873
Views
0
CrossRef citations to date
0
Altmetric
Review

Leprosy Susceptibility: Genetic Variations Regulate Innate and Adaptive Immunity, and Disease Outcome

, , &
Pages 533-549 | Published online: 17 May 2011

Bibliography

  • Moraes MO , CardosoCC, VanderborghtPR, PachecoAG: Genetics of host response in leprosy.Lepr. Rev, 77(3) , 189–202 (2006).
  • Monot M , HonoreN, GarnierTet al. : On the origin of leprosy.Science308(5724) , 1040–1042 (2005).
  • Monot M , HonoréN, GarnierTet al. : Comparative genomic and phylogeographic analysis of Mycobacterium leprae.Nat. Genet.41(12) , 1282–1289 (2009).
  • Singh P , ColeST: Mycobacterium leprae: genes, pseudogenes and genetic diversity.Future Microbiol.6(1) , 57–71 (2011).
  • Pinheiro RO SJ , SarnoEM, SampaioEP: Mycobacterium leprae – host–cell interactions and genetic determinants in leprosy: an overviewFuture Microbiol.6(2) , 217–230 (2011).
  • Ridley DS , JoplingWH: Classification of leprosy according to immunity. A five-group system.Int. J. Lepr. Other Mycobact. Dis.34 , 255–273 (1966).
  • Scollard DM , AdamsLB, GillisTP, KrahenbuhlJL, TrumanRW, WilliamsDL: The continuing challenges of leprosy.Clin. Microbiol. Rev.19(2) , 338–381 (2006).
  • Alter A , GrantA, AbelL, AlcaisA, SchurrE: Leprosy as a genetic disease.Mamm. Genome22(1-2) , 19–31 (2011).
  • Chakravartti M , VogelF: A twin study on leprosy. In:Topics in Human Genetics. Georg Thieme, Stuttgart, Germany1–123 (1973).
  • Shields ED , RussellDA, Pericak-VanceMA: Genetic epidemiology of the susceptibility to leprosy.J. Clin. Invest.79(4) , 1139–1143 (1987).
  • Abel L , DemenaisF: Detection of major genes for susceptibility to leprosy and its subtypes in a Caribbean island: Desirade island.Am. J. Hum. Genet.42(2) , 256–266 (1988).
  • Beiguelman B : The genetics of resistance to leprosy.Int. J. Lepr.33(4) , 808–812 (1965).
  • Beiguelman B : Leprosy and genetics. A review of past research with remarks concerning future investigations.Bull. World Health Organ.37(3) , 461–476 (1967).
  • Beiguelman B : Some remarks on the genetics of leprosy resistance.Acta Genet. Med. Gemellol. (Roma)17(4) , 584–594 (1968).
  • Feitosa MF , BoreckiI, KriegerH, BeiguelmanB, RaoDC: The genetic epidemiology of leprosy in a Brazilian population.Am. J. Hum. Genet.56(5) , 1179–1185 (1995).
  • Lazaro FP , WerneckRI, MackertCCet al. : A major gene controls leprosy susceptibility in a hyperendemic isolated population from north of Brazil.J. Infect. Dis.201(10) , 1598–1605 (2010).
  • Bellamy R : The natural resistance-associated macrophage protein and susceptibility to intracellular pathogens.Microbes Infect.1(1) , 23–27 (1999).
  • Malo D , VidalSM, HuJ, SkameneE, GrosPL: High-resolution linkage map in the vicinity of the host resistance locus BCG.Genomics16(3) , 655–663 (1993).
  • Vidal SM , MaloD, VoganK, SkameneE, GrosP: Natural resistance to infection with intracellular parasites: isolation of a candidate for BCG.Cell73(3) , 469–485 (1993).
  • Ji B , PeraniEG, PetinomC, GrossetJH: Bactericidal activities of combinations of new drugs against Mycobacterium leprae in nude mice.Antimicrob. Agents Chemother.40(2) , 393–399 (1996).
  • Truman RW , AndrewsPK, RobbinsNY, AdamsLB, KrahenbuhlJL, GillisTP: Enumeration of Mycobacterium leprae using real-time PCR.PLoS Negl. Trop. Dis.2(11) , E328 (2008).
  • Longley R , SmithC, FortinAet al. : Host resistance to malaria: using mouse models to explore the host response.Mamm. Genome22(1–2) , 32–42 (2011).
  • Roy S , McGuireW, Mascie-TaylorCGet al. : Tumor necrosis factor promoter polymorphism and susceptibility to lepromatous leprosy.J. Infect. Dis.176(2) , 530–532 (1997).
  • Santos AR , SuffysPN, VanderborghtPRet al. : Role of tumor necrosis factor-α and interleukin-10 promoter gene polymorphisms in leprosy.J. Infect. Dis.186(11) , 1687–1691 (2002).
  • Lee SB , KimBC, JinSHet al. : Missense mutations of the interleukin-12 receptor β 1 (IL12RB1) and interferon-γ receptor 1 (IFNGR1) genes are not associated with susceptibility to lepromatous leprosy in Korea.Immunogenetics55(3) , 177–181 (2003).
  • Mira MT , AlcaisA, NguyenVTet al. : Susceptibility to leprosy is associated with PARK2 and PACRG.Nature427(6975) , 636–640 (2004).
  • Alcais A , AlterA, AntoniGet al. : Stepwise replication identifies a low-producing lymphotoxin-α allele as a major risk factor for early-onset leprosy.Nat. Genet.39(4) , 517–522 (2007).
  • Pacheco AG , CardosoCC, MoraesMO: IFNG +874T/A, IL10 -1082G/A and TNF -308G/A polymorphisms in association with tuberculosis susceptibility: a meta-analysis study.Hum. Genet.123(5) , 477–484 (2008).
  • Pereira AC , Brito-de-SouzaVN, CardosoCCet al. : Genetic, epidemiological and biological analysis of interleukin-10 promoter single-nucleotide polymorphisms suggests a definitive role for -819C/T in leprosy susceptibility.Genes Immun.10(2) , 174–180 (2009).
  • Cardoso CC , PereiraAC, Brito-de-SouzaVNet al. : IFNG +874 T>A single nucleotide polymorphism is associated with leprosy among Brazilians.Hum. Genet.128(5) , 481–490 (2010).
  • Misch EA , MacdonaldM, RanjitCet al. : Human TLR1 deficiency is associated with impaired mycobacterial signaling and protection from leprosy reversal reaction.PLoS Negl. Trop. Dis.2(5) , E231 (2008).
  • Berrington WR , MacdonaldM, KhadgeSet al. : Common polymorphisms in the NOD2 gene region are associated with leprosy and its reactive states.J. Infect. Dis.201(9) , 1422–1435 (2010).
  • Sapkota BR , MacdonaldM, BerringtonWRet al. : Association of TNF, MBL, and VDR polymorphisms with leprosy phenotypes.Hum. Immunol.71(10) , 992–998 (2010).
  • de Messias-Reason IJ , BoldtAB, MoraesBraga ACet al.: The association between mannan-binding lectin gene polymorphism and clinical leprosy: new insight into an old paradigm.J. Infect. Dis.196(9) , 1379–1385 (2007).
  • Bochud PY , HawnTR, SiddiquiMRet al. : Toll-like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy.J. Infect. Dis.197(2) , 253–261 (2008).
  • Jamieson SE , MillerEN, BlackGFet al. : Evidence for a cluster of genes on chromosome 17q11–q21 controlling susceptibility to tuberculosis and leprosy in Brazilians.Genes Immun.5(1) , 46–57 (2004).
  • Silva SR , TemponeAJ, SilvaTPet al. : Mycobacterium leprae downregulates the expression of PHEX in Schwann cells and osteoblasts.Mem. Inst. Oswaldo Cruz.105(5) , 627–632 (2010).
  • Hawn TR , MischEA, DunstanSJet al. : A common human TLR1 polymorphism regulates the innate immune response to lipopeptides.Eur. J. Immunol.37(8) , 2280–2289 (2007).
  • Johnson CM , LyleEA, OmuetiKOet al. : Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy.J. Immunol.178(12) , 7520–7524 (2007).
  • Wong SH , GochhaitS, MalhotraDet al. : Leprosy and the adaptation of human Toll-like receptor 1.PLoS Pathog.6 , E1000979 (2010).
  • Liu PT , StengerS, LiHet al. : Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response.Science311(5768) , 1770–1773 (2006).
  • Delgado MA , ElmaouedRA, DavisAS, KyeiG, DereticV: Toll-like receptors control autophagy.EMBO J.27(7) , 1110–1121 (2008).
  • Shin DM , YukJM, LeeHMet al. : Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling.Cell Microbiol.12(11) , 1648–1665 (2010).
  • Zhang FR , HuangW, ChenSMet al. : Genomewide association study of leprosy.N. Engl. J. Med.361(27) , 2609–2618 (2009).
  • Berrington WR , MacdonaldM, KhadgeSet al. : Common polymorphisms in the NOD2 gene region are associated with leprosy and its reactive states.J. Infect. Dis.201(9) , 1422–1435 (2010).
  • Alter A , AlcaisA, AbelL, SchurrE: Leprosy as a genetic model for susceptibility to common infectious diseases.Hum. Genet.123(3) , 227–235 (2008).
  • Cooney R , BakerJ, BrainOet al. : NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation.Nat. Med.16(1) , 90–97 (2010).
  • Intemann CD , ThyeT, NiemannSet al. : Autophagy gene variant IRGM -261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains.PLoS Pathog.5(9) , E1000577 (2009).
  • Schurr E , GrosP: A common genetic fingerprint in leprosy and Crohn‘s disease?N. Engl. J. Med.361(27) , 2666–2668 (2009).
  • Ferwerda G , GirardinSE, KullbergBJet al. : NOD2 and Toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis.PLoS Pathog.1(3) , 279–285 (2005).
  • Le Bourhis L , BenkoS, GirardinSE: Nod1 and Nod2 in innate immunity and human inflammatory disorders.Biochem. Soc. Trans.35(Pt 6) , 1479–1484 (2007).
  • Siddiqui MR , MeisnerS, ToshKet al. : A major susceptibility locus for leprosy in India maps to chromosome 10.13.Nat. Genet.27(4) , 439–441 (2001).
  • Mira MT , AlcaisA, VanThuc Net al.: Chromosome 6q25 is linked to susceptibility to leprosy in a Vietnamese population.Nat. Genet.33(3) , 412–415 (2003).
  • Kerrigan AM , BrownGD: C-type lectins and phagocytosis.Immunobiology214(7) , 562–575 (2009).
  • Alter A , deLéséleuc L, VanThuc Net al.: Genetic and functional analysis of common MRC1 exon 7 polymorphisms in leprosy susceptibility.Hum. Genet.127(3) , 337–348 (2010).
  • Wang L , ChenRF, LiuJWet al. : DC-SIGN (CD209) Promoter -336 A/G polymorphism is associated with dengue hemorrhagic fever and correlated to DC-SIGN expression and immune augmentation.PLoS Negl. Trop. Dis.5(1) , E934 (2011).
  • Sakuntabhai A , TurbpaiboonC, CasademontIet al. : A variant in the CD209 promoter is associated with severity of dengue disease.Nat. Genet.37(5) , 507–513 (2005).
  • Tabouret G , Astarie-DequekerC, DemangelCet al. : Mycobacterium leprae phenolglycolipid-1 expressed by engineered M. bovis BCG modulates early interaction with human phagocytes.PLoS Pathog.6(10) , E1001159 (2010).
  • Li X , YangY, ZhouFet al. : SLC11A1 (NRAMP1) polymorphisms and tuberculosis susceptibility: updated systematic review and meta-analysis.PLoS One, 6(1) , E15831 (2011).
  • Krutzik SR , TanB, LiHet al. : TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells.Nat. Med.11(6) , 653–660 (2005).
  • Matzner M , AlSamie AR, WinklerHMet al.: Low serum levels of cathelicidin LL-37 in leprosy.Acta Trop.117(1) , 56–59 (2011).
  • Krutzik SR , HewisonM, LiuPTet al. : IL-15 links TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway.J. Immunol.181(10) , 7115–7120 (2008).
  • Montoya D , CruzD, TelesRMet al. : Divergence of macrophage phagocytic and antimicrobial programs in leprosy.Cell Host Microbe6(4) , 343–353 (2009).
  • Uitterlinden AG , FangY, vanMeurs JB, vanLeeuwen H, PolsHA: Vitamin D receptor gene polymorphisms in relation to vitamin D related disease states.J. Steroid Biochem. Mol. Biol.89–90(1–5) , 187–193 (2004).
  • Roy S , FrodshamA, SahaB, HazraSK, Mascie-TaylorCG, HillAV: Association of vitamin D receptor genotype with leprosy type.J. Infect. Dis.179(1) , 187–191 (1999).
  • Fitness J , FloydS, WarndorffDKet al. : Large-scale candidate gene study of leprosy susceptibility in the Karonga district of northern Malawi.Am. J. Trop. Med. Hyg.71(3) , 330–340 (2004).
  • Velarde Félix JS , CazarezSalazar SG, CastroVelázquez R, RendanMaldonado JG, RangelVillalobos H: Relación del polimorfismo TaqI del gen del receptor de la vitamina D con la lepra lepromatosa en población mexicana.Salud Pública de México, 51 , 59–61 (2009).
  • Goulart LR , FerreiraFR, GoulartIM: Interaction of TaqI polymorphism at exon 9 of the vitamin D receptor gene with the negative lepromin response may favor the occurrence of leprosy.FEMS Immunol. Med. Microbiol.48(1) , 91–98 (2006).
  • Sapkota BR , MacdonaldM, BerringtonWRet al. : Association of TNF, MBL, and VDR polymorphisms with leprosy phenotypes.Hum. Immunol.71(10) , 992–998 (2010).
  • Prado-Montes de Oca E , Velarde-FelixJS, Rios-TostadoJJ, Picos-CardenasVJ, FigueraLE: SNP 668C (-44) alters a NF-κB1 putative binding site in non-coding strand of human β-defensin 1 (DEFB1) and is associated with lepromatous leprosy.Infect. Genet. Evol.9(4) , 617–625 (2009).
  • Malhotra D , DarvishiK, LohraMet al. : Association study of major risk single nucleotide polymorphisms in the common regulatory region of PARK2 and PACRG genes with leprosy in an Indian population.Eur. J. Hum. Genet.14(4) , 438–442 (2005).
  • Berger AK , CorteseGP, AmodeoKD, WeihofenA, LetaiA, LaVoieMJ: Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release.Hum. Mol. Genet.18(22) , 4317–4328 (2009).
  • Chen D , GaoF, LiBet al. : Parkin mono-ubiquitinates Bcl-2 and regulates autophagy.J. Biol. Chem.285(49) , 38214–38223 (2010).
  • Smith WW , PeiZ, JiangHet al. : Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration.Proc. Natl Acad. Sci. USA102(51) , 18676–18681 (2005).
  • Vives-Bauza C , ZhouC, HuangYet al. : PINK1-dependent recruitment of Parkin to mitochondria in mitophagy.Proc. Natl Acad. Sci. USA107(1) , 378–383 (2010).
  • Deretic V : Autophagy in infection.Curr. Opin. Cell Biol.22(2) , 252–262 (2010).
  • Spandl J , LohmannD, KuerschnerL, MoessingerC, ThieleC: Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (UBE2G2) via its G2 binding region.J. Biol. Chem.286(7) , 5599–5606 (2011).
  • Tobin DM , VaryJC, RayJPet al. : The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans.Cell140(5) , 717–730 (2010).
  • Chen M , DivangahiM, GanHet al. : Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death.J. Exp. Med.205(12) , 2791–2801 (2008).
  • Cruz D , WatsonAD, MillerCSet al. : Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy.J. Clin. Invest.118(8) , 2917–2928 (2008).
  • Kim MJ , WainwrightHC, LocketzMet al. : Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism.EMBO Mol. Med.2(7) , 258–274 (2010).
  • Mattos KA , D‘AvilaH, RodriguesLSet al. : Lipid droplet formation in leprosy: Toll-like receptor-regulated organelles involved in eicosanoid formation and Mycobacterium leprae pathogenesis.J. Leuk. Biol.87(3) , 371–384 (2010).
  • Mattos KA , LaraFA, OliveiraVGCet al. : Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes.Cell. Microbiol.13(2) , 259–273 (2011).
  • Misra N , SelvakumarM, SinghSet al. : Monocyte derived IL 10 and PGE2 are associated with the absence of Th 1 cells and in vitro T cell suppression in lepromatous leprosy.Immunol. Lett.48(2) , 123–128 (1995).
  • Tanigawa K , SuzukiK, NakamuraKet al. : Expression of adipose differentiation-related protein (ADRP) and perilipin in macrophages infected with Mycobacterium leprae.FEMS Microbiol. Lett.289(1) , 72–79 (2008).
  • Singh R , KaushikS, WangYet al. : Autophagy regulates lipid metabolism.Nature458(7242) , 1131–1135 (2009).
  • Tobin DM , RamakrishnanL: Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis.Cell. Microbiol.10(5) , 1027–1039 (2008).
  • Scollard DM , JoyceMP, GillisTP: Development of leprosy and type 1 leprosy reactions after treatment with infliximab: a report of 2 cases.Clin. Infect. Dis.43(2) , E19–E22 (2006).
  • Hagge DA , SaundersBM, EbenezerGJet al. : Lymphotoxin-α and TNF have essential but independent roles in the evolution of the granulomatous response in experimental leprosy.Am. J. Pathol.174(4) , 1379–1389 (2009).
  • Roy S , McGuireW, Mascie-TaylorCGet al. : Tumor necrosis factor promoter polymorphism and susceptibility to lepromatous leprosy.J. Infect. Dis.176(2) , 530–532 (1997).
  • Shaw MA , DonaldsonIJ, CollinsAet al. : Association and linkage of leprosy phenotypes with HLA class II and tumour necrosis factor genes.Genes Immun.2(4) , 196–204 (2001).
  • Vejbaesya S , MahaisavariyaP, LuangtrakoolP, SermduangprateepC: TNF α and NRAMP1 polymorphisms in leprosy.J. Med. Assoc. Thai.90(6) , 1188–1192 (2007).
  • Franceschi DSA , MaziniPS, RudnickCCCet al. : Influence of TNF and IL10 gene polymorphisms in the immunopathogenesis of leprosy in the south of Brazil.Int. J. Infect. Dis.13(4) , 493–498 (2009).
  • Santos AR , AlmeidaAS, SuffysPNet al. : Tumor necrosis factor promoter polymorphism (TNF2) seems to protect against development of severe forms of leprosy in a pilot study in Brazilian patients.Int. J. Lepr. Other Mycobact. Dis.68(3) , 325–327 (2000).
  • Cardoso CC , PereiraAC, Brito-de-SouzaVNet al. : TNF -308G>A single nucleotide polymorphism is associated with leprosy among Brazilians: a genetic epidemiology assessment, meta-analysis and functional study.J. Infect. Dis. (2011) (In press).
  • Moraes MO , DuppreNC, SuffysPNet al. : Tumor necrosis factor-alpha promoter polymorphism TNF2 is associated with a stronger delayed-type hypersensitivity reaction in the skin of borderline tuberculoid leprosy patients.Immunogenetics53(1) , 45–47 (2001).
  • Knight JC , KeatingBJ, KwiatkowskiDP: Allele-specific repression of lymphotoxin-α by activated B cell factor-1.Nat. Genet.36(4) , 394–399 (2004).
  • van de Vosse E , vanDissel JT, OttenhoffTH: Genetic deficiencies of innate immune signalling in human infectious disease.Lancet Infect. Dis.9(11) , 688–698(2009).
  • Al-Muhsen S , CasanovaJ-L: The genetic heterogeneity of mendelian susceptibility to mycobacterial diseases.J. Allergy Clin. Immunol.122(6) , 1043–1051 (2008).
  • Pravica V , AsderakisA, PerreyC, HajeerA, SinnottPJ, HutchinsonIV: In vitro production of IFN-γ correlates with CA repeat polymorphism in the human IFN-γ gene.Eur. J. Immunogen.26(1) , 1–3(1999).
  • Pravica V , PerreyC, StevensA, LeeJ-H, HutchinsonIV: A single nucleotide polymorphism in the first intron of the human IFN-γ gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN γ production.Hum. Immunol.61(9) , 863–866 (2000).
  • Lopez-Maderuelo D , ArnalichF, SerantesRet al. : Interferon-γ and interleukin-10 gene polymorphisms in pulmonary tuberculosis.Am. J. Respir. Crit. Care Med.167(7) , 970–975 (2003).
  • Sallakci N , CoskunaM, BerberbZet al. : Interferon-γ gene+874T–A polymorphism is associated with tuberculosis and γ interferon response.Tuberculosis (Edinb.)87(3) , 225–230 (2007).
  • Pacheco A , CardosoC, MoraesM: IFNG+874T/A, IL10–1082G/A and TNF-308G/A polymorphisms in association with tuberculosis susceptibility: a meta-analysis study.Hum. Genet.123(5) , 477–484 (2008).
  • Cardoso C , PereiraA, Brito-de-SouzaVet al. : IFNG +874 T>A single nucleotide polymorphism is associated with leprosy among Brazilians.Hum. Genet.128(5) , 481–490 (2010).
  • Alvarado-Navarro A , Montoya-BuelnaM, Muñoz-ValleJF, López-RoaRI, Guillén-VargasC, Fafutis-MorrisM: The 3´UTR 1188 A/C polymorphism in the interleukin-12p40 gene (IL-12B) is associated with lepromatous leprosy in the west of Mexico.Immunol. Lett.118(2) , 148–151 (2008).
  • Morahan G , KaurG, SinghMet al. : Association of variants in the IL12B gene with leprosy and tuberculosis.Tissue Antigens69(Suppl. 1) , 234–236 (2007).
  • Ohyama H , OgataK, TakeuchiKet al. : Polymorphism of the 5´ flanking region of the IL-12 receptor β2 gene partially determines the clinical types of leprosy through impaired transcriptional activity.J. Clin. Pathol.58(7) , 740–743 (2005).
  • Horton R , GibsonR, CoggillPet al. : Variation analysis and gene annotation of eight MHC haplotypes: the MHC Haplotype Project.Immunogenetics60(1) , 1–18 (2008).
  • Zinkernagel R : Major transplantation antigens in host responses to infection.Hosp. Pract.13(7) , 83–92 (1978).
  • Mira MT , AlcaisA, diPietrantonio Tet al.: Segregation of HLA/TNF region is linked to leprosy clinical spectrum in families displaying mixed leprosy subtypes.Genes Immun.4(1) , 67–73 (2003).
  • Wong SH , GochhaitS, MalhotraDet al. : Leprosy and the adaptation of human Toll-like receptor 1.PLoS Pathog.6 , E1000979 (2010).
  • Blackwell JM , JamiesonSE, BurgnerD: HLA and infectious diseases.Clin. Microbiol. Rev.22(2) , 370–385 (2009).
  • Kim SJ CI , DahlbergS, NisperosB, KimJD, HansenJA: HLA and leprosy in Koreans.Tissue Antigens29(3) , 146–153 (1987).
  • Shankarkumar U : HLA associations in leprosy patients from Mumbai, India.Lepr. Rev.75(1) , 79–85 (2004).
  • Franceschi DS , MaziniPS, RudnickCCet al. : Association between killer-cell immunoglobulin-like receptor genotypes and leprosy in Brazil.Tissue Antigens72(5) , 478–482 (2008).
  • Ohyama H , MatsushitaS, NishimuraFet al. : T cell responses to major membrane protein II (MMP II) of Mycobacterium leprae are restricted by HLA-DR molecules in patients with leprosy.Vaccine20(3–4) , 475–482 (2001).
  • Visentainer JEL , TsunetoLT, SerraMF, PeixotoPR, Petzl-ErlerML: Association of leprosy with HLA-DR2 in a Southern Brazilian population.Braz. J. Med. Biol. Res.30(1) , 51–59 (1997).
  • van Eden W , GonzalezNM, deVries RR, ConvitJ, vanRood JJ: HLA-linked control of predisposition to lepromatous leprosy.J. Infect. Dis.151(1) , 9–14 (1985).
  • de Vries RR , MehraNK, VaidyaMC, GupteMD, MeeraKhan P, VanRood JJ: HLA-linked control of susceptibility to tuberculoid leprosy and association with HLA-DR types.Tissue Antigens16(4) , 294–304 (1980).
  • Cem Mat M , YaziciH, OzbakirF, TüzünY: The HLA association of lepromatous leprosy and borderline lepromatous leprosy in Turkey. A preliminary study.Int. J. Dermatol.27(4) , 246–247 (1988).
  • Schauf V , RyanS, ScollardDet al. : Leprosy associated with HLA-DR2 and DQw1 in the population of northern Thailand.Tissue Antigens26(4) , 243–247 (1985).
  • Wang LM , KimuraA, SatohM, MineshitaS: HLA linked with leprosy in southern China: HLA-linked resistance alleles to leprosy.Int. J. Lepr. Other Mycobact. Dis.67(4) , 403–408 (1999).
  • Vanderborght PR , PachecoAG, MoraesMEet al. : HLA-DRB1*04 and DRB1*10 are associated with resistance and susceptibility, respectively, in Brazilian and Vietnamese leprosy patients.Genes Immun.8(4) , 320–324 (2007).
  • Rani R , Fernandez-VinaMA, ZaheerSA, BeenaKR, StastnyP: Study of HLA class II alleles by PCR oligotyping in leprosy patients from north India.Tissue Antigens42(3) , 133–137 (1993).
  • Singh M , BalamuruganA, KatochK, SharmaSK, MehraNK: Immunogenetics of mycobacterial infections in the North Indian population.Tissue Antigens69 , 228–230 (2007).
  • Gorodezky C , AlaezC, MunguiaAet al. : Molecular mechanisms of MHC linked susceptibility in leprosy: towards the development of synthetic vaccines.Tuberculosis (Edinb.)84(1–2) , 82–92 (2004).
  • Joko SNJ , KawashimaH, NamisatoM, MaedaH: Human leukocyte antigens in forms of leprosy among Japanese patients.Int. J. Lepr. Other Mycobact. Dis.68(1) , 49–56 (2000).
  • Zerva L , CizmanB, MehraNKet al. : Arginine at positions 13 or 70–71 in pocket 4 of HLA-DRB1 alleles is associated with susceptibility to tuberculoid leprosy.J. Exp. Med.183(3) , 829–836 (1996).
  • Koçak M , BalciM, PençeB, KundakçiN: Associations between human leukocyte antigens and leprosy in the Turkish population.Clin. Exp. Dermatol.27(3) , 235–239 (2002).
  • Ramagopalan SV , MaugeriNJ, HandunnetthiLet al. : Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D.PLoS Genet.5(2) , E1000369 (2009).
  • Yamamura M , UyemuraK, DeansRJet al. : Defining protective responses to pathogens: cytokine profiles in leprosy lesions.Science254(5029) , 277–279 (1991).
  • Sieling PA , ModlinRL: Cytokine patterns at the site of mycobacterial infection.Immunobiology191(4–5) , 378–387 (1994).
  • Lima MCBS , PereiraGMB, RumjanekFDet al. : Immunological cytokine correlates of protective immunity and pathogenesis in leprosy.Scand. J. Immunol.51(4) , 419–428 (2000).
  • Santos AR , SuffysPN, VanderborghtPRet al. : Role of tumor necrosis factor-α and interleukin-10 promoter gene polymorphisms in leprosy.J. Infect. Dis.186(11) , 1687–1691 (2002).
  • Moraes MO , PachecoAG, SchonkerenJJet al. : Interleukin-10 promoter single-nucleotide polymorphisms as markers for disease susceptibility and disease severity in leprosy.Genes Immun.5(7) , 592–595 (2004).
  • Malhotra D , DarvishiK, SoodSet al. : IL-10 promoter single nucleotide polymorphisms are significantly associated with resistance to leprosy.Hum. Genet.118(2) , 295–300 (2005).
  • Cole ST , EiglmeierK, ParkhillJet al. : Massive gene decay in the leprosy bacillus.Nature409(6823) , 1007–1011 (2001).
  • Williams DL , SlaydenRA, AminAet al. : Implications of high level pseudogene transcription in Mycobacterium leprae.BMC Genomics10 , 397 (2009).
  • Akama T , SuzukiK, TanigawaKet al. : Whole-genome expression analysis of Mycobacterium leprae and its clinical application.Jpn J. Infect. Dis.63(6) , 387–392 (2010).
  • Williams DL , TorreroM, WheelerPRet al. : Biological implications of Mycobacterium leprae gene expression during infection.J. Mol. Microbiol. Biotechnol.8(1) , 58–72 (2004).
  • Stokes RW , WaddellSJ: Adjusting to a new home: Mycobacterium tuberculosis gene expression in response to an intracellular lifestyle.Future Microbiol.4(10) , 1317–1335 (2009).
  • Tapinos N , RambukkanaA: Insights into regulation of human Schwann cell proliferation by Erk1/2 via a MEK-independent and p56Lck-dependent pathway from leprosy bacilli.Proc. Natl Acad. Sci. USA102(26) , 9188–9193 (2005).
  • Rambukkana A , SalzerJL, YurchencoPD, TuomanenEI: Neural targeting of Mycobacterium leprae mediated by the G domain of the laminin-α2 chain.Cell88(6) , 811–821 (1997).
  • Behr M , SchurrE, GrosP: TB: screening for responses to a vile visitor.Cell140(5) , 615–618 (2010).
  • Frota CC , FreitasMV, FossNTet al. : Seropositivity to anti-phenolic glycolipid-I in leprosy cases, contacts and no known contacts of leprosy in an endemic and a non-endemic area in northeast Brazil.Trans. R Soc. Trop. Med. Hyg.104(7) , 490–495 (2010).
  • Paige C , BishaiWR: Penitentiary or penthouse condo: the tuberculous granuloma from the microbe‘s point of view.Cell. Microbiol.12(3) , 301–309 (2010).
  • Oliveira RB , MoraesMO, OliveiraEB, SarnoEN, NeryJA, SampaioEP: Neutrophils isolated from leprosy patients release TNF-α and exhibit accelerated apoptosis in vitro.J. Leukoc. Biol.65(3) , 364–371 (1999).
  • Moraes MO , SarnoEN, AlmeidaASet al. : Cytokine mRNA expression in leprosy: a possible role for interferon-γ and interleukin-12 in reactions (RR and ENL).Scand. J. Immunol.50(5) , 541–549 (1999).
  • Moraes MO , SarnoEN, TelesRMet al. : Anti-inflammatory drugs block cytokine mRNA accumulation in the skin and improve the clinical condition of reactional leprosy patients.J. Invest. Dermatol.115(6) , 935–941 (2000).
  • Schuring RP , HamannL, FaberWRet al. : Polymorphism N248S in the human Toll-like receptor 1 gene is related to leprosy and leprosy reactions.J. Infect. Dis.199(12) , 1816–1819 (2009).
  • Cardoso CC , MartinezAN, GuimaraesPEet al. : Ninjurin 1 asp110ala single nucleotide polymorphism is associated with protection in leprosy nerve damage.J. Neuroimmunol.190(1–2) , 131–138 (2007).
  • Casanova JL , AbelL: Human genetics of infectious diseases: a unified theory.EMBO J.26(4) , 915–922 (2007).
  • Pacheco AG , MoraesMO: Genetic polymorphisms of infectious diseases in case–control studies.Dis. Markers.27(3) , 173–186 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.