418
Views
0
CrossRef citations to date
0
Altmetric
Review

Acquired Inducible Antimicrobial Resistance in Gram-Positive Bacteria

, &
Pages 959-978 | Published online: 23 Aug 2012

References

  • Wozniak RAF , WaldorMK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat. Rev. Microbiol.8(8) , 552–563 (2010).
  • Guglielmini J , QuintaisL, Garcillán-BarciaMP, De La Cruz F, Rocha EPC. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet.7(8) , e1002222 (2011).
  • Roberts AP , MullanyP. Tn916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. FEMS Microbiol. Rev.35(5) , 856–871 (2011).
  • Lebreton F , DepardieuF, BourdonN et al. D-Ala-D-Ser VanN-type transferable vancomycin resistance in Enterococcus faecium. Antimicrob. Agents Chemother.55(10) , 4606–4612 (2011).
  • Rana SW , KumarA, WaliaSK, BervenK, CumperK. Isolation of Tn1546-like elements in vancomycin-resistant Enterococcus faecium isolated from wood frogs: an emerging risk for zoonotic bacterial infections to humans. J. Appl. Microbiol.110(1) , 35–43 (2011).
  • Courvalin P . Vancomycin resistance in Gram-positive cocci. Clin. Infect. Dis.42(Suppl. 1) , S25–S34 (2006).
  • Sletvold H , JohnsenPJ, WikmarkOG, SimonsenGS, SundsfjordA, NielsenKM. Tn1546 is part of a larger plasmid-encoded genetic unit horizontally disseminated among clonal Enterococcus faecium lineages. J. Antimicrob. Chemother.65(9) , 1894–1906 (2010).
  • Hegstad K , MikalsenT, CoqueTM, WernerG, SundsfjordA. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin. Microbiol. Infect.16(6) , 541–554 (2010).
  • International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements Classification of Staphylococcal Cassette Chromosome mec (SCCmec): Guidelines for Reporting Novel SCCmec Elements. Antimicrob. Agents Chemother.53(12) , 4961–4967 (2009).
  • Lindsay J , HoldenM. Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct. Integr. Genomics6 , 186–201 (2006).
  • Smillie C , Garcillan-BarciaMP, FranciaMV, RochaEP, De La Cruz F. Mobility of plasmids. Microbiol. Mol. Biol. Rev.74(3) , 434–452 (2010).
  • Norman A , HansenLH, SorensenSJ. Conjugative plasmids: vessels of the communal gene pool. Philos. Trans. R. Soc. Lond. B Biol. Sci.364(1527) , 2275–2289 (2009).
  • Colomer-Lluch M , JofreJ, MuniesaM. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One6(3) , e17549 (2011).
  • Di Luca MC , D‘ercoleS, PetrelliD, PrennaM, RipaS, VitaliLA. Lysogenic transfer of mef(A) and tet(O) genes carried by φm46.1 among group A streptococci. Antimicrob. Agents Chemother.54(10) , 4464–4466 (2010).
  • Monecke S , CoombsG, ShoreAC et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One 6(4) , e17936 (2011).
  • Auchtung JM , LeeCA, MonsonRE, LehmanAP, GrossmanAD. Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. Proc. Natl Acad. Sci. USA102(35) , 12554–12559 (2005).
  • Prudhomme M , AttaiechL, SanchezG, MartinB, Claverys J-P. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science313(5783) , 89–92 (2006).
  • Roberts MC . Update on macrolide–lincosamide–streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol. Lett.282(2) , 147–159 (2008).
  • Canu A , LeclercqR. Macrolides and lincosamides. In: Antimicrobial Drug Resistance: Mechansims of Drug Resistance. Mayers DL (Ed.). Humana Press, NJ, USA, 211–221 (2009).
  • Mazzariol A , KoncanR, VitaliLA, CornagliaG. Activities of 16-membered ring macrolides and telithromycin against different genotypes of erythromycin-susceptible and erythromycin-resistant Streptococcus pyogenes and Streptococcus pneumoniae. J. Antimicrob. Chemother.59(6) , 1171–1176 (2007).
  • Schwaiger K , BauerJ. Detection of the erythromycin rRNA methylase gene erm(A) in Enterococcus faecalis. Antimicrob. Agents Chemother.52(8) , 2994–2995 (2008).
  • Mayford M , WeisblumB. ermC leader peptide: amino acid sequence critical for induction by translational attenuation. J. Mol. Biol.206(1) , 69–79 (1989).
  • Horinouchi S , WeisblumB. Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. Proc. Natl Acad. Sci. USA77(12) , 7079–7083 (1980).
  • Ramu H , MankinA, Vazquez-LaslopN. Programmed drug-dependent ribosome stalling. Mol. Microbiol.71(4) , 811–824 (2009).
  • Kramer G , BoehringerD, BanN, BukauB. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol.16(6) , 589–597 (2009).
  • Vazquez-Laslop N , ThumC, MankinAS. Molecular mechanism of drug-dependent ribosome stalling. Mol. Cell30(2) , 190–202 (2008).
  • Bailey M , ChettiathT, MankinAS. Induction of erm(C) expression by noninducing antibiotics. Antimicrob. Agents Chemother.52(3) , 866–874 (2008).
  • Tenson T , LovmarM, EhrenbergM. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J. Mol. Biol.330(5) , 1005–1014 (2003).
  • Dunkle JA , XiongL, MankinAS, CateJHD. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl Acad. Sci. USA doi:10.1073/pnas.1007988107 (2010) (Epub ahead of print).
  • Millán L , GoñiP, CerdáP, RubioM, Gómez-LusR. Novel 10-bp deletion in the translational attenuator of a constitutively expressed erm(A) gene from Staphylococcus epidermidis. Int. Microbiol.10(2) , 147–150 (2007).
  • Gatermann SG , KoschinskiT, FriedrichS. Distribution and expression of macrolide resistance genes in coagulase-negative staphylococci. Clin. Microbiol. Infect.13(8) , 777–781 (2007).
  • Ramu H , Vazquez-LaslopN, KlepackiD et al. Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center. Mol. Cell 41(3) , 321–330 (2011).
  • Min Y -H, Kwon A-R, Yoon E-J, Shim M-J, Choi E-C. Translational attenuation and mRNA stabilization as mechanisms of erm(B) induction by erythromycin. Antimicrob. Agents Chemother.52(5) , 1782–1789 (2008).
  • Kwon AR , MinYH, YoonEJ, KimJA, ShimMJ, ChoiEC. ErmK leader peptide: amino acid sequence critical for induction by erythromycin. Arch. Pharma. Res.29(12) , 1154–1157 (2006).
  • Lampson BC , Von David W, Parisi JT. Novel mechanism for plasmid-mediated erythromycin resistance by pNE24 from Staphylococcus epidermidis. Antimicrob. Agents Chemother.30(5) , 653–658 (1986).
  • Ojo KK , StriplinMJ, UlepCC et al. Staphylococcus efflux msr(A) gene characterized in Streptococcus, Enterococcus, Enterococcus, and Pseudomonas isolates. Antimicrob. Agents Chemother.50(3) , 1089–1091 (2006).
  • Le Bouter A , LeclercqR, CattoirV. Molecular basis of resistance to macrolides, lincosamides and streptogramins in Staphylococcus saprophyticus clinical isolates. Int. J. Antimicrob. Agents37(2) , 118–123 (2011).
  • Davis KA , CrawfordSA, FiebelkornKR, JorgensenJH. Induction of telithromycin resistance by erythromycin in isolates of macrolide-resistant Staphylococcus spp. Antimicrob. Agents Chemother.49(7) , 3059–3061 (2005).
  • Chancey ST , ZhouX, ZähnerD, StephensDS. Induction of efflux-mediated macrolide resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother.55(7) , 3413–3422 (2011).
  • Zähner D , ZhouX, ChanceyST, PohlJ, ShaferWM, StephensDS. Human antimicrobial peptide LL-37 induces MefE/Mel-mediated macrolide resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother.54(8) , 3516–3519 (2010).
  • Cai Y , KongF, GilbertGL. Three new macrolide efflux (mef) gene variants in Streptococcus agalactiae. J. Clin. Microbiol.45(8) , 2754–2755 (2007).
  • Vitali L , Di Luca M, Iebba V et al.Variability and Inducibility of the mef(A)–msr(D) Region in Erythromycin-Resistant Streptococcus pyogenes. European Society of Clinical Microbiology and Infectious Diseases. Milan, Italy (2011).
  • Reynolds E , CoveJH. Enhanced resistance to erythromycin is conferred by the enterococcal msrC determinant in Staphylococcus aureus. J. Antimicrob. Chemother.55(2) , 260–264 (2005).
  • Lodato PB , RogersEJ, LovettPS. A variation of the translation attenuation model can explain the inducible regulation of the pBC16 tetracycline resistance gene in Bacillus subtilis. J. Bacteriol.188(13) , 4749–4758 (2006).
  • Ammor MS , GueimondeM, DanielsenM et al. Two different tetracycline resistance mechanisms, plasmid-carried tet(L) and chromosomally located transposon-associated tet(M), coexist in Lactobacillus sakei Rits 9. Appl. Environ. Microbiol. 74(5) , 1394–1401 (2008).
  • Mcintosh ED , ReinertRR. Global prevailing and emerging pediatric pneumococcal serotypes. Expert Rev. Vaccines10(1) , 109–129 (2011).
  • Jordan S , HutchingsMI, MascherT. Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol. Rev.32(1) , 107–146 (2008).
  • Gao R , StockAM. Biological insights from structures of two-component proteins. Ann. Rev. Microbiol.63 , 133–154 (2009).
  • Koteva K , HongH-J, WangXD et al. A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nat. Chem. Biol.6(5) , 327–329 (2010).
  • Werner G , StrommengerB, WitteW. Acquired vancomycin resistance in clinically relevant pathogens. Future Microbiol.3(5) , 547–562 (2008).
  • Evers S , CourvalinP. Regulation of VanB-type vancomycin resistance gene expression by the VanS(B)-VanR (B) two-component regulatory system in Enterococcus faecalis V583. J. Bacteriol.178(5) , 1302–1309 (1996).
  • Baptista M , DepardieuF, CourvalinP, ArthurM. Specificity of induction of glycopeptide resistance genes in Enterococcus faecalis. Antimicrob. Agents Chemother.40(10) , 2291–2295 (1996).
  • Boyd DA , WilleyBM, FawcettD, GillaniN, MulveyMR. Molecular characterization of Enterococcus faecalis N06–0364 with low-level vancomycin resistance harboring a novel D-Ala-D-Ser gene cluster, vanL. Antimicrob. Agents Chemother.52(7) , 2667–2672 (2008).
  • Xu X , LinD, YanG et al. vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrob. Agents Chemother.54(11) , 4643–4647 (2010).
  • Depardieu F , KolbertM, PruulH, BellJ, CourvalinP. VanD-type vancomycin-resistant Enterococcus faecium and Enterococcus faecalis. Antimicrob. Agents Chemother.48(10) , 3892–3904 (2004).
  • Abadia Patino L , CourvalinP, PerichonB. vanE gene cluster of vancomycin-resistant Enterococcus faecalis BM4405. J. Bacteriol.184(23) , 6457–6464 (2002).
  • Fisher SL , JiangW, WannerBL, WalshCT. Cross-talk between the histidine protein kinase VanS and the response regulator PhoB. Characterization and identification of a VanS domain that inhibits activation of PhoB. J. Biol. Chem.270(39) , 23143–23149 (1995).
  • Hutchings MI , Hong H-J, Buttner MJ. The vancomycin resistance VanRS two-component signal transduction system of Streptomyces coelicolor. Mol. Microbiol.59(3) , 923–935 (2006).
  • Lee WG , HuhJY, ChoSR, LimYA. Reduction in glycopeptide resistance in vancomycin-resistant enterococci as a result of vanA cluster rearrangements. Antimicrob. Agents Chemother.48(4) , 1379–1381 (2004).
  • Sung K , KhanSA, NawazMS. Genetic diversity of Tn1546-like elements in clinical isolates of vancomycin-resistant enterococci. Int. J. Antimicrob. Agents31(6) , 549–554 (2008).
  • Gagnon S , LévesqueS, LefebvreB, Bourgault A-M, Labbé A-C, Roger M. vanA-containing Enterococcus faecium susceptible to vancomycin and teicoplanin because of major nucleotide deletions in Tn1546. J. Antimicrob. Chemother. doi:10.1093/jac/dkr379 (2011) (Epub ahead of print).
  • San Millan A , DepardieuF, GodreuilS, CourvalinP. VanB-Type Enterococcus faecium clinical isolate successively inducibly resistant to, dependent on, and constitutively resistant to vancomycin. Antimicrob. Agents Chemother.53(5) , 1974–1982 (2009).
  • Ribeiro T , SantosS, MarquesMIM, GilmoreM, De Fátima Silva Lopes M. Identification of a new gene, vanV, in vanB operons of Enterococcus faecalis. Int. J. Antimicrob. Agents37(6) , 554–557 (2011).
  • Moubareck C , Meziane-CherifD, CourvalinP, PerichonB. VanA-type Staphylococcus aureus strain VRSA-7 is partially dependent on vancomycin for growth. Antimicrob. Agents Chemother.53(9) , 3657–3663 (2009).
  • Fraimow H , KnobC, HerreroIA, PatelR. Putative VanRS-like two-component regulatory system associated with the inducible glycopeptide resistance cluster of Paenibacillus popilliae. Antimicrob. Agents Chemother.49(7) , 2625–2633 (2005).
  • Poyart C , PierreC, QuesneG, PronB, BercheP, Trieu-CuotP. Emergence of vancomycin resistance in the genus Streptococcus: characterization of a vanB transferable determinant in Streptococcus bovis. Antimicrob. Agents Chemother.41(1) , 24–29 (1997).
  • Domingo MC , HuletskyA, GirouxR et al. High prevalence of glycopeptide resistance genes vanB, vanD, and vanG not associated with enterococci in human fecal flora. Antimicrob. Agents Chemother. 49(11) , 4784–4786 (2005).
  • Werner G , FreitasAR, CoqueTM et al. Host range of enterococcal vanA plasmids among Gram-positive intestinal bacteria. J. Antimicrob. Chemother. 66(2) , 273–282 (2011).
  • Noble WC , ViraniZ, CreeRG. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett.72(2) , 195–198 (1992).
  • Chang S , SievertDM, HagemanJC et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med. 348(14) , 1342–1347 (2003).
  • CDC. Staphylococcus aureus resistant to vancomycin – United States, 2002. Morbid. Mortal. Wkly Rep.51 , 565–567 (2002).
  • Weigel LM , ClewellDB, GillSR et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302(5650) , 1569–1571 (2003).
  • Foucault M -L, Depardieu F, Courvalin P, Grillot-Courvalin C. Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci. Proc. Natl Acad. Sci. USA107(39) , 16964–16969 (2010).
  • Bisicchia P , BuiNK, AldridgeC, VollmerW, DevineKM. Acquisition of VanB-type vancomycin resistance by Bacillus subtilis: the impact on gene expression, cell wall composition and morphology. Mol. Microbiol.81(1) , 157–178 (2011).
  • Moritz EM , HergenrotherPJ. Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. Proc. Natl Acad. Sci. USA104(1) , 311–316 (2007).
  • Johnsen PJ , SimonsenGS, Olsvik Ø, Midtvedt T, Sundsfjord A. Stability, persistence, and evolution of plasmid-encoded VanA glycopeptide resistance in Enterococci in the absence of antibiotic selection in vitro and in gnotobiotic mice. Microbial Drug Resis.8(3) , 161–170 (2002).
  • Hill CM , KrauseKM, LewisSR et al. Specificity of induction of the vanA and vanB operons in vancomycin-resistant enterococci by telavancin. Antimicrob. Agents Chemother. 54(7) , 2814–2818 (2010).
  • Xie J , PierceJG, JamesRC, OkanoA, BogerDL. A redesigned vancomycin engineered for Dual D-Ala-D-Ala and D-Ala-D-Lac binding exhibits potent antimicrobial activity against vancomycin-resistant bacteria. J. Am. Chem. Soc.133(35) , 13946–13949 (2011).
  • Marrero A , Mallorquí-FernándezG, GuevaraT, García-CastellanosR, Gomis-RüthFX. Unbound and acylated structures of the mecR1 extracellular antibiotic-sensor domain provide insights into the signal-transduction system that triggers methicillin resistance. J. Mol. Biol.361(3) , 506–521 (2006).
  • Thumanu K , ChaJ, FisherJF, PerrinsR, MobasheryS, WhartonC. Discrete steps in sensing of β-lactam antibiotics by the BlaR1 protein of the methicillin-resistant Staphylococcus aureus bacterium. Proc. Natl Acad. Sci. USA103(28) , 10630–10635 (2006).
  • Fuda CC , FisherJF, MobasheryS. β-lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome. Cell. Mol. Life Sci.62(22) , 2617–2633 (2005).
  • Mckinney TK , SharmaVK, CraigWA, ArcherGL. Transcription of the gene mediating methicillin resistance in Staphylococcus aureus (mecA) is corepressed but not coinduced by cognate mecA and β-lactamase regulators. J. Bacteriol.183(23) , 6862–6868 (2001).
  • Oliveira DC , De Lencastre H. Methicillin-resistance in Staphylococcus aureus is not affected by the overexpression in trans of the mecA gene repressor: a surprising observation. PLoS One6(8) , e23287 (2011).
  • Berger-Bächi B , SennMM, EnderM et al. Resistance to β-lactam antibiotics. In: Staphylococci in Human Disease. Crossley KB, Archer G, Jeffersin K, Fowler V (Eds). Wiley-Blackwell, Oxford, UK, 170–192 (2010).
  • Malhotra-Kumar S , HaccuriaK, MichielsM et al. Current trends in rapid diagnostics for methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus species. J. Clin. Microbiol. 46(5) , 1577–1587 (2008).
  • Malachowa N , DeleoFR. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci.67(18) , 3057–3071 (2010).
  • Tsubakishita S , Kuwahara-AraiK, BabaT, HiramatsuK. Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus. Antimicrob. Agents Chemother.54(4) , 1469–1475 (2010).
  • Shore AC , DeasyEC, SlickersP et al. Detection of staphylococcal cassette chromosome mec type XI encoding highly divergent mecA, mecI, mecR1, blaZ and ccr genes in human clinical clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 55(8) , 3765–3773 (2011).
  • Song MD , WachiM, DoiM, IshinoF, MatsuhashiM. Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett.221(1) , 167–171 (1987).
  • Rosato AE , KreiswirthBN, CraigWA, EisnerW, ClimoMW, ArcherGL. mecA-blaZ corepressors in clinical Staphylococcus aureus isolates. Antimicrob. Agents Chemother.47(4) , 1460–1463 (2003).
  • Katayama Y , ZhangHZ, HongD, ChambersHF. Jumping the barrier to β-lactam resistance in Staphylococcus aureus. J. Bacteriol.185(18) , 5465–5472 (2003).
  • Ender M , MccallumN, AdhikariR, Berger-BachiB. Fitness cost of SCCmec and methicillin resistance levels in Staphylococcus aureus. Antimicrob. Agents Chemother.48(6) , 2295–2297 (2004).
  • Lee SM , EnderM, AdhikariR, SmithJM, Berger-BachiB, CookGM. Fitness cost of staphylococcal cassette chromosome mec in methicillin-resistant Staphylococcus aureus by way of continuous culture. Antimicrob. Agents Chemother.51(4) , 1497–1499 (2007).
  • Milheirico C , PortelinhaA, KrippahlL, De Lencastre H, Oliveira DC. Evidence for a purifying selection acting on the β-lactamase locus in epidemic clones of methicillin-resistant Staphylococcus aureus. BMC Microbiol.11 , 76 (2011).
  • Goldstein F , PerutkaJ, CuiroloA et al. Identification and phenotypic characterization of aβ-lactam-dependent, methicillin-resistant Staphylococcus aureus strain. Antimicrob. Agents Chemother. 51(7) , 2514–2522 (2007).
  • Garza-González E , LópezD, PezinaC et al. Diversity of staphylococcal cassette chromosome mec structures in coagulase-negative staphylococci and relationship to drug resistance. J. Med. Microbiol. 59(Pt 3) , 323–329 (2010).
  • Garza-González E , Morfín-OteroR, Llaca-DíazJM, Rodriguez-NoriegaE. Staphylococcal cassette chromosome mec (SCCmec) in methicillin-resistant coagulase-negative staphylococci. A review and the experience in a tertiary-care setting. Epidemiol. Infect.138(5) , 645–654 (2010).
  • Miragaia M , ThomasJC, CoutoI, EnrightMC, De Lencastre H. Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J. Bacteriol.189(6) , 2540–2552 (2007).
  • Fessler AT , KadlecK, SchwarzS. Novel apramycin resistance gene apmA in bovine and porcine methicillin-resistant Staphylococcus aureus ST398 isolates. Antimicrob. Agents Chemother.55(1) , 373–375 (2011).
  • Zong Z , LüX. Characterization of a new SCCmec element in Staphylococcus cohnii. PLoS One5(11) , e14016 (2010).
  • Dubnau DA , PollockMR. The genetics of Bacillus licheniformis penicillinase: a preliminary analysis from studies on mutation and inter-strain and intra-strain transformations. J. Gen. Microbiol.41(1) , 7–22 (1965).
  • Sebaihia M , WrenBW, MullanyP et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38(7) , 779–786 (2006).
  • Severin A , TabeiK, TenoverF, ChungM, ClarkeN, TomaszA. High level oxacillin and vancomycin resistance and altered cell wall composition in Staphylococcus aureus carrying the staphylococcal mecA and the enterococcal vanA gene complex. J. Biol. Chem.279(5) , 3398–3407 (2004).
  • Fox PM , LampenRJ, StumpfKS, ArcherGL, ClimoMW. Successful therapy of experimental endocarditis caused by vancomycin-resistant Staphylococcus aureus with a combination of vancomycin and β-lactam antibiotics. Antimicrob. Agents Chemother.50(9) , 2951–2956 (2006).
  • Hiramatsu K . Resistance to glycopeptides. In: Staphylococci in Human Disease. Crossley KB, Archer G, Jeffersin K, Fowler V. (Eds). Wiley, Oxford, UK, 193–209 (2010).
  • Manson JM , KeisS, SmithJM, CookGM. Acquired bacitracin resistance in Enterococcus faecalis is mediated by an ABC transporter and a novel regulatory protein, BcrR. Antimicrob. Agents Chemother.48(10) , 3743–3748 (2004).
  • Gebhard S , GaballaA, HelmannJD, CookGM. Direct stimulus perception and transcription activation by a membrane-bound DNA binding protein. Mol. Microbiol.73(3) , 482–491 (2009).
  • Diarra MS , RempelH, ChampagneJ, MassonL, PritchardJ, ToppE. Distribution of antimicrobial resistance and virulence genes in Enterococcus spp. and characterization of isolates from broiler chickens. Antimicrob. Agents Chemother.76(24) , 8033–8043 (2010).
  • Jorgensen JH , McelmeelML, FulcherLC, McgeeL, GlennenA. Evaluation of disk approximation and single well broth tests for detection of inducible clindamycin resistance in Streptococcus pneumoniae. J. Clin. Microbiol.49(9) , 3332–3333 (2011).
  • Jorgensen JH , McelmeelML, FulcherLC et al. Collaborative evaluation of an erythromycin–clindamycin combination well for detection of inducible clindamycin resistance in β-hemolytic streptococci by use of the CLSI broth microdilution method. J. Clin. Microbiol. 49(8) , 2884–2886 (2011).
  • Wieser A , SchneiderL, JungJ, SchubertS. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond. Appl. Microbiol. Biotechnol.93(3) , 965–974 (2011).
  • Domelier A -S, Van Der Mee-Marquet N, Arnault L et al. Molecular characterization of erythromycin-resistant Streptococcus agalactiae strains. J. Antimicrob. Chemother.62(6) , 1227–1233 (2008).
  • López F , CulebrasE, BetriúC, Rodríguez-AvialI, GómezM, PicazoJJ. Antimicrobial susceptibility and macrolide resistance genes in Enterococcus faecium with reduced susceptibility to quinupristin-dalfopristin: level of quinupristin-dalfopristin resistance is not dependent on erm(B) attenuator region sequence. Diagn. Microbiol. Infect. Dis.66(1) , 73–77 (2010).
  • Soge OO , TivoliLD, MeschkeJS, RobertsMC. A conjugative macrolide resistance gene, mef(A), in environmental Clostridium perfringens carrying multiple macrolide and/or tetracycline resistance genes. J. Appl. Microbiol.106(1) , 34–40 (2009).
  • Yao S , BlausteinJB, BechhoferDH. Erythromycin-induced ribosome stalling and RNase J1-mediated mRNA processing in Bacillus subtilis. Mol. Microbiol.69(6) , 1439–1449 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.