121
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Mitigation of Human-Pathogenic Fungi that Exhibit Resistance to Medical Agents: Can Clinical Antifungal Stewardship Help?

, &
Pages 307-325 | Published online: 24 Apr 2014

References

  • Neu HC . The crisis in antibiotic resistance . Science257 ( 5073 ), 1064 – 1073 ( 1992 ).
  • Goff DA . Antimicrobial stewardship: bridging the gap between quality care and cost . Curr. Opin. Infect. Dis.24 , S11 – S20 ( 2011 ).
  • Pfaller MA , DiekemaDJ . Epidemiology of invasive candidiasis: a persistent public health problem . Clin. Microbiol. Rev.20 ( 1 ), 133 – 163 ( 2007 ).
  • Pfaller MA , CastanheiraM , MesserSA , Moet GJ , JonesRN . Variation in Candida spp. distribution and antifungal resistance rates among bloodstream infection isolates by patient age: report from the SENTRY Antimicrobial Surveillance Program (2008–2009) . Diagn. Microbiol. Infect. Dis.68 ( 3 ), 278 – 283 ( 2010 ).
  • Denning DW , PerlinDS . Azole resistance in Aspergillus: a growing public health menace . Future Microbiol.6 ( 11 ), 1229 – 1232 ( 2011 ).
  • Edwards MR , BartlettNW , HussellT , OpenshawP , JohnstonSL . The microbiology of asthma . Nat. Rev. Microbiol.10 ( 7 ), 459 – 471 ( 2012 ).
  • Perfect JR . The triple threat of cryptococcosis: it’s the body site, the strain, and/or the host . MBio3 ( 4 ), e00165 – 12 ( 2012 ).
  • Moellering RC Jr , GraybillJRJr , McGowan JE , CoreyL . Antimicrobial resistance prevention initiative – an update: proceedings of an expert panel on resistance . Am. J. Infect. Control35 ( 9 ), S1 – S23 ( 2007 ).
  • Valerio M , RodriguezC , MunozP , Sanjurjo M . Antifungal use evaluation: a first step towards the design of antifungal stewardship . Abstr. Intersci. Conf. Antimicrob. Agents Chemother.51 , M-283 ( 2011 ).
  • Sinko J , BryanJ . Latest trends in fungal epidemiology inform treatment choices and stewardship initiatives . Future Microbiol.7 ( 10 ), 1141 – 1146 ( 2012 ).
  • Ananda-Rajah MR , SlavinMA , ThurskyKT . The case for antifungal stewardship . Curr. Opin. Infect. Dis.25 ( 1 ), 107 – 115 ( 2012 ).
  • Lopez-Medrano F , LizasoainM , CatalanMet al. A non-compulsory programme for management of antifungals in a university affiliated hospital: first report of an antifungal-stewardship program . Abstr. Intersci. Conf. Antimicrob. Agents Chemother.49 , 367 – 367 ( 2009 ).
  • Mondain V , LieutierF , HasseineLet al. A 6-year antifungal stewardship programme in a teaching hospital . Infection41 ( 3 ), 621 – 628 ( 2013 ).
  • Hof H . Will resistance in fungi emerge on a scale similar to that seen in bacteria?Eur. J. Clin. Microbiol. Infect. Dis.27 ( 5 ), 327 – 334 ( 2008 ).
  • Hof H . Is there a serious risk of resistance development to azoles among fungi due to the widespread use and long-term application of azole antifungals in medicine?Drug Resist. Updates11 ( 1–2 ), 25 – 31 ( 2008 ).
  • Hof H . Resistance of fungi against medically relevant antifungals . Andrias19 , 273 ( 2012 ).
  • Pfaller MA . Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment . Am. J. Med.125 ( 1 ), S3 – S13 ( 2012 ).
  • Vandeputte P , FerrariS , CosteAT . Antifungal resistance and new strategies to control fungal infections . Int. J. Microbiol.2012 , 713687 ( 2012 ).
  • European Centre for Disease Prevention and Control. Risk assessment on the impact of environmental usage of triazoles on the development and spread of resistance to medical triazoles in Aspergillus species. ECDC, Stockholm, Sweden (2013).
  • Cornely OA , AversaF , CookPet al. Evaluating the role of prophylaxis in the management of invasive fungal infections in patients with hematologic malignancy . Eur. J. Haematol.87 ( 4 ), 289 – 301 ( 2011 ).
  • Denning DW , BowyerP . Voriconazole resistance in Aspergillus fumigatus: should we be concerned?Clin. Infect. Dis.57 ( 4 ), 521 – 523 ( 2013 ).
  • Loyse A , ThangarajH , EasterbrookPet al. Cryptococcal meningitis: improving access to essential antifungal medicines in resource-poor countries . Lancet Infect. Dis.13 ( 7 ), 629 – 637 ( 2013 ).
  • Chakrabarti A , SinghR . The emerging epidemiology of mould infections in developing countries . Curr. Opin. Infect. Dis.24 ( 6 ), 521 – 526 ( 2011 ).
  • Petrikkos G , SkiadaA , LortholaryO , Roilides E , WalshTJ , KontoyiannisDP . Epidemiology and clinical manifestations of mucormycosis . Clin. Infect. Dis.54 , S23 – S34 ( 2012 ).
  • Kontoyiannis DP , LewisRE , LotholaryOet al. Future directions in mucormycosis Research . Clin. Infect. Dis.54 , S79 – S85 ( 2012 ).
  • Martel CM , ParkerJE , BaderOet al. Identification and characterization of four azole-resistant erg3 mutants of Candida albicans . Antimicrob. Agents Chemother.54 ( 11 ), 4527 – 4533 ( 2010 ).
  • Martel CM , ParkerJE , BaderOet al. A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14α-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B . Antimicrob. Agents Chemother.54 ( 9 ), 3578 – 3583 ( 2010 ).
  • Morio F , LogeC , BesseB , HennequinC , LePape P . Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature . Diagn. Microbiol. Infect. Dis.66 ( 4 ), 373 – 384 ( 2010 ).
  • Hull CM , ParkerJE , BaderOet al. Facultative sterol uptake in an ergosterol-deficient clinical isolate of Candida glabrata harboring a missense mutation in ERG11 and exhibiting cross-resistance to azoles and amphotericin B . Antimicrob. Agents Chemother.56 ( 8 ), 4223 – 4232 ( 2012 ).
  • Hull CM , BaderO , ParkerJEet al. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2 . Antimicrob. Agents Chemother.56 ( 12 ), 6417 – 6421 ( 2012 ).
  • Vandeputte P , TronchinG , LarcherGet al. A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of Candida glabrata . Antimicrob. Agents Chemother.52 ( 10 ), 3701 – 3709 ( 2008 ).
  • Eddouzi J , ParkerJE , Vale-SilvaLAet al. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals . Antimicrob. Agents Chemother.57 ( 7 ), 3182 – 3193 ( 2013 ).
  • Chapeland-Leclerc F , HennequinC , Papon Net al. Acquisition of flucytosine, azole, and caspofungin resistance in Candida glabrata bloodstream isolates serially obtained from a hematopoietic stem cell transplant recipient . Antimicrob. Agents Chemother.54 ( 3 ), 1360 – 1362 ( 2010 ).
  • Healey KR , KatiyarSK , RajS , EdlindTD . CRS-MIS in Candida glabrata: sphingolipids modulate echinocandin–Fks interaction . Mol. Microbiol.86 ( 2 ), 303 – 313 ( 2012 ).
  • Alexander BD , JohnsonMD , PfeifferCDet al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations . Clin. Infect. Dis.56 ( 12 ), 1724 – 1732 ( 2013 ).
  • Kelly SL , LambDC , TaylorM , CorranAJ , BaldwinBC , PowderlyWG . Resistance to amphotericin B associated with defective sterol delta(8–7) isomerase in a Cryptococcus neoformans strain from an AIDS patient . FEMS Microbiol. Lett.122 ( 1–2 ), 39 – 42 ( 1994 ).
  • Hochenfellner F , GuelfandL , CordobaSet al. Ergosterol content decrease in serial clonally-related isolates of recurrent cryptococcal meningitis, tolerant to amphotericin B (AMB) . Abstr. Intersci. Conf. Antimicrob. Agents Chemother.41 , 360 ( 2001 ).
  • Park BJ , WannemuehlerKA , MarstonBJ , GovenderN , PappasPG , ChillerTA . Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS . Aids23 ( 4 ), 525 – 530 ( 2009 ).
  • Brun S , DalleF , SaulnierPet al. Biological consequences of petite mutations in Candida glabrata . J. Antimicrob. Chemother.56 ( 2 ), 307 – 314 ( 2005 ).
  • Tsai HF , BardM , IzumikawaKet al. Candida glabrata erg1 mutant with increased sensitivity to azoles and to low oxygen tension . Antimicrob. Agents Chemother.48 ( 7 ), 2483 – 2489 ( 2004 ).
  • Morio F , PagniezF , LacroixC , MiegevilleM , LePape P . Amino acid substitutions in the Candida albicans sterol delta(5,6)-desaturase (Erg3p) confer azole resistance: characterization of two novel mutants with impaired virulence . J. Antimicrob. Chemother.67 ( 9 ), 2131 – 2138 ( 2012 ).
  • Vale-Silva LA , CosteAT , IscherFet al. Azole resistance by loss of function of the sterol delta(5,6)-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence . Antimicrob. Agents Chemother.56 ( 4 ), 1960 – 1968 ( 2012 ).
  • Watson PF , RoseME , EllisSW , EnglandH , KellySL . Defective sterol C5–6 desaturation and azole resistance – a new hypothesis for the mode of action of azole antifungals . Biochem. Biophys. Res. Commun.164 ( 3 ), 1170 – 1175 ( 1989 ).
  • Guan XL , SouzaCM , PichlerHet al. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology . Mol. Biol. Cell20 ( 7 ), 2083 – 2095 ( 2009 ).
  • Valachovic M , BareitherBM , BhuiyanMSet al. Cumulative mutations affecting sterol biosynthesis in the yeast Saccharomyces cerevisiae result in synthetic lethality that is suppressed by alterations in sphingolipid profiles . Genetics173 ( 4 ), 1893 – 1908 ( 2006 ).
  • Shahi P , Moye-RowleyWS . Coordinate control of lipid composition and drug transport activities is required for normal multidrug resistance in fungi . Biochim. Biophys. Acta1794 ( 5 ), 852 – 859 ( 2009 ).
  • Ferrari S , IscherF , CalabreseDet al. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence . PLoS Pathog.5 ( 1 ) ( 2009 ).
  • Vale-Silva L , IscherF , Leibundgut-Landmann S , SanglardD . Gain-of-function mutations in PDR1, a regulator of antifungal drug resistance in Candida glabrata, control adherence to host cells . Infect. Immun.81 ( 5 ), 1709 – 1720 ( 2013 ).
  • Arendrup MC , MavridouE , MortensenKLet al. Development of azole resistance in Aspergillus fumigatus during azole therapy associated with change in virulence . PLoS ONE5 ( 4 ), e10080 ( 2010 ).
  • Hull CM , PurdyNJ . Nonantifungal clinical drug interventions and human-commensal fungi: what are we selecting?Future Microbiol.8 ( 7 ), 813 – 816 ( 2013 ).
  • Lin XR , HullCM , HeitmanJ . Sexual reproduction between partners of the same mating type in Cryptococcus neoformans . Nature434 ( 7036 ), 1017 – 1021 ( 2005 ).
  • Alby K , SchaeferD , BennettRJ . Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans . Nature460 ( 7257 ), 890-U127 ( 2009 ).
  • Arabatzis M , VelegrakiA . Sexual reproduction in the opportunistic human pathogen Aspergillus terreus . Mycologia105 ( 1 ), 71 – 79 ( 2013 ).
  • Swilaiman SS , O’GormanCM , BalajeeSA , DyerPS . Discovery of a sexual cycle in Aspergillus lentulus, a close relative of A. fumigatus . Eukaryotic Cell12 ( 7 ), 962 – 969 ( 2013 ).
  • O’Gorman CM , FullerHT , DyerPS . Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus . Nature457 ( 7228 ), 471 – 474 ( 2009 ).
  • Coelho MA , GonçalvesC , SampaioJP , GonçalvesP . Extensive intra-kingdom horizontal gene transfer converging on a fungal fructose transporter gene . PLoS Genet.9 ( 6 ), e1003587 ( 2013 ).
  • Mansfield BE , OlteanHN , OliverBGet al. Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi . PLoS Pathog.6 ( 9 ), e1001126 ( 2010 ).
  • Asha S , VidyavathiM . Cunninghamella – a microbial model for drug metabolism studies. A review . Biotechnol. Adv.27 ( 1 ), 16 – 29 ( 2009 ).
  • Butts A , DiDoneL , KoselnyKet al. A repurposing approach identifies off-patent drugs with fungicidal cryptococcal activity, a common structural chemotype, and pharmacological properties relevant to the treatment of cryptococcosis . Eukaryotic Cell12 ( 2 ), 278 – 287 ( 2013 ).
  • Roemer T , BooneC . Systems-level antimicrobial drug and drug synergy discovery . Nat. Chem. Biol.9 ( 4 ), 222 – 231 ( 2013 ).
  • Cools HJ , Hammond-KosackKE . Exploitation of genomics in fungicide research: current status and future perspectives . Mol. Plant Pathol.14 ( 2 ), 197 – 210 ( 2013 ).
  • Camps SMT , vander Linden JW , LiYet al. Rapid induction of multiple resistance mechanisms in Aspergillus fumigatus during azole therapy: a case study and review of the literature . Antimicrob. Agents Chemother.56 ( 1 ), 10 – 16 ( 2012 ).
  • Snelders E , vander Lee HAL , KuijpersJet al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism . PLoS Med.5 ( 11 ), 1629 – 1637 ( 2008 ).
  • Snelders E , VeldR , RijsAet al. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles . Appl. Environ. Microbiol.75 , 4053 – 4057 ( 2009 ).
  • Verweij PE , SneldersE , KemaGHJ , MelladoE , MelchersWJG . Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use?Lancet Infect. Dis.9 ( 12 ), 789 – 795 ( 2009 ).
  • Snelders E , CampsSM , KarawajczykAet al. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus . PLoS ONE7 ( 3 ), e31801 ( 2012 ).
  • Verweij PE , vande Sande-Bruisma N , KemaGHJ , MelchersWJG . Azole resistance in Aspergillus fumigatus in The Netherlands – increase due to environmental fungicides?Ned. Tijdschr. Geneeskd.156 ( 25 ), A4458 ( 2012 ).
  • Bader O , WeigM , ReichardUet al. Cyp51A-based mechanisms of Aspergillus fumigatus azole drug resistance present in clinical samples from Germany . Antimicrob. Agents Chemother.57 ( 8 ), 3513 – 3517 ( 2013 ).
  • Camps SM , RijsAJ , KlaassenCHet al. Molecular epidemiology of Aspergillus fumigatus isolates harboring the TR34/L98H azole resistance mechanism . J. Clin. Microbiol.50 ( 8 ), 2674 – 2680 ( 2012 ).
  • Chowdhary A , KathuriaS , XuJet al. Clonal expansion and emergence of environmental multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR34/L98H mutations in the cyp51A gene in India . PLoS ONE7 ( 12 ), e52871 ( 2012 ).
  • Escribano P , PelaezT , MunozP , BouzaE , GuineaJ . Is azole resistance in Aspergillus fumigatus a problem in Spain?Antimicrob. Agents Chemother.57 ( 6 ), 2815 – 2820 ( 2013 ).
  • Morio F , AubinGG , Danner-BoucherIet al. High prevalence of triazole resistance in Aspergillus fumigatus, especially mediated by TR/L98H, in a French cohort of patients with cystic fibrosis . J. Antimicrob. Chemother.67 ( 8 ), 1870 – 1873 ( 2012 ).
  • Rath PM , BuchheidtD , SpiessB , ArfanisE , BuerJ , SteinmannJ . First reported case of azole-resistant Aspergillus fumigatus due to the TR/L98H mutation in Germany . Antimicrob. Agents Chemother.56 ( 11 ), 6060 – 6061 ( 2012 ).
  • Seyedmousavi S , HashemiSJ , ZibafarEet al. Azole-resistant Aspergillus fumigatus, Iran . Emerg. Infect. Dis.19 ( 5 ), 832 – 834 ( 2013 ).
  • Lockhart SR , FradeJP , EtienneKA , PfallerMA , DiekemaDJ , BalajeeSA . Azole resistance in Aspergillus fumigatus isolates from the ARTEMIS global surveillance study is primarily due to the TR/L98H mutation in the cyp51A gene . Antimicrob. Agents Chemother.55 ( 9 ), 4465 – 4468 ( 2011 ).
  • van der Linden JW , CampsSM , Kampinga GAet al. Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles . Clin. Infect. Dis.57 ( 4 ), 513 – 520 ( 2013 ).
  • Stammler G , CarstensenM , KochAet al. Frequency of different CYP51-haplotypes of Mycosphaerella graminicola and their impact on epoxiconazole-sensitivity and -field efficacy . Crop Protect.27 , 1448 – 1456 ( 2008 ).
  • Snelders E , KarawajczykA , VerhoevenRJet al. The structure–function relationship of the Aspergillus fumigatus cyp51A L98H conversion by site-directed mutagenesis: the mechanism of L98H azole resistance . Fungal Genet. Biol.48 ( 11 ), 1062 – 1070 ( 2011 ).
  • Cross EW , ParkS , PerlinDS . Cross-resistance of clinical isolates of Candida albicans and Candida glabrata to over-the-counter azoles used in the treatment of vaginitis . Microb. Drug Resist.6 ( 2 ), 155 – 161 ( 2000 ).
  • Gnanadhas DP , MaratheSA , ChakravorttyD . Biocides – resistance, cross-resistance mechanisms and assessment . Expert Opin. Invest. Drugs22 ( 2 ), 191 – 206 ( 2013 ).
  • Sharma P , KumarM , MathurN , SinghA , BhatnagarP , SoganiM . Health care industries: potential generators of genotoxic waste . Environ. Sci. Pollut. Res.20 ( 8 ), 5160 – 5167 ( 2013 ).
  • Liu X. Asian Mycological Congress and the 13th International Marine and Freshwater Mycology Symposia, Beijing, China, 19–24 August 2013.
  • Etienne KA , GilleceJ , HilsabeckRet al. Whole genome sequence typing to investigate the Apophysomyces outbreak following a tornado in Joplin, Missouri, 2011 . PLoS ONE7 ( 11 ), e49989 ( 2012 ).
  • Fanfair RN , BenedictK , BosJet al. Necrotizing cutaneous mucormycosis after a tornado in Joplin, Missouri, in 2011 . N. Engl. J. Med.367 ( 23 ), 2214 – 2225 ( 2012 ).
  • Roy M , BenedictK , DeakEet al. A large community outbreak of blastomycosis in Wisconsin with geographic and ethnic clustering . Clin. Infect. Dis.57 ( 5 ), 655 – 662 ( 2013 ).
  • Denning DW , ParkS , Lass-FlorlCet al. High-frequency triazole resistance found in nonculturable Aspergillus fumigatus from lungs of patients with chronic fungal disease . Clin. Infect. Dis.52 ( 9 ), 1123 – 1129 ( 2011 ).
  • Panackal AA , LiH , KontoyiannisDPet al. Geoclimatic influences on invasive Aspergillosis after hematopoietic stem cell transplantation . Clin. Infect. Dis.50 ( 12 ), 1588 – 1597 ( 2010 ).
  • Brilhante RS , PaivaMA , SampaioCMet al. Yeasts from Macrobrachium amazonicum: a focus on antifungal susceptibility and virulence factors of Candida spp . FEMS Microbiol. Ecol.76 ( 2 ), 268 – 277 ( 2011 ).
  • Castelo-Branco DS , BrilhanteRS , PaivaMAet al. Azole-resistant Candida albicans from a wild Brazilian porcupine (Coendou prehensilis): a sign of an environmental imbalance? Med. Mycol. 51 ( 5 ), 555 – 560 ( 2013 ).
  • Brilhante RS , de AlencarLP , CordeiroRde Aet al. Detection of Candida species resistant to azoles in the microbiota of rheas (Rhea americana): possible implications for human and animal health . J. Med. Microbiol.62 , 889 – 895 ( 2013 ).
  • Freeman R , MooreLS , AlvarezLG , CharlettA , HolmesA . Advances in electronic surveillance for healthcare-associated infections in the 21st century: a systematic review . J. Hosp. Infect.84 ( 2 ), 106 – 119 ( 2013 ).
  • Harris MR , CootePJ . Combination of caspofungin or anidulafungin with antimicrobial peptides results in potent synergistic killing of Candida albicans and Candida glabrata in vitro . Int. J. Antimicrob. Agents35 ( 4 ), 347 – 356 ( 2010 ).
  • Day JN , ChauTT , WolbersMet al. Combination antifungal therapy for cryptococcal meningitis . N. Engl. J. Med.368 ( 14 ), 1291 – 1302 ( 2013 ).
  • Loyse A , BicanicT , JarvisJN . Combination antifungal therapy for cryptococcal meningitis . N. Engl. J. Med.368 ( 26 ), 2522 – 2522 ( 2013 ).
  • Hill JA , AmmarR , TortiD , NislowC , CowenLE . Genetic and genomic architecture of the evolution of resistance to antifungal drug combinations . PLoS Genet.9 ( 4 ), e1003390 ( 2013 ).
  • Mehra T , KoeberleM , BraunsdorfC , Mailaender-SanchezD , BorelliC , SchallerM . Alternative approaches to antifungal therapies . Exp. Dermatol.21 ( 10 ), 778 – 782 ( 2012 ).
  • Groll AH , LumbJ . New developments in invasive fungal disease . Future Microbiol.7 ( 2 ), 179 – 184 ( 2012 ).
  • 51st Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). Chicago, IL, USA, 17–20 September 2011.
  • Cassone A , CasadevallA . Recent progress in vaccines against fungal diseases . Curr. Opin. Microbiol.15 ( 4 ), 427 – 433 ( 2012 ).
  • Pikman R , Ben-AmiR . Immune modulators as adjuncts for the prevention and treatment of invasive fungal infections . Immunotherapy4 ( 12 ), 1869 – 1882 ( 2012 ).
  • Lin TY , ChinCR , EverittARet al. Amphotericin B increases influenza A virus infection by preventing IFITM3-mediated restriction . Cell Rep.5 ( 4 ), 895 – 908 ( 2013 ).
  • de Hoog GS , HaaseG , ChaturvediV , WalshTJ , MeyerW , LacknerM . Taxonomy of medically important fungi in the molecular era . Lancet Infect. Dis.13 ( 5 ), 385 – 386 ( 2013 ).
  • Nuwaysir EF , BittnerM , TrentJ , BarrettJC , AfshariCA . Microarrays and toxicology: the advent of toxicogenomics . Mol. Carcinog.24 ( 3 ), 153 – 159 ( 1999 ).
  • Yasokawa D , IwahashiH . Toxicogenomics using yeast DNA microarrays . J. Biosci. Bioeng.110 ( 5 ), 511 – 522 ( 2010 ).
  • Snape JR , MaundSJ , PickfordDB , HutchinsonTH . Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology . Aquat. Toxicol.67 ( 2 ), 143 – 154 ( 2004 ).
  • Fungal Research Trust. http://fungalresearchtrust.org/howcommonarefungaldiseases2.pdf
  • Fungal Genome Initiative (FGI), Broad Institute. www.broadinstitute.org/scientific-community/science/projects/fungal-genome-initiative/fungal-genome-initiative

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.