (2001).
  • Mahmoudabadi AZ , RadcliffeCE, ColemanDC, DruckerDB: Comparison of Candida dubliniensis and C. albicans based on polar lipid composition.J. Appl. Microbiol.93(5) , 894–899 (2002).
  • Al Mosaid A , SullivanDJ, ColemanDC: Differentiation of Candida dubliniensis from Candida albicans on Pal‘s agar.J. Clin. Microbiol.41(10) , 4787–4789 (2003).
  • Moran G , StokesC, ThewesS, HubeB, ColemanDC, SullivanD: Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis.Microbiology150(10) , 3363–3382 (2004).
  • Jackson AP , GambleJA, YeomansT et al.: Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans.Genome Res.19(12) , 2231–2244 (2009).
  • Stokes C , MoranGP, SpieringMJ, ColeGT, ColemanDC, SullivanDJ: Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans.Fungal Genet. Biol.44(9) , 920–931 (2007).
  • Moran GP , MacCallumDM, SpieringMJ, ColemanDC, SullivanDJ: Differential regulation of the transcriptional repressor NRG1 accounts for altered host–cell interactions in Candida albicans and Candida dubliniensis.Mol. Microbiol.66(4) , 915–929 (2007).
  • Enjalbert B , MoranGP, VaughanC et al.: Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress.Mol. Microbiol.72(1) , 216–228 (2009).
  • Spiering MJ , MoranGP, ChauvelM et al.: Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model.Eukaryot. Cell9(2) , 251–265 (2010).
  • Hazen KC : New and emerging yeast pathogens.Clin. Microbiol. Rev.8(4) , 462–478 (1995).
  • Rex JH , RinaldiMG, PfallerMA: Resistance of Candida species to fluconazole.Antimicrob. Agents Chemother.39(1) , 1–8 (1995).
  • Klepser ME , ErnstEJ, PfallerMA: Update on antifungal resistance.Trends Microbiol. (9) , 372–375 (1997).
  • White TC : Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus.Antimicrob. Agents Chemother.41(7) , 1482–1487 (1997).
  • White TC , PfallerMA, RinaldiMG, SmithJ, ReddingSW: Stable azole drug resistance associated with a substrain of Candida albicans from an HIV-infected patient.Oral Dis.3(Suppl. 1) , 102–109 (1997).
  • Müller FM , WeigM, PeterJ, WalshTJ: Azole cross-resistance to ketoconazole, fluconazole, itraconazole and voriconazole in clinical Candida albicans isolates from HIV-infected children with oropharyngeal candidosis.J. Antimicrob. Chemother.46(2) , 338–340 (2000).
  • St-Germain G , LaverdièreM, PelletierR et al.: Prevalence and antifungal susceptibility of 442 Candida isolates from blood and other normally sterile sites: results of a 2-year (1996 to 1998) multicenter surveillance study in Quebec, Canada.J. Clin. Microbiol.39(3) , 949–953 (2001).
  • Vazquez JA , PengG, SobelJD et al.: Evolution of antifungal susceptibility among Candida species isolates recovered from human immunodeficiency virus-infected women receiving fluconazole prophylaxis.Clin. Infect. Dis.33(7) , 1069–1075 (2001).
  • Martínez M , López-RibotJL, KirkpatrickWR et al.: Heterogeneous mechanisms of azole resistance in Candida albicans clinical isolates from an HIV-infected patient on continuous fluconazole therapy for oropharyngeal candidosis.J. Antimicrob. Chemother.49(3) , 515–524 (2002).
  • Morschhäuser J : The genetic basis of fluconazole resistance development in Candida albicans.Biochim. Biophys. Acta1587(2–3) , 240–248 (2002).
  • Pfaller MA , MesserSA, Boyken et al.: In vitro activities of voriconazole, posaconazole, and fluconazole against 4,169 clinical isolates of Candida spp. and Cryptococcus neoformans collected during 2001 and 2002 in the ARTEMIS global antifungal surveillance program. Diagn. Microbiol. Infect. Dis.48(3) , 201–205 (2004).
  • Sanglard D , IscherF, CalabreseD, MajcherczykPA, BilleJ: The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents.Antimicrob. Agents Chemother.43(11) , 2753–2765 (1999).
  • Hachem R , HannaH, KontoyiannisD, JiangY, RaadI: The changing epidemiology of invasive candidiasis: Candida glabrata and Candida krusei as the leading causes of candidemia in hematologic malignancy.Cancer112(11) , 2493–2499 (2008).
  • Pfaller MA , DiekemaDJ, GibbsDL et al.: Candida krusei, a multidrug-resistant opportunistic fungal pathogen: geographic and temporal trends from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005.J. Clin. Microbiol.46(2) , 515–521 (2008).
  • Pfaller MA , MesserSA, HollisRJ: Strain delineation and antifungal susceptibilities of epidemiologically related and unrelated isolates of Candida lusitaniae.Diagn. Microbiol. Infect. Dis.20(3) , 127–133 (1994).
  • Minari A , HachemR, RaadI: Candida lusitaniae: a cause of breakthrough fungemia in cancer patients.Clin. Infect. Dis.32(2) , 186–190 (2001).
  • Hawkins JL , BaddourLM: Candida lusitaniae infections in the era of fluconazole availability.Clin. Infect. Dis.36(2) , E14–E18 (2003).
  • Chapeland-Leclerc F , BouchouxJ, GoumarA, ChastinC, VillardJ, NoëlT: Inactivation of the FCY2 gene encoding purine–cytosine permease promotes cross-resistance to flucytosine and fluconazole in Candida lusitaniae.Antimicrob. Agents Chemother.49(8) , 3101–3108 (2005).
  • Florent M , NoëlT, Ruprich-RobertG et al.: Nonsense and missense mutations in FCY2 and FCY1 genes are responsible for flucytosine resistance and flucytosine-fluconazole cross-resistance in clinical isolates of Candida lusitaniae.Antimicrob. Agents Chemother.53(7) , 2982–2990 (2009).
  • Joly S , PujolC, RyszM, VargasK, SollDR: Development and characterization of complex DNA fingerprinting probes for the infectious yeast Candida dubliniensis.J. Clin. Microbiol.37(4) , 1035–1044 (1999).
  • Al Mosaid A , SullivanDJ, PolacheckI et al.: Novel 5-flucytosine-resistant clade of Candida dubliniensis from Saudi Arabia and Egypt identified by Cd25 fingerprinting.J. Clin. Microbiol.43(8) , 4026–4036 (2005).
  • Odds FC , BougnouxME, ShawDJ et al.: Molecular phylogenetics of Candida albicans.Eukaryot. Cell6(6) , 1041–1052 (2007).
  • Tassel D , MadoffMA: Treatment of Candida sepsis and Cryptococcus meningitis with 5-fluorocytosine. A new antifungal agent.JAMA206(4) , 830–832 (1968).
  • Stiller RL , BennettJE, ScholerHJ, WallM, PolakA, StevensDA: Correlation of in vitro susceptibility test results with in vivo response: flucytosine therapy in a systemic candidiasis model.J. Infect. Dis.147(6) , 1070–1077 (1983).
  • Vermes A , GuchelaarHJ, DankertJ: Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions.J. Antimicrob. Chemother.46(2) , 171–179 (2000).
  • McManus BA , MoranGP, HigginsJA, SullivanDJ, ColemanDC: A Ser29Leu substitution in the cytosine deaminase Fca1p is responsible for clade-specific flucytosine resistance in Candida dubliniensis.Antimicrob. Agents Chemother.53(11) , 4678–4685 (2009).
  • Ahmad S , KhanZ, MokaddasE, KhanZU: Isolation and molecular identification of Candida dubliniensis from non-human immunodeficiency virus-infected patients in Kuwait.J. Med. Microbiol.53(7) , 633–637 (2004).
  • Pfaller MA , MesserSA, BoykenL, HuynhH, HollisRJ, DiekemaDJ: In vitro activities of 5-fluorocytosine against 8,803 clinical isolates of Candida spp.: global assessment of primary resistance using National Committee for Clinical Laboratory Standards susceptibility testing methods.Antimicrob. Agents Chemother.46(11) , 3518–3521 (2002).
  • Quindós G , RuesgaMT, Martín-MazuelosE et al.: In-vitro activity of 5-fluorocytosine against 1,021 Spanish clinical isolates of Candida and other medically important yeasts.Rev. Iberoam. Micol.21(2) , 63–69 (2004).
  • Dodgson AR , DodgsonKJ, PujolC, PfallerMA, SollDR: Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candida albicans.Antimicrob. Agents Chemother.48(6) , 2223–2227 (2004).
  • Hope WW , TaberneroL, DenningDW, AndersonMJ: Molecular mechanisms of primary resistance to flucytosine in Candida albicans.Antimicrob. Agents Chemother.48(11) , 4377–4386 (2004).
  • Moran GP , SullivanDJ, HenmanMC et al.: Antifungal drug susceptibilities of oral Candida dubliniensis isolates from human immunodeficiency virus (HIV)-infected and non-HIV-infected subjects and generation of stable fluconazole-resistant derivatives in vitro.Antimicrob. Agents Chemother.41(3) , 617–623 (1997).
  • Pfaller MA , MesserSA, GeeS et al.: In vitro susceptibilities of Candida dubliniensis isolates tested against the new triazole and echinocandin antifungal agents.J. Clin. Microbiol.37(3) , 870–872 (1999).
  • Chen SC , MarriottD, PlayfordEG et al.: Candidaemia with uncommon Candida species: predisposing factors, outcome, antifungal susceptibility, and implications for management.Clin. Microbiol. Infect.15(7) , 662–669 (2009).
  • Giammanco GM , PecorellaS, DistefanoS, PecoraroV, MiliciME, PizzoG: Fluconazole susceptibility of Italian Candida dubliniensis clinical isolates determined by reference and simplified tests.New Microbiol.24(4) , 397–404 (2001).
  • Luque AG , BiasoliMS, ToselloME, BinolfiA, LupoS, MagaróHM: Oral yeast carriage in HIV-infected and non-infected populations in Rosario, Argentina.Mycoses52(1) , 53–59 (2009).
  • Salgado-Parreño FJ , Alcoba-FlórezJ, AriasA: In vitro activities of voriconazole and five licensed antifungal agents against Candida dubliniensis: comparison of CLSI M27-A2, Sensititre YeastOne, disk diffusion, and Etest methods.Microb. Drug Resist.12(4) , 246–251 (2006).
  • Moran GP , SanglardD, DonnellySM, ShanleyDB, SullivanDJ, ColemanDC: Identification and expression of multidrug transporters responsible for fluconazole resistance in Candida dubliniensis.Antimicrob. Agents Chemother.42(7) , 1819–1830 (1998).
  • Quindós G , Carrillo-MuñozAJ, ArévaloMP et al.: In vitro susceptibility of Candida dubliniensis to current and new antifungal agents.Chemotherapy46(6) , 395–401 (2000).
  • Ruhnke M , Schmidt-WesthausenA, MorschhäuserJ: Development of simultaneous resistance to fluconazole in Candida albicans and Candida dubliniensis in a patient with AIDS.J. Antimicrob. Chemother.46(2) , 291–295 (2000).
  • Kantarcioglu AS , YücelA: The presence of fluconazole-resistant Candida dubliniensis strains among Candida albicans isolates from immunocompromised or otherwise debilitated HIV-negative Turkish patients.Rev. Iberoam. Micol.19(1) , 44–48 (2002).
  • Jewtuchowicz VM , MujicaMT, BruscaMI et al.: Phenotypic and genotypic identification of Candida dubliniensis from subgingival sites in immunocompetent subjects in Argentina.Oral Microbiol. Immunol.23(6) , 505–509 (2008).
  • Chunchanur SK , NadgirSD, HaleshLH, PatilBS, KausarY, ChandrasekharMR: Detection and antifungal susceptibility testing of oral Candida dubliniensis from human immunodeficiency virus-infected patients.Indian J. Pathol. Microbiol.52(4) , 501–504 (2009).
  • Sanglard D , KuchlerK, IscherF, PaganiJL, MonodM, BilleJ: Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters.Antimicrob. Agents Chemother.39(11) , 2378–2386 (1995).
  • Sanglard D , IscherF, MonodM, BilleJ: Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors.Antimicrob. Agents Chemother.40(10) , 2300–2305 (1996).
  • Sanglard D , IscherF, MonodM, BilleJ: Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene.Microbiology143(2) , 405–416 (1997).
  • Wirsching S , MoranGP, SullivanDJ, ColemanDC, MorschhäuserJ: MDR1-mediated drug resistance in Candida dubliniensis.Antimicrob. Agents Chemother.45(12) , 3416–3421 (2001).
  • Moran G , SullivanD, MorschhäuserJ, ColemanD: The Candida dubliniensis CdCDR1 gene is not essential for fluconazole resistance.Antimicrob. Agents Chemother.46(9) , 2829–2841 (2002).
  • Pinjon E , JacksonCJ, KellySL et al.: Reduced azole susceptibility in genotype 3 Candida dubliniensis isolates associated with increased CdCDR1 and CdCDR2 expression.Antimicrob. Agents Chemother.49(4) , 1312–1318 (2005).
  • Franz R , KellySL, LambDC, KellyDE, RuhnkeM, MorschhäuserJ: Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains.Antimicrob. Agents Chemother.42(12) , 3065–3072 (1998).
  • McManus BA , SullivanDJ, MoranGP et al.: Genetic differences between avian and human isolates of Candida dubliniensis.Emerg. Infect. Dis.15(9) , 1467–1470 (2009).
  • Selmecki A , ForcheA, BermanJ: Aneuploidy and isochromosome formation in drug-resistant Candida albicans.Science313(5785) , 367–370 (2006).
  • Coste A , SelmeckiA, ForcheA et al.: Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates.Eukaryot. Cell6(10) , 1889–1904 (2007).
  • Joly S , PujolC, SollDR: Microevolutionary changes and chromosomal translocations are more frequent at RPS loci in Candida dubliniensis than in Candida albicans.Infect. Genet. Evol.2(1) , 19–37 (2002).
  • Perea S , López-RibotJL, WickesBL et al.: Molecular mechanisms of fluconazole resistance in Candida dubliniensis isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis.Antimicrob. Agents Chemother.46(6) , 1695–1703 (2002).
  • Sanglard D , IscherF, KoymansL, BilleJ: Amino acid substitutions in the cytochrome P-450 lanosterol 14a-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents.Antimicrob. Agents Chemother.42(2) , 241–253 (1998).
  • Perea S , López-RibotJL, KirkpatrickWR et al.: Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients.Antimicrob. Agents Chemother.45(10) , 2676–2684 (2001).
  • Morschhäuser J , BarkerKS, LiuTT, BlaB-WarmuthJ, HomayouniR, RogersPD: The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans.PLoS Pathog.3(11) , e164 (2007).
  • Dunkel N , BlassJ, RogersPD, MorschhäuserJ: Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains.Mol. Microbiol.69(4) , 827–840 (2008).
  • Schubert S , RogersPD, MorschhäuserJ: Gain-of-function mutations in the transcription factor MRR1 are responsible for overexpression of the MDR1 efflux pump in fluconazole-resistant Candida dubliniensis strains.Antimicrob. Agents Chemother.52(12) , 4274–4280 (2008).
  • Fleischhacker M , PaslighJ, MoranG, RuhnkeM: Longitudinal genotyping of Candida dubliniensis isolates reveals strain maintenance, microevolution and the emergence of itraconazole resistance.J. Clin. Microbiol. (2010) (Epub ahead of print).
  • Pinjon E , MoranGP, JacksonCJ et al.: Molecular mechanisms of itraconazole resistance in Candida dubliniensis.Antimicrob. Agents Chemother.47(8) , 2424–2437 (2003).
  • Sanglard D , CosteA, FerrariS: Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation.FEMS Yeast Res.9(7) , 1029–1050 (2009).
  • Morschhäuser J : Regulation of multidrug resistance in pathogenic fungi.Fungal Genet. Biol.47(2) , 94–106 (2010).
  • Melkusová S , BujdákováH, VollekováA, MyokenY, MikamiY: The efficiency of the benzothiazole APB, the echinocandin micafungin, and amphotericin B in fluconazole-resistant Candida albicans and Candida dubliniensis.Pharmazie59(7) , 573–574 (2004).
  • Pfaller MA , DiekemaDJ, MesserSA, BoykenL, HollisRJ, JonesRN: In vitro susceptibilities of rare Candida bloodstream isolates to ravuconazole and three comparative antifungal agents.Diagn. Microbiol. Infect. Dis.48(2) , 101–105 (2004).
  • Quindós G , Villar-VidalM, ErasoE: Activity of micafungin against Candida biofilms.Rev. Iberoam. Micol.26(1) , 49–55 (2009).
  • Szabo Z , BorbelyA, KardosG et al.: In vitro efficacy of amphotericin B, 5-fluorocytosine, fluconazole, voriconazole and posaconazole against Candida dubliniensis isolates using time-kill methodology.Mycoses (2010) (In Press).
  • Desnos-Ollivier M , BretagneS, RaouxD, HoinardD, DromerF, Dannaoui E; European Committee on Antibiotic Susceptibility Testing: Mutations in the fks1 gene in Candida albicans, C. tropicalis, and C. krusei correlate with elevated caspofungin MICs uncovered in AM3 medium using the method of the European Committee on Antibiotic Susceptibility Testing. Antimicrob. Agents Chemother.52(9) , 3092–3098 (2008).
  • Wiederhold NP , GrabinskiJL, Garcia-EffronG, PerlinDS, LeeSA: Pyrosequencing to detect mutations in FKS1 that confer reduced echinocandin susceptibility in Candida albicans.Antimicrob. Agents Chemother.52(11) , 4145–4148 (2008).
  • Garcia-Effron G , LeeS, ParkS, ClearyJD, PerlinDS: Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-β-D-glucan synthase: implication for the existing susceptibility breakpoint.Antimicrob. Agents Chemother.53(9) , 3690–3699 (2009).
  • McGovern E , FlemingP, CostiganC, DominguezM, ColemanDC, NunnJ: Oral health in Autoimmune Polyendocrinopathy Candidiasis Ectodermal Dystrophy (APECED).Eur. Arch. Paediatr. Dent.9(4) , 236–244 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.