815
Views
0
CrossRef citations to date
0
Altmetric
Review

Developing Oral Probiotics from Streptococcus Salivarius

, , &
Pages 1355-1371 | Published online: 12 Dec 2012

References

  • Teughels W , Van Essche M, Sliepen I, Quirynen M. Probiotics and oral healthcare. Periodontol48 , 111–147 (2008).
  • Food and Agricultural Organization/WHO. Guidelines for the evaluation of probiotics in food. In: Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. Food and Agricultural Organization, Rome, Italy (2002).
  • Zarco MF , VessTJ, GinsburgGS. The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis.18 , 109–120 (2012).
  • Hansen JN . Nisin as a model food preservative. Crit. Rev. Food Sci. Nutr.34 , 69–93 (1994).
  • Sanders CC , SandersWE. Enocin: an antibiotic produced by Streptococcus salivarius that may contribute to protection against infections due to Group A Streptococci. J. Infect. Dis.146 , 683–690 (1982).
  • Roos K , HakanssonEG, HolmS. Effect of recolonisation with “interfering” alpha streptococci on recurrences of acute and secretory otitis media in children: randomised placebo controlled trial. BMJ322 , 210–212 (2001).
  • Hillman JD , MoJ, McDonellE, CvitkovitchD, HillmanCH. Modification of an effector strain for replacement therapy of dental caries to enable clinical safety trials. J. Appl. Microbiol.102 , 1209–1219 (2007).
  • Balakrishnan M , SimmondsRS, TaggJR. Diverse activity spectra of bacteriocin-like inhibitory substances having activity against mutans streptococci. Caries Res.35 , 75–80 (2001).
  • Tong H , ChenW, MerrittJ, QiF, ShiW, DongX. Streptococcus oligofermentans inhibits Streptococcus mutans through conversion of lactic acid into inhibitory H2O2: a possible counteroffensive strategy for interspecies competition. Mol. Microbiol.63 , 872–880 (2007).
  • Kumar PS , LeysEJ, BrykJM, MartinezFJ, MoeschbergerML, GriffenAL. Changes in periodontal health status are associated with bacterial community shifts as assessed by quantitative 16S cloning and sequencing. J. Clin. Microbiol.44 , 3665–3673 (2006).
  • Wescombe PA , HengNCK, BurtonJP, ChilcottCN, TaggJR. Streptococcal bacteriocins and the case for Streptococcus salivarius as model oral probiotics. Future Microbiol.4 , 819–835 (2009).
  • Favier CF , VaughanEE, De Vos WM, Akkermans AD. Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol.68 , 219–226 (2002).
  • Park HK , ShimSS, KimSY et al. Molecular analysis of colonized bacteria in a human newborn infant gut. J. Microbiol. 43 , 345–353 (2005).
  • Carlsson J , GrahnenH, JonssonG, WiknerS. Early establishment of Streptococcus salivarius in the mouths of infants. J. Dent. Res.49 , 415–418 (1970).
  • Wescombe PA , UptonM, DierksenKP et al. Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl. Environ. Microbiol. 72 , 1459–1466 (2006).
  • Wescombe PA , BurtonJP, CadieuxPA et al. Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius. Antonie Van Leeuwenhoek 90 , 269–280 (2006).
  • Wescombe PA , HengNCK, BurtonJP, TaggJR. Something old and something new: an update on the amazing repertoire of bacteriocins produced by Streptococcus salivarius. Probiot. Antimicrob. Proteins2 , 37–45 (2010).
  • Guglielmetti S , TavernitiV, MinuzzoM et al. Oral bacteria as potential probiotics for the pharyngeal mucosa. Appl. Environ. Microbiol. 76 , 3948–3958 (2010).
  • Taverniti V , MinuzzoM, ArioliS et al. In vitro functional and immunomodulatory properties of the Lactobacillus helveticus MIMLh5-Streptococcus salivarius ST3 association that are relevant to the development of a pharyngeal probiotic product. Appl. Environ. Microbiol.78 , 4209–4216 (2012).
  • Ishijima SA , HayamaK, BurtonJP et al. Effect of Streptococcus salivarius K12 on the in vitro growth of Candida albicans and its protective effect in an oral candidiasis model. Appl. Environ. Microbiol. 78 , 2190–2199 (2012).
  • Chen YY , WeaverCA, BurneRA. Dual functions of Streptococcus salivarius urease. J. Bacteriol.182 , 4667–4669 (2000).
  • Sissons CH , HancockEM. Urease activity in Streptococcus salivarius at low pH. Arch. Oral Biol.38 , 507–516 (1993).
  • Eifuku H , Yoshimitsu-NaritaA, SatoS, YakushijiT, InoueM. Production and partial characterization of the extracellular polysaccharides from oral Streptococcus salivarius. Carbohydr. Res.194 , 247–260 (1989).
  • Lawman P , BleiweisAS. Molecular cloning of the extracellular endodextranase of Streptococcus salivarius. J. Bacteriol.173 , 7423–7428 (1991).
  • Bonifait L , ChandadF, GrenierD. Probiotics for oral health: myth or reality? J. Can. Dent. Assoc.75 , 585–590 (2009).
  • Franker CK . Mutational loss of susceptibility to mutacin GS-5 in Streptococcus pyogenes: surface protein in a tolerant variant. Antimicrob. Agents Chemother.19 , 166–169 (1981).
  • Wilson M , MartinR, WalkST et al. Clinical and laboratory features of Streptococcus salivarius meningitis: a case report and literature review. Clin. Med. Res. 10 , 15–25 (2012).
  • Santagati M , ScillatoM, PataneF, AielloC, StefaniS. Bacteriocin-producing oral streptococci and inhibition of respiratory pathogens. FEMS Immunol. Med. Microbiol.65 , 23–31 (2012).
  • Burton JP , WescombePA, MooreCJ, ChilcottCN, TaggJR. Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Appl. Environ. Microbiol.72 , 3050–3053 (2006).
  • Heng NCK , Haji-IshakNS, KalyanA et al. Genome sequence of the bacteriocin-producing oral probiotic Streptococcus salivarius strain M18. J. Bacteriol. 193 , 6402–6403 (2011).
  • Martin V , Maldonado-BarraganA, JimenezE, Ruas-MadiedoP, FernandezL, RodriguezJM. Complete genome sequence of Streptococcus salivarius PS4, a strain isolated from human milk. J. Bacteriol.194 , 4466–4467 (2012).
  • Guedon E , DelormeC, PonsN et al. Complete genome sequence of the commensal Streptococcus salivarius strain JIM8777. J. Bacteriol. 193 , 5024–5025 (2011).
  • Delorme C , GuedonE, PonsN et al. Complete genome sequence of the clinical Streptococcus salivarius strain CCHSS3. J. Bacteriol. 193 , 5041–5042 (2011).
  • Geng J , HuangSC, LiS, HuS, ChenYY. Complete genome sequence of the ureolytic Streptococcus salivarius strain 57.I. J. Bacteriol.193 , 5596–5597 (2011).
  • Burton J , ChilcottC, WescombeP, TaggJ. Extended safety data for the oral cavity probiotic Streptococcus salivarius K12. Probiot. Antimicrob. Protiens2 , 135–144 (2010).
  • Burton JP , CowleyS, SimonRR, McKinneyJ, WescombePA, TaggJR. Evaluation of safety and human tolerance of the oral probiotic Streptococcus salivarius K12: a randomized, placebo-controlled, double-blind study. Food Chem. Toxicol.49 , 2356–2364 (2011).
  • Tanzer JM , KuraszAB, CliveJ. Inhibition of ecological emergence of mutans streptococci naturally transmitted between rats and consequent caries inhibition by Streptococcus salivarius TOVE-R infection. Infect. Immun.49 , 76–83 (1985).
  • Tanzer JM , KuraszAB, CliveJ. Competitive displacement of mutans streptococci and inhibition of tooth decay by Streptococcus salivarius TOVE-R. Infect. Immun.48 , 44–50 (1985).
  • Teughels W , NewmanMG, CouckeW et al. Guiding periodontal pocket recolonization: a proof of concept. J. Dent. Res. 86 , 1078–1082 (2007).
  • Crowe CC , SandersWE Jr, Longley S. Bacterial interference. II. Role of the normal throat flora in prevention of colonization by group A Streptococcus. J. Infect. Dis.128 , 527–532 (1973).
  • Sanders CC , NelsonGE, SandersWE. Bacterial Interference. IV. Epidemiological determinants of the antagonistic activity of the normal throat flora against group A Streptococci. Infect. Immun.16 , 599–603 (1977).
  • Sanders CC , SandersWE Jr, Harrowe DJ. Bacterial interference: effects of oral antibiotics on the normal throat flora and its ability to interfere with group A streptococci. Infect. Immun.13 , 808–812 (1976).
  • Ausschuss für Biologische Arbeitsstoffe. ABAS-UA 4: Einstufung Biologischer Arbeitsstoffein Resolution 135/Herabstufung von Streptococcus salivarius ssp. salivarius K12. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Dortmund, Germany (2005).
  • Hyink O , WescombePA, UptonM, RaglandN, BurtonJP, TaggJR. Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic strain Streptococcus salivarius K12. Appl. Environ. Microbiol.73 , 1107–1113 (2007).
  • Dierksen KP , TaggJR. The influence of indigenous bacteriocin-producing Streptococcus salivarius on the acquisition of Streptococcus pyogenes by primary school children in Dunedin, New Zealand. In: Streptococci and Streptococcal Diseases Entering the New Millenium. Martin DR, Tagg JR (Eds). Securacopy, Auckland, New Zealand, 81–85 (2000).
  • Fantinato VC , Jorge,AO, ShimizuMT. Production of bacteriocin-like inhibitory substances (BLIS) by Streptococcus salivarius strains isolated from the tongue and throat of children with and without sore throat. Rev. Microbiol.30 , 332–334 (1999).
  • Guglielmetti S , TavernitiV, MinuzzoM et al. Oral bacteria as potential probiotic for the pharyngeal mucosa. Appl. Environ. Microbiol. 76 , 3948–3958 (2010).
  • Horz HP , MeineltA, HoubenB, ConradsG. Distribution and persistence of probiotic Streptococcus salivarius K12 in the human oral cavity as determined by real-time quantitative polymerase chain reaction. Oral Microbiol. Immunol.22 , 126–130 (2007).
  • Burton JP , ChilcottCN, MooreCJ, SpeiserG, TaggJR. A preliminary study of the effect of probiotic Streptococcus salivarius K12 on oral malodour parameters. J. Appl. Microbiol.100 , 754–764 (2006).
  • Kazor CE , MitchellPM, LeeAM et al. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J. Clin. Microbiol. 41 , 558–563 (2003).
  • Power DA , BurtonJP, ChilcottCN, DawesPJ, TaggJR. Preliminary investigations of the colonisation of upper respiratory tract tissues of infants using a paediatric formulation of the oral probiotic Streptococcus salivarius K12. Eur. J. Clin. Microbiol. Infect. Dis.27 , 1261–1263 (2008).
  • Holmes AR , GopalPK, JenkinsonHF. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii. Infect. Immun.63 , 1827–1834 (1995).
  • Liljemark WF , GibbonsRJ. Suppression of Candida albicans by human oral streptococci in gnotobiotic mice. Infect. Immun.8 , 846–849 (1973).
  • Nair RG , AnilS, SamaranayakeLP. The effect of oral bacteria on Candida albicans germ-tube formation. APMIS109 , 147–154 (2001).
  • Nair RG , SamaranayakeLP. The effect of oral commensal bacteria on candidal adhesion to human buccal epithelial cells in vitro. J. Med. Microbiol.45 , 179–185 (1996).
  • Cosseau C , DevineDA, DullaghanE et al. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect. Immun. 76 , 4163–4175 (2008).
  • Abt MC , OsborneLC, MonticelliLA et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37 , 158–170 (2012).
  • Chilcott C , CrowleyL, KulkaniV, JackRW, McLellanAD, TaggJ. Elevated levels of interferon gamma in human saliva following ingestion of Streptococcus salivarius K12. Presented at: Joint New Zealand and Australian Microbiological Societies Annual Meeting. Dunedin, New Zealand, 22–25 November 2005.
  • Mostefaoui Y , BartC, FrenetteM, RouabhiaM. Candida albicans and Streptococcus salivarius modulate IL-6, IL-8, and TNF-alpha expression and secretion by engineered human oral mucosa cells. Cell. Microbiol.6 , 1085–1096 (2004).
  • Wescombe PA , UptonM, RenaultP et al. Salivaricin 9, a new lantibiotic produced by Streptococcus salivarius. Microbiology 157 , 1290–1299 (2011).
  • Dodd SJ . A Saliva Model to Demonstrate Streptococcus salivarius BLIS Production and Characterisation of Salivaricin MPS. University of Otago, Dunedin, New Zealand (1999).
  • Burton JP , WescombePA, CadieuxPA, TaggJR. Beneficial microbes for the oral cavity: time to harness the oral streptococci? Beneficial Microbes2 , 93–101 (2011).
  • Seymour GJ , GemmellE. Cytokines in periodontal disease: where to from here? Acta Odontol. Scand.59 , 167–173 (2001).
  • Fisher MA , BorgnakkeWS, TaylorGW. Periodontal disease as a risk marker in coronary heart disease and chronic kidney disease. Curr. Opin. Nephrol. Hypertens.19 , 519–526 (2010).
  • Adam E , JindalM, SeneyS et al. Streptococcus salivarius K12 and M18 Probiotics Reduce Periodontal Pathogen-Induced Inflammation (IADR Paper 150126). American Association, Alexandria, VA, USA (2011).
  • Abbot EL , SmithWD, SiouGP et al. Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell. Microbiol. 9 , 1822–1833 (2007).
  • Takashiba S , NaruishiK, MurayamaY. Perspective of cytokine regulation for periodontal treatment: fibroblast biology. J. Periodontol.74 , 103–110 (2003).
  • De Vrese M , WinklerP, RautenbergP et al. Probiotic bacteria reduced duration and severity but not the incidence of common cold episodes in a double blind, randomized, controlled trial. Vaccine 24 , 6670–6674 (2006).
  • Ukena SN , WestendorfAM, HansenW et al. The host response to the probiotic Escherichia coli strain Nissle 1917: specific up-regulation of the proinflammatory chemokine MCP-1. BMC Med. Genet. 6 , 43 (2005).
  • Kleinberg I . Effect of urea concentration on human plaque pH levels in situ. Arch. Oral. Biol.12 , 1475–1484 (1967).
  • Peterson S , WoodheadJ, CrallJ. Caries resistance in children with chronic renal failure: plaque pH, salivary pH, and salivary composition. Pediatric Res.19 , 796–799 (1985).
  • Newberry RD , StensonWF, LorenzRG. Cyclooxygenase-2-dependent arachidonic acid metabolites are essential modulators of the intestinal immune response to dietary antigen. Nat. Med.5 , 900–906 (1999).
  • Wallace JL . COX-2: a pivotal enzyme in mucosal protection and resolution of inflammation. Sci. World J.6 , 577–588 (2006).
  • Tan XD , ChenYH, LiuQP, Gonzalez-CrussiF, LiuXL. Prostanoids mediate the protective effect of trefoil factor 3 in oxidant-induced intestinal epithelial cell injury: role of cyclooxygenase-2. J. Cell Sci.113 , 2149–2155 (2000).
  • Nelson-Rees WA , DanielsDW, FlandermeyerRR. Cross-contamination of cells in culture. Science212 , 446–452 (1981).
  • Walls T , PowerD, TaggJ. Bacteriocin-like inhibitory substance (BLIS) production by the normal flora of the nasopharynx: potential to protect against otitis media? J. Med. Microbiol.52 , 829–833 (2003).
  • Tagg JR , HaleJDF, WescombePA. BLIS-producing probiotics targeting the oral cavity. Microbiol. Aust.33 , 103–105 (2012).

Patents

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.