1,268
Views
0
CrossRef citations to date
0
Altmetric
Review

Klebsiella pneumoniae and Type 3 Fimbriae: Nosocomial Infection, Regulation and Biofilm Formation

&
Pages 991-1002 | Published online: 23 Aug 2012

References

  • Feldman C , RossS, MahomedAG, OmarJ, SmithC. The aetiology of severe community-acquired pneumonia and its impact on initial, empiric, antimicrobial chemotherapy. Respir. Med.89(3) , 187–192 (1995).
  • Lee KH , HuiKP, TanWC, LimTK. Severe community-acquired pneumonia in Singapore. Singapore Med. J.37(4) , 374–377 (1996).
  • Cerwenka H . Pyogenic liver abscess: differences in etiology and treatment in southeast Asia and central Europe. World J. Gastroenterol.16(20) , 2458–2462 (2010).
  • Lee CH , HuTH, LiuJW. Splenic abscess caused by Klebsiella pneumoniae and non-Klebsiella pneumoniae in Taiwan: emphasizing risk factors for acquisition of Klebsiella pneumoniae splenic abscess. Scand. J. Infect. Dis.37(11–12) , 905–909 (2005).
  • Sheu SJ , KungYH, WuTT, ChangFP, HorngYH. Risk factors for endogenous endophthalmitis secondary to Klebsiella pneumoniae liver abscess: 20-year experience in southern Taiwan. Retina31(10) , 2026–2031 (2011).
  • Fung CP , ChangFY, LinJC et al. Immune response and pathophysiological features of Klebsiella pneumoniae liver abscesses in an animal model. Lab. Invest. 91(7) , 1029–1039 (2011).
  • Bogdanovich T , Adams-HaduchJM, TianGB et al. Colistin-resistant, Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae belonging to the international epidemic clone ST258. Clin. Infect. Dis. 53(4) , 373–376 (2011).
  • Ciobotaro P , OvedM, NadirE, BardensteinR, ZimhonyO. An effective intervention to limit the spread of an epidemic carbapenem-resistant Klebsiella pneumoniae strain in an acute care setting. from theory to practice. Am. J. Infect. Control39(8) , 671–677 (2011).
  • Kumar V , SunP, VamathevanJ et al. Comparative genomics of Klebsiella pneumoniae strains with different antibiotic resistance profiles. Antimicrob. Agents Chemother. 55(9) , 4267–4276 (2011).
  • Piednoir E , ThibonP, BorderanGC et al. Long-term clinical and economic benefits associated with the management of a nosocomial outbreak resulting from extended-spectrum beta-lactamase-producing Klebsiella pneumoniae. Crit. Care Med. 39(12) , 2672–2677 (2011).
  • Won SY , Munoz-PriceLS, LolansK et al. Emergence and rapid regional spread of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin. Infect. Dis. 53(6) , 532–540 (2011).
  • da Silva RM , TraebertJ, GalatoD. Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae. a review of epidemiological and clinical aspects. Expert Opin. Biol. Ther. (2012).
  • Gijon D , CuriaoT, BaqueroF, CoqueTM, CantonR. Fecal carriage of carbapenemase-producing enterobacteriaceae: a hidden reservoir in hospitalized and nonhospitalized patients. J. Clin. Microbiol.50(5) , 1558–1563 (2012).
  • Casewell MW , PhillipsI. Aspects of the plasmid-mediated antibiotic resistance and epidemiology of Klebsiella species. Am. J. Med.70(2) , 459–462 (1981).
  • Borer A , Saidel-OdesL, RiesenbergK et al. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect. Control Hosp. Epidemiol. 30(10) , 972–976 (2009).
  • Fiett J , PaluchaA, MiaczynskaB et al. A novel complex mutant beta-lactamase, TEM-68, identified in a Klebsiella pneumoniae isolate from an outbreak of extended-spectrum beta-lactamase-producing Klebsiellae. Antimicrob. Agents Chemother. 44(6) , 1499–1505 (2000).
  • Guet-Revillet H , Le Monnier A, Breton N et al. Environmental contamination with extended-spectrum beta-lactamases: is there any difference between Escherichia coli and Klebsiella spp? Am. J. Infect. Control doi:10.1016/j.ajic.2011.10.007 (2012) (Epub ahead of print).
  • Cohen MJ , BlockC, LevinPD et al. Institutional control measures to curtail the epidemic spread of carbapenem-resistant Klebsiella pneumoniae: a 4-year perspective. Infect. Control Hosp. Epidemiol. 32(7) , 673–678 (2011).
  • Levy SS , MelloMJ, Gusmao-FilhoFA, CorreiaJB. Colonisation by extended-spectrum beta-lactamase-producing Klebsiella spp. in a paediatric intensive care unit. J. Hosp. Infect.76(1) , 66–69 (2010).
  • Stamm WE . Catheter-associated urinary tract infections: epidemiology, pathogenesis, and prevention. Am. J. Med.91(3B) , 65S–71S (1991).
  • Warren JW , TenneyJH, HoopesJM, MuncieHL, AnthonyWC. A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J. Infect. Dis.146(6) , 719–723 (1982).
  • Kunin CM , ChinQF, ChambersS. Morbidity and mortality associated with indwelling urinary catheters in elderly patients in a nursing home – confounding due to the presence of associated diseases. J. Am. Geriatr. Soc.35(11) , 1001–1006 (1987).
  • Warren JW . Catheter-associated urinary tract infections. Int. J. Antimicrob. Agents17(4) , 299–303 (2001).
  • Casey AL , MermelLA, NightingaleP, ElliottTS. Antimicrobial central venous catheters in adults: a systematic review and meta-analysis. Lancet Infect. Dis.8(12) , 763–776 (2008).
  • Ronald A . The etiology of urinary tract infection: traditional and emerging pathogens. Am. J. Med.113(Suppl. 1A) , 14S–19S (2002).
  • Maki DG , TambyahPA. Engineering out the risk for infection with urinary catheters. Emerg. Infect. Dis.7(2) , 342–347 (2001).
  • Podschun R , SieversD, FischerA, UllmannU. Serotypes, hemagglutinins, siderophore synthesis, and serum resistance of Klebsiella isolates causing human urinary tract infections. J. Infect. Dis.168(6) , 1415–1421 (1993).
  • Tarkkanen AM , AllenBL, WilliamsPH et al. Fimbriation, capsulation, and iron-scavenging systems of Klebsiella strains associated with human urinary tract infection. Infect. Immun. 60(3) , 1187–1192 (1992).
  • Przondo Hessek A , PulvererG. Hemagglutinins of Klebsiella pneumoniae and Klebsiella oxytoca. Zentralbl. Bakteriol. Mikrobiol. Hyg. A.255(4) , 472–478 (1983).
  • Fader RC , DavisCP. Klebsiella pneumoniae-induced experimental pyelitis: the effect of piliation on infectivity. J. Urol.128(1) , 197–201 (1982).
  • Fader RC , DavisCP. Effect of piliation on Klebsiella pneumoniae infection in rat bladders. Infect. Immun.30(2) , 554–561 (1980).
  • Fader RC , Avots-AvotinsAE, DavisCP. Evidence for pili-mediated adherence of Klebsiella pneumoniae to rat bladder epithelial cells in vitro. Infect. Immun.25(2) , 729–737 (1979).
  • Ong CL , BeatsonSA, TotsikaM, ForestierC, McEwanAG, SchembriMA. Molecular analysis of type 3 fimbrial genes from Escherichia coli, Klebsiella and Citrobacter species. BMC Microbiol.10 , 183 (2010).
  • Hornick DB , AllenBL, HornMA, CleggS. Fimbrial types among respiratory isolates belonging to the family Enterobacteriaceae. J. Clin. Microbiol.29(9) , 1795–1800 (1991).
  • Burmolle M , BahlMI, JensenLB, SorensenSJ, HansenLH. Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains. Microbiology154(Pt 1) , 187–195 (2008).
  • Ong CL , UlettGC, MabbettAN et al. Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation. J. Bacteriol. 190(3) , 1054–1063 (2008).
  • Adegbola RA , OldDC. Fimbrial haemagglutinins in Enterobacter species. J. Gen. Microbiol.129(7) , 2175–2180 (1983).
  • Old DC , AdegbolaR, ScottSS. Multiple fimbrial haemagglutinins in Serratia species. Med. Microbiol. Immunol.172(2) , 107–115 (1983).
  • Mobley HL , ChippendaleGR, TenneyJH et al. MR/K hemagglutination of Providencia stuartii correlates with adherence to catheters and with persistence in catheter-associated bacteriuria. J. Infect. Dis. 157(2) , 264–271 (1988).
  • Mobley HL , ChippendaleGR. Hemagglutinin, urease, and hemolysin production by Proteus mirabilis from clinical sources. J. Infect. Dis.161(3) , 525–530 (1990).
  • Allen BL , GerlachGF, CleggS. Nucleotide sequence and functions of mrk determinants necessary for expression of type 3 fimbriae in Klebsiella pneumoniae. J. Bacteriol.173(2) , 916–920 (1991).
  • Gerlach GF , CleggS, AllenBL. Identification and characterization of the genes encoding the type 3 and type 1 fimbrial adhesins of Klebsiella pneumoniae. J. Bacteriol.171(3) , 1262–1270 (1989).
  • Gerlach GF , CleggS. Characterization of two genes encoding antigenically distinct type-1 fimbriae of Klebsiella pneumoniae. Gene64(2) , 231–240 (1988).
  • Stahlhut SG , ChattopadhyayS, StruveC et al. Population variability of the FimH type 1 fimbrial adhesin in Klebsiella pneumoniae. J. Bacteriol. 191(6) , 1941–1950 (2009).
  • Duguid JP . Fimbriae and adhesive properties in Klebsiella strains. J. Gen. Microbiol.21 , 271–286 (1959).
  • Stahlhut SG , StruveC, KrogfeltKA. Klebsiella pneumoniae type 3 fimbriae agglutinate yeast in a mannose-resistant manner. J. Med. Microbiol.61(Pt 3) , 317–322 (2012).
  • Sebghati TA , KorhonenTK, HornickDB, CleggS. Characterization of the type 3 fimbrial adhesins of Klebsiella strains. Infect. Immun.66(6) , 2887–2894 (1998).
  • Gerlach GF , AllenBL, CleggS. Molecular characterization of the type 3 (MR/K) fimbriae of Klebsiella pneumoniae. J. Bacteriol.170(8) , 3547–3553 (1988).
  • Morrissey B , LeneyAC, RegoAT et al. The role of chaperone-subunit usher domain interactions in the mechanism of bacterial pilus biogenesis revealed by ESI-MS. Mol. Cell. Proteomics doi:10.1074/mcp.M111.015289 (2012) (Epub ahead of print).
  • Allen WJ , PhanG, WaksmanG. Pilus biogenesis at the outer membrane of Gram-negative bacterial pathogens. Curr. Opin. Struct. Biol. doi:10.1016/j.sbi.2012.02.001 (2012) (Epub ahead of print).
  • Thanassi DG , SaulinoET, LombardoMJ, RothR, HeuserJ, HultgrenSJ. The PapC usher forms an oligomeric channel. implications for pilus biogenesis across the outer membrane. Proc. Natl Acad. Sci. USA95(6) , 3146–3151 (1998).
  • Leney AC , PhanG, AllenW et al. Second order rate constants of donor-strand exchange reveal individual amino acid residues important in determining the subunit specificity of pilus biogenesis. J. Am. Soc. Mass Spectrom. 22(7) , 1214–1223 (2011).
  • Rose RJ , WelshTS, WaksmanG, AshcroftAE, RadfordSE, PaciE. Donor-strand exchange in chaperone-assisted pilus assembly revealed in atomic detail by molecular dynamics. J. Mol. Biol.375(4) , 908–919 (2008).
  • Chan CH , ChenFJ, HuangYJ et al. Identification of protein domains on major pilin MrkA that affects the mechanical properties of Klebsiella pneumoniae type 3 fimbriae. Langmuir 28(19) , 7428–7435 (2012).
  • Chen FJ , ChanCH, HuangYJ et al. Structural and mechanical properties of Klebsiella pneumoniae type 3 Fimbriae. J. Bacteriol. 193(7) , 1718–1725 (2011).
  • Langstraat J , BohseM, CleggS. Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation. Infect. Immun.69(9) , 5805–5812 (2001).
  • Jagnow J , CleggS. Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology149(Pt 9) , 2397–2405 (2003).
  • Huang YJ , WuCC, ChenMC, FungCP, PengHL. Characterization of the type 3 fimbriae with different MrkD adhesins: possible role of the MrkD containing an RGD motif. Biochem. Biophys. Res. Commun.350(3) , 537–542 (2006).
  • Schurtz TA , HornickDB, KorhonenTK, CleggS. The type 3 fimbrial adhesin gene (mrkD) of Klebsiella species is not conserved among all fimbriate strains. Infect. Immun.62(10) , 4186–4191 (1994).
  • Tarkkanen AM , VirkolaR, CleggS, KorhonenTK. Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells. Infect. Immun.65(4) , 1546–1549 (1997).
  • Miettinen A , WesterlundB, TarkkanenAM et al. Binding of bacterial adhesins to rat glomerular mesangium in vivo. Kidney Int. 43(3) , 592–600 (1993).
  • Tarkkanen AM , AllenBL, WesterlundB et al. Type V collagen as the target for type-3 fimbriae, enterobacterial adherence organelles. Mol. Microbiol. 4(8) , 1353–1361 (1990).
  • Huang YJ , LiaoHW, WuCC, PengHL. MrkF is a component of type 3 fimbriae in Klebsiella pneumoniae. Res. Microbiol.160(1) , 71–79 (2009).
  • Russell PW , OrndorffPE. Lesions in two Escherichia coli type 1 pilus genes alter pilus number and length without affecting receptor binding. J. Bacteriol.174(18) , 5923–5935 (1992).
  • Mobley HL , JarvisKG, ElwoodJP et al. Isogenic P-fimbrial deletion mutants of pyelonephritogenic Escherichia coli: the role of alpha Gal(1–4) beta Gal binding in virulence of a wild-type strain. Mol. Microbiol. 10(1) , 143–155 (1993).
  • Lund B , LindbergF, MarklundBI, NormarkS. The PapG protein is the alpha-D-galactopyranosyl-(1----4)-beta-D-galactopyranose-binding adhesin of uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA84(16) , 5898–5902 (1987).
  • Gerlach GF , AllenBL, CleggS. Type 3 fimbriae among enterobacteria and the ability of spermidine to inhibit MR/K hemagglutination. Infect. Immun.57(1) , 219–224 (1989).
  • Dwyer BE , NewtonKL, KisielaD, SokurenkoEV, CleggS. Single nucleotide polypmorphisms of fimH associated with adherence and biofilm formation by serovars of Salmonella enterica. Microbiology157(Pt 11) , 3162–3171 (2011).
  • Firon N , OfekI, SharonN. Carbohydrate-binding sites of the mannose-specific fimbrial lectins of enterobacteria. Infect. Immun.43(3) , 1088–1090 (1984).
  • Kisiela DI , KramerJJ, TchesnokovaV et al. Allosteric catch bond properties of the FimH adhesin from Salmonella enterica serovar Typhimurium. J. Biol. Chem. 286(44) , 38136–38147 (2011).
  • Clegg S , WilsonJ, JohnsonJ. More than one way to control hair growth: regulatory mechanisms in enterobacteria that affect fimbriae assembled by the chaperone/usher pathway. J. Bacteriol.193(9) , 2081–2088 (2011).
  • Holden NJ , UhlinBE, GallyDL. PapB paralogues and their effect on the phase variation of type 1 fimbriae in Escherichia coli. Mol. Microbiol.42(2) , 319–330 (2001).
  • McVicker G , SunL, SohanpalBK et al. SlyA protein activates fimB gene expression and type 1 fimbriation in Escherichia coli K-12. J. Biol. Chem. 286(37) , 32026–32035 (2011).
  • Kuwahara H , MyersCJ, SamoilovMS. Temperature control of fimbriation circuit switch in uropathogenic Escherichia coli: quantitative analysis via automated model abstraction. PLoS Comput. Biol.6(3) , E1000723 (2010).
  • Peterson SN , ReichNO. GATC flanking sequences regulate Dam activity: evidence for how Dam specificity may influence pap expression. J. Mol. Biol.355(3) , 459–472 (2006).
  • Corcoran CP , DormanCJ. DNA relaxation-dependent phase biasing of the fim genetic switch in Escherichia coli depends on the interplay of H-NS, IHF and LRP. Mol. Microbiol.74(5) , 1071–1082 (2009).
  • Baek CH , KangHY, RolandKL, CurtissR,3rd. Lrp acts as both a positive and negative regulator for type 1 fimbriae production in Salmonella enterica serovar Typhimurium. PLoS One6(10) , E26896 (2011).
  • Rosen DA , PinknerJS, JonesJM, WalkerJN, CleggS, HultgrenSJ. Utilization of an intracellular bacterial community pathway in Klebsiella pneumoniae urinary tract infection and the effects of FimK on type 1 pilus expression. Infect. Immun.76(7) , 3337–3345 (2008).
  • Wu CC , HuangYJ, FungCP, PengHL. Regulation of the Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. Microbiology156(Pt 7) , 1983–1992 (2010).
  • Johnson JG , MurphyCN, SippyJ, JohnsonTJ, CleggS. Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae. J. Bacteriol.193(14) , 3453–3460 (2011).
  • Benach J , SwaminathanSS, TamayoR et al. The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J. 26(24) , 5153–5166 (2007).
  • Tamayo R , PrattJT, CamilliA. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu. Rev. Microbiol.61 , 131–148 (2007).
  • McDonough KA , RodriguezA. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat. Rev. Microbiol.10(1) , 27–38 (2011).
  • Romling U , SimmR. Prevailing concepts of c-di-GMP signaling. Contrib. Microbiol.16 , 161–181 (2009).
  • Sondermann H , ShikumaNJ, YildizFH. You‘ve come a long way: c-di-GMP signaling. Curr. Opin. Microbiol.15(2) , 140–146 (2012).
  • Johnson JG , CleggS. Role of MrkJ, a phosphodiesterase, in type 3 fimbrial expression and biofilm formation in Klebsiella pneumoniae. J. Bacteriol.192(15) , 3944–3950 (2010).
  • Liao YT , ChinKH, KuoWT, ChuahML, LiangZX, ChouSH. Crystallization and preliminary X-ray diffraction characterization of the XccFimX(EAL)-c-di-GMP and XccFimX(EAL)-c-di-GMP-XccPilZ complexes from Xanthomonas campestris. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun.68(Pt 3) , 301–305 (2012).
  • Pitzer JE , SultanSZ, HayakawaY, HobbsG, MillerMR, MotalebMA. Analysis of the Borrelia burgdorferi cyclic-di-GMP-binding protein PlzA reveals a role in motility and virulence. Infect. Immun.79(5) , 1815–1825 (2011).
  • Shin JS , RyuKS, KoJ, LeeA, ChoiBS. Structural characterization reveals that a PilZ domain protein undergoes substantial conformational change upon binding to cyclic dimeric guanosine monophosphate. Protein Sci.20(2) , 270–277 (2011).
  • Ko J , RyuKS, KimH et al. Structure of PP4397 reveals the molecular basis for different c-di-GMP binding modes by Pilz domain proteins. J. Mol. Biol. 398(1) , 97–110 (2010).
  • Freedman JC , RogersEA, KostickJL et al. Identification and molecular characterization of a cyclic-di-GMP effector protein, PlzA (BB0733): additional evidence for the existence of a functional cyclic-di-GMP regulatory network in the Lyme disease spirochete, Borrelia burgdorferi. FEMS Immunol. Med. Microbiol. 58(2) , 285–294 (2010).
  • Wilksch JJ , YangJ, ClementsA et al. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathog. 7(8) , E1002204 (2011).
  • Wu CC , LinCT, ChengWY, HuangCJ, WangZC, PengHL. Fur dependent MrkHI regulation of type 3 fimbriae in Klebsiella pneumoniae CG43. Microbiology158(Pt 4) , 1045–1056 (2012).
  • Hennequin C , ForestierC. oxyR, a LysR-type regulator involved in Klebsiella pneumoniae mucosal and abiotic colonization. Infect. Immun.77(12) , 5449–5457 (2009).
  • Schroll C , BarkenKB, KrogfeltKA, StruveC. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol.10 , 179 (2010).
  • Struve C , BojerM, KrogfeltKA. Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect. Immun.77(11) , 5016–5024 (2009).
  • Struve C , ForestierC, KrogfeltKA. Application of a novel multi-screening signature-tagged mutagenesis assay for identification of Klebsiella pneumoniae genes essential in colonization and infection. Microbiology149(Pt 1) , 167–176 (2003).
  • Agarwal A , SinghKP, JainA. Medical significance and management of staphylococcal biofilm. FEMS Immunol. Med. Microbiol.58(2) , 147–160 (2010).
  • Hojo K , NagaokaS, OhshimaT, MaedaN. Bacterial interactions in dental biofilm development. J. Dent. Res.88(11) , 982–990 (2009).
  • Monds RD , O‘TooleGA. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol.17(2) , 73–87 (2009).
  • Hornick DB , ThommandruJ, SmitsW, CleggS. Adherence properties of an mrkD-negative mutant of Klebsiella pneumoniae. Infect. Immun.63(5) , 2026–2032 (1995).
  • Stahlhut SG , StruveC, KrogfeltKA, ReisnerA. Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae. FEMS Immunol. Med. Microbiol.65(2) , 350–359 (2012).
  • Anderl JN , FranklinMJ, StewartPS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother.44(7) , 1818–1824 (2000).
  • Lazar V , ChifiriucMC. Medical significance and new therapeutical strategies for biofilm associated infections. Roum. Arch. Microbiol. Immunol.69(3) , 125–138 (2010).
  • Long DY , HuSP, ChenXC, LiuL, ChenYX. Persisters and their effects on microbial biofilm tolerance: a review. Ying Yong Sheng Tai Xue Bao21(10) , 2707–2714 (2010).
  • Lewis K . Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol.322 , 107–131 (2008).
  • Francois P , VaudauxP, LewPD. Role of plasma and extracellular matrix proteins in the physiopathology of foreign body infections. Ann. Vasc. Surg.12(1) , 34–40 (1998).
  • Stahlhut SG , SchrollC, HarmsenM, StruveC, KrogfeltKA. Screening for genes involved in Klebsiella pneumoniae biofilm formation using a fosmid library. FEMS Immunol. Med. Microbiol.59(3) , 521–524 (2010).
  • Di Martino P , CafferiniN, JolyB, Darfeuille-MichaudA. Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. Res. Microbiol.154(1) , 9–16 (2003).
  • Abou-Dobara MI , DeyabMA, ElsawyEM, MohamedHH. Antibiotic susceptibility and genotype patterns of Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa isolated from urinary tract infected patients. Pol. J. Microbiol.59(3) , 207–212 (2010).
  • Podschun R , UllmannU. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev.11(4) , 589–603 (1998).
  • Adegbola RA , OldDC. Fimbrial and non-fimbrial haemagglutinins in Enterobacter aerogenes. J. Med. Microbiol.19(1) , 35–43 (1985).
  • Old DC , AdegbolaRA. Antigenic relationships among type-3 fimbriae of Enterobacteriaceae revealed by immunoelectronmicroscopy. J. Med. Microbiol.20(1) , 113–121 (1985).
  • Guiton PS , HungCS, HancockLE, CaparonMG, HultgrenSJ. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract infections. Infect. Immun.78(10) , 4166–4175 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.