225
Views
0
CrossRef citations to date
0
Altmetric
Review

Elucidating the Role of T cells in Protection Against and Pathogenesis of Dengue Virus Infections

, &
Pages 411-425 | Published online: 24 Apr 2014

References

  • Sahaphong S , RiengrojpitakS , BhamarapravatiN , ChirachariyavejT . Electron microscopic study of the vascular endothelial cell in dengue hemorrhagic fever . Southeast Asian J. Trop. Med. Public Health11 , 194 – 204 ( 1980 ).
  • Kurane I , EnnisFA . Immunity and immunopathology in dengue virus infections . Sem. Immunol.4 , 121 – 127 ( 1992 ).
  • Rothman AL . Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms . Nat. Rev. Immunol.11 , 532 – 543 ( 2011 ).
  • Sun P , KochelTJ.  The battle between infection and host immune responses of dengue virus and its implication in dengue disease pathogenesis The battle between infection and host immune responses of dengue virus and its implication in dengue disease pathogenesis . ScientificWorldJournal2013 , 843469 ( 2013 ).
  • Balsitis SJ , ColomaJ , CastroGet al. Tropism of dengue virus in mice and humans defined by viral nonstructural protein 3-specific immunostaining . Am. J. Trop. Med. Hyg.80 , 416 – 424 ( 2009 ).
  • King AD , NisalakA , KalayanroojSet al. B cells are the principal circulating mononuclear cells infected by dengue virus . Southeast Asian J. Trop. Med. Public Health30 , 718 – 728 ( 1999 ).
  • Lin YW , WangKJ , LeiHYet al. Virus replication and cytokine production in dengue virus-infected human B lymphocytes . J. Virol.76 , 12242 – 12249 ( 2002 ).
  • Kou Z , QuinnM , ChenHet al. Monocytes, but not T or B cells, are the principal target cells for dengue virus (DV) infection among human peripheral blood mononuclear cells . J. Med. Virol.80 , 134 – 146 ( 2008 ).
  • Murphy BR , WhiteheadSS . Immune response to dengue virus and prospects for a vaccine . Annu. Rev. Immunol.29 , 587 – 619 ( 2011 ).
  • Dowd KA , PiersonTC . Antibody-mediated neutralization of flaviviruses: a reductionist view . Virology411 , 306 – 315 ( 2011 ).
  • Burton DR , PoignardP , StanfieldRL , WilsonIA . Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses . Science337 , 183 – 186 ( 2012 ).
  • Flipse J , WilschutJ , SmitJM . Molecular mechanisms involved in antibody-dependent enhancement of dengue virus infection in humans . Traffic14 , 25 – 35 ( 2013 ).
  • Garcia G , ArangoM , PerezABet al. Antibodies from patients with dengue viral infection mediate cellular cytotoxicity . J. Clin. Virol.37 , 53 – 57 ( 2006 ).
  • Laoprasopwattana K , LibratyDH , EndyTPet al. Antibody dependent cellular cytotoxicity in pre-secondary dengue virus serotype 3 (DV3) but not in DV2 infection plasma samples inversely correlated with viremia levels . J. Infect. Dis.195 , 1108 – 1116 ( 2007 ).
  • Green S , RothmanA . Immunopathological mechanisms in dengue and dengue hemorrhagic fever . Curr. Opin. Infect. Dis.19 , 429 – 436 ( 2006 ).
  • Kurane I , MatsutaniT , SuzukiRet al. T-cell responses to dengue virus in humans . Trop. Med. Health39 , 45 – 51 ( 2011 ).
  • Rothman AL . Dengue: defining protective versus pathologic immunity . J. Clin. Invest.113 , 946 – 951 ( 2004 ).
  • Mathew A , RothmanAL . Understanding the contribution of cellular immunity to dengue disease pathogenesis . Immunol. Rev.225 , 300 – 313 ( 2008 ).
  • Gagnon SJ , ZengW , KuraneI , EnnisFA . Identification of two epitopes on the dengue 4 virus capsid protein recognized by a serotype-specific and a panel of serotype-cross-reactive human CD4+ cytotoxic T-lymphocyte clones . J. Virol.70 , 141 – 147 ( 1996 ).
  • Green S , KuraneI , PincusS , PaolettiE , EnnisFA . Recognition of dengue virus NS1-NS2a proteins by human CD4+ cytotoxic T lymphocyte clones . Virology234 , 383 – 386 ( 1997 ).
  • Kurane I , DaiLC , LivingstonPG , ReedE , EnnisFA . Definition of an HLADPw2-restricted epitope on NS3, recognized by a dengue virus serotype-cross-reactive human CD4+ CD8- cytotoxic T-cell clone . J. Virol.67 , 6285 – 6288 ( 1993 ).
  • Kurane I , OkamotoY , DaiLCet al. Flavivirus-cross-reactive, HLADR15-restricted epitope on NS3 recognized by human CD4+ CD8- cytotoxic T lymphocyte clones . J. Gen. Virol.76 , 2243 – 2249 ( 1995 ).
  • Livingston PG , KuraneI , DaiLCet al. Dengue virus-specific, HLAB35-restricted, human CD8+ cytotoxic T lymphocyte (CTL) clones. Recognition of NS3 amino acids 500 to 508 by CTL clones of two different serotype specificities . J. Immunol.154 , 1287 – 1295 ( 1995 ).
  • Mathew A , KuraneI , GreenSet al. Predominance of HLArestricted cytotoxic T-lymphocyte responses to serotype-cross-reactive epitopes on nonstructural proteins following natural secondary dengue virus infection . J. Virol.72 , 3999 – 4004 ( 1998 ).
  • Mongkolsapaya J , DejnirattisaiW , XuXet al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever . Nat. Med.921 – 927 ( 2003 ).
  • Rivino L , KumaranEA , JovanovicVet al. Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection . J. Virol.87 , 2693 – 2706 ( 2013 ).
  • Weiskopf D , AngeloMA , de AzeredoELet al. Comprehensive analysis of dengue virus-specific responses supports an HLAlinked protective role for CD8+ T cells . Proc. Natl Acad. Sci. USA110 , E2046 – E2053 ( 2013 ).
  • Simmons CP , DongT , ChauNVet al. Early T-cell responses to dengue virus epitopes in Vietnamese adults with secondary dengue virus infections . J. Virol.79 , 5665 – 5675 ( 2005 ).
  • Duangchinda T , DejnirattisaiW , VasanawathanaSet al. Immunodominant T-cell responses to dengue virus NS3 are associated with DHF . Proc. Natl Acad. Sci. USA107 , 16922 – 16927 ( 2010 ).
  • Testa JS , ShettyV , SinnathambyGet al. Conserved MHC class I-presented dengue virus epitopes identified by immunoproteomics analysis are targets for cross-serotype reactive T-cell response . J. Infect. Dis.205 , 647 – 655 ( 2012 ).
  • Appanna R , HuatTL , SeeLLet al. Cross-reactive T-cell responses to the nonstructural regions of dengue viruses among dengue fever and dengue hemorrhagic fever patients in Malaysia . Clin. Vaccine Immunol.14 , 969 – 977 ( 2007 ).
  • Imrie A , MeeksJ , GuraryAet al. Differential functional avidity of dengue virus-specific T-cell clones for variant peptides representing heterologous and previously encountered serotypes . J. Virol.81 , 10081 – 10091 ( 2007 ).
  • Malavige GN , McGowanS , AtukoraleVet al. Identification of serotype-specific T cell responses to highly conserved regions of the dengue viruses . Clin. Exp. Immunol.168 , 215 – 223 ( 2012 ).
  • Okamoto Y , KuraneI , LeporatiAM , EnnisFA . Definition of the region on NS3 which contains multiple epitopes recognized by dengue virus serotype-cross-reactive and flavivirus-cross-reactive, HLADPw2-restricted CD4+ T cell clones . J. Gen. Virol.79 , 697 – 704 ( 1998 ).
  • Wen J , DuanZ , JiangL . Identification of a dengue virus-specific HLAA*0201-restricted CD8+ T cell epitope . J. Med. Virol.82 , 642 – 648 ( 2010 ).
  • Zeng L , KuraneI , OkamotoY , EnnisFA , BrintonMA . Identification of amino acids involved in recognition by dengue virus NS3-specific, HLADR15-restricted cytotoxic CD4+ T-cell clones . J. Virol.70 , 3108 – 3117 ( 1996 ).
  • Zivny J , DeFronzoM , JarryWet al. Partial agonist effect influences the CTL response to a heterologous dengue virus serotype . J. Immunol.163 , 2754 – 2760 ( 1999 ).
  • Mangada MM , RothmanAL . Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes . J. Immunol.175 , 2676 – 2683 ( 2005 ).
  • Kurane I , BrintonMA , SamsonAL , EnnisFA . Dengue virus-specific, human CD4+ CD8- cytotoxic T-cell clones: multiple patterns of virus cross-reactivity recognized by NS3-specific T-cell clones . J. Virol.65 , 1823 – 1828 ( 1991 ).
  • Kurane I , MeagerA , EnnisFA . Dengue virus-specific human T cell clones. Serotype crossreactive proliferation, interferon gamma production, and cytotoxic activity . J. Exp. Med.170 , 763 – 775 ( 1989 ).
  • Kurane I , ZengL , BrintonMA , EnnisFA . Definition of an epitope on NS3 recognized by human CD4+ cytotoxic T lymphocyte clones cross-reactive for dengue virus types 2, 3, and 4 . Virology240 , 169 – 174 ( 1998 ).
  • Mathew A , KuraneI , RothmanAL , Dominant recognition by human CD8+ cytotoxic T lymphocytes of dengue virus nonstructural proteins NS3 and NS1.2a . J. Clin. Invest.98 , 1684 – 1694 ( 1996 ).
  • Zivny J , KuraneI , LeporatiAMet al. A single nine-amino acid peptide induces virus-specific, CD8+ human cytotoxic T lymphocyte clones of heterogeneous serotype specificities . J. Exp. Med.182 , 853 – 863 ( 1995 ).
  • Co MD , TerajimaM , CruzJ , EnnisFA , RothmanAL . Human cytotoxic T lymphocyte responses to live attenuated 17D Yellow fever vaccine: identification of HLAB35-restricted CTL epitopes on nonstructural proteins NS1, NS2b, NS3, and the structural protein E . Virology293 , 151 – 163 ( 2002 ).
  • Rothman AL , KuraneI , LaiCJet al. Dengue virus protein recognition by virus-specific murine CD8+ cytotoxic T lymphocytes . J. Virol.67 , 801 – 806 ( 1993 ).
  • Hill AB , MullbacherA , ParrishCet al. Broad cross-reactivity with marked fine specificity in the cytotoxic T cell response to flaviviruses . J. Gen. Virol.73 , 1115 – 1123 ( 1992 ).
  • Lobigs M , ArthurCE , MullbacherA , BlandenRV . The flavivirus nonstructural protein NS3 is a dominant source of cytotoxic T cell peptide determinants . Virology202 , 195 – 201 ( 1994 ).
  • Parrish CR , CoiaG , HillAet al. Preliminary analysis of murine cytotoxic T cell responses to the proteins of the flavivirus Kunjin using vaccinia virus expression . J. Gen. Virol.72 , 1645 – 1653 ( 1991 ).
  • Khan AM , MiottoO , NascimentoEJet al. Conservation and variability of dengue virus proteins: implications for vaccine design . PLoS Negl. Trop. Dis.2 , e272 ( 2008 ).
  • Zhang L , MohanPM , PadmanabhanR . Processing and localization of dengue virus type 2 polyprotein precursor NS3-NS4A-NS4B-NS5 . J. Virol.66 , 7549 – 7554 ( 1992 ).
  • Zhang L , PadmanabhanR . Role of protein conformation in the processing of dengue virus type 2 nonstructural polyprotein precursor . Gene129 , 197 – 205 ( 1993 ).
  • Stephens HA , KlaythongR , SirikongMet al. HLAA and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais . Tissue Antigens60 , 309 – 318 ( 2002 ).
  • Stephens HA . HLA and other gene associations with dengue disease severity . Curr. Top. Microbiol. Immunol.338 , 99 – 114 ( 2010 ).
  • Malavige GN , RostronT , RohanachandraLTet al. HLA class I and class II associations in dengue viral infections in a Sri Lankan population . PLoS ONE6 , e20581 ( 2011 ).
  • Fernandez-Mestre MT , GendzekhadzeK , Rivas-VetencourtP , LayrisseZ . TNF-alpha-308A allele, a possible severity risk factor of hemorrhagic manifestation in dengue fever patients . Tissue Antigens64 , 469 – 472 ( 2004 ).
  • Perez AB , SierraB , GarciaGet al. Tumor necrosis factor-alpha, transforming growth factor-beta1, and interleukin-10 gene polymorphisms: implication in protection or susceptibility to dengue hemorrhagic fever . Hum. Immunol.71 , 1135 – 1140 ( 2010 ).
  • Gagnon SJ , MoriM , KuraneIet al. Cytokine gene expression and protein production in peripheral blood mononuclear cells of children with acute dengue virus infections . J. Med. Virol.67 , 41 – 46 ( 2002 ).
  • Vejbaesya S , LuangtrakoolP , LuangtrakoolKet al. TNF and LTA gene, allele, and extended HLA haplotype associations with severe dengue virus infection in ethnic Thais . J. Infect. Dis.199 , 1442 – 1448 ( 2009 ).
  • Rothman AL . Cellular immunology of sequential dengue virus infection and its role in disease pathogenesis . Curr. Top. Microbiol. Immunol.338 , 83 – 98 ( 2010 ).
  • Friberg H , BashyamH , Toyosaki-MaedaTet al. Cross-reactivity and expansion of dengue-specific T cells during acute primary and secondary infections in humans . Sci. Rep.1 , 51 ( 2011 ).
  • Townsley E , WodaM , ThomasSJet al. Distinct activation phenotype of a highly conserved novel HLAb57-restricted epitope during dengue virus infection . Immunology141 , 27 – 38 ( 2013 ).
  • Green S , PichyangkulS , VaughnDWet al. Early CD69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever . J. Inf. Dis.180 , 1429 – 1435 ( 1999 ).
  • Green S , VaughnDW , KalayanaroojSet al. Early immune activation in acute dengue is related to development of plasma leakage and disease severity . J. Inf. Dis.179 , 755 – 762 ( 1999 ).
  • Hober D , DelannoyAS , BenyoucefS , DeGroote D , WattreP . High levels of sTNFR p75 and TNF alpha in dengue-infected patients . Microbiol. Immunol.40 , 569 – 573 ( 1996 ).
  • Hober D , PoliL , RoblinBet al. Serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in dengue-infected patients . Am. J. Trop. Med. Hyg.48 , 324 – 331 ( 1993 ).
  • Mustafa AS , ElbishbishiEA , AgarwalR , ChaturvediUC . Elevated levels of interleukin-13 and IL-18 in patients with dengue hemorrhagic fever . FEMS Immunol. Med. Microbiol.30 , 229 – 233 ( 2001 ).
  • Srikiatkhachorn A , AjariyakhajornC , EndyTPet al. Virus-induced decline in soluble vascular endothelial growth receptor 2 is associated with plasma leakage in dengue hemorrhagic fever . J. Virol.81 , 1592 – 1600 ( 2007 ).
  • Friberg H , BurnsL , WodaMet al. Memory CD8(+) T cells from naturally acquired primary dengue virus infection are highly cross-reactive . Immunol Cell Biol . 89 ( 1 ), 122 – 129 ( 2010 ).
  • Dung NT , DuyenHT , ThuyNTet al. Timing of CD8+ T cell responses in relation to commencement of capillary leakage in children with dengue . J. Immunol.184 , 7281 – 7287 ( 2010 ).
  • Chau TN , QuyenNT , ThuyTTet al. Dengue in Vietnamese infants – results of infection-enhancement assays correlate with age-related disease epidemiology, and cellular immune responses correlate with disease severity . J. Infect. Dis.198 , 516 – 524 ( 2008 ).
  • Mongkolsapaya J , DuangchindaT , DejnirattisaiWet al. T cell responses in dengue hemorrhagic fever: are cross-reactive T cells suboptimal? J. Immunol. 176 , 3821 – 3829 ( 2006 ).
  • Zivna I , GreenS , VaughnDWet al. T cell responses to an HLA B*07-restricted epitope on the dengue NS3 protein correlate with disease severity . J. Immunol.168 , 5959 – 5965 ( 2002 ).
  • Bashyam HS , GreenS , RothmanAL . Dengue virus-reactive CD8+ T cells display quantitative and qualitative differences in their response to variant epitopes of heterologous viral serotypes . J. Immunol.176 , 2817 – 2824 ( 2006 ).
  • Akondy RS , MonsonND , MillerJDet al. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response . J. Immunol.183 , 7919 – 7930 ( 2009 ).
  • Miller JD , vander Most RG , AkondyRSet al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines . Immunity28 , 710 – 722 ( 2008 ).
  • Mangada MM , EndyTP , NisalakAet al. Dengue-specific T cell responses in peripheral blood mononuclear cells obtained prior to secondary dengue virus infections in Thai schoolchildren . J. Inf. Dis.185 , 1697 – 1703 ( 2002 ).
  • Hatch S , EndyTP , ThomasSet al. Intracellular cytokine production by dengue virus-specific T cells correlates with subclinical secondary infection . J. Infect. Dis.203 , 1282 – 1291 ( 2010 ).
  • Gunther VJ , PutnakR , EckelsKHet al. A human challenge model for dengue infection reveals a possible protective role for sustained interferon gamma levels during the acute phase of illness . Vaccine29 , 3895 – 3904 ( 2011 ).
  • Lindow JC , Borochoff-PorteN , DurbinAPet al. Primary vaccination with low dose live dengue 1 virus generates a proinflammatory, multifunctional T cell response in humans . PLoS Negl. Trop. Dis.6 , e1742 ( 2012 ).
  • Johnson AJ , RoehrigJT . New mouse model for dengue virus vaccine testing . J. Virol.73 , 783 – 786 ( 1999 ).
  • Weiskopf D , YauchLE , AngeloMAet al. Insights into HLArestricted T cell responses in a novel mouse model of dengue virus infection point toward new implications for vaccine design . J. Immunol.187 , 4268 – 4279 ( 2011 ).
  • Shresta S , ShararKL , PrigozhinDM , BeattyPR , HarrisE . Murine model for dengue virus-induced lethal disease with increased vascular permeability . J. Virol.80 , 10208 – 10217 ( 2006 ).
  • Yauch LE , ZellwegerRM , KotturiMFet al. A protective role for dengue virus-specific CD8+ T cells . J. Immunol.182 , 4865 – 4873 ( 2009 ).
  • Yauch LE , PrestwoodTR , MayMMet al. CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination . J. Immunol.185 , 5405 – 5416 ( 2010 ).
  • Gil L , LopezC , LazoLet al. Recombinant nucleocapsid-like particles from dengue-2 virus induce protective CD4+ and CD8+ cells against viral encephalitis in mice . Int. Immunol.21 , 1175 – 1183 ( 2009 ).
  • Gil L , LopezC , BlancoAet al. The cellular immune response plays an important role in protecting against dengue virus in the mouse encephalitis model . Viral Immunol.22 , 23 – 30 ( 2009 ).
  • An J , ZhouDS , ZhangJLet al. Dengue-specific CD8+ T cells have both protective and pathogenic roles in dengue virus infection . Immunol. Lett.95 , 167 – 174 ( 2004 ).
  • Kyle JL , BalsitisSJ , ZhangL , BeattyPR , HarrisE . Antibodies play a greater role than immune cells in heterologous protection against secondary dengue virus infection in a mouse model . Virology380 , 296 – 303 ( 2008 ).
  • Yauch LE , ShrestaS . Mouse models of dengue virus infection and disease . Antiviral Res.80 , 87 – 93 ( 2008 ).
  • Zompi S , HarrisE . Animal models of dengue virus infection . Viruses4 , 62 – 82 ( 2012 ).
  • Shultz LD , BrehmMA , Garcia-MartinezJV , GreinerDL . Humanized mice for immune system investigation: progress, promise and challenges . Nat. Rev. Immunol.12 , 786 – 798 ( 2012 ).
  • Jaiswal S , PazolesP , WodaMet al. Enhanced humoral and HLAA2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice . Immunology136 , 334 – 343 ( 2012 ).
  • Jaiswal S , PearsonT , FribergHet al. Dengue virus infection and virus-specific HLAA2 restricted immune responses in humanized NOD-SCID IL2rgammanull mice . PLoS ONE4 , e7251 ( 2009 ).
  • Koraka P , BentonS , van AmerongenG , StittelaarKJ , OsterhausAD . Characterization of humoral and cellular immune responses in cynomolgus macaques upon primary and subsequent heterologous infections with dengue viruses . Microbes Infect.9 , 940 – 946 ( 2007 ).
  • Mladinich KM , PiaskowskiSM , RudersdorfRet al. Dengue virus-specific CD4+ and CD8+ T lymphocytes target NS1, NS3 and NS5 in infected Indian rhesus macaques . Immunogenetics64 , 111 – 121 ( 2012 ).
  • Raviprakash K , KochelTJ , EwingDet al. Immunogenicity of dengue virus type 1 DNA vaccines expressing truncated and full length envelope protein . Vaccine18 , 2426 – 2434 ( 2000 ).
  • Seder RA , DarrahPA , RoedererM . T-cell quality in memory and protection: implications for vaccine design . Nat. Rev. Immunol.8 , 247 – 258 ( 2008 ).
  • McArthur MA , SzteinMB , EdelmanR . Dengue vaccines: recent developments, ongoing challenges and current candidates . Expert Rev. Vaccines12 , 933 – 953 ( 2013 ).
  • Thomas SJ , EndyTP . Critical issues in dengue vaccine development . Curr. Opin. Infect. Dis.24 , 442 – 450 ( 2011 ).
  • Guy B , NougaredeN , BegueSet al. Cell-mediated immunity induced by chimeric tetravalent dengue vaccine in naive or flavivirus-primed subjects . Vaccine26 , 5712 – 5721 ( 2008 ).
  • Harenberg A , BegueS , MamessierAet al. Persistence of Th1/Tc1 responses one year after tetravalent dengue vaccination in adults and adolescents in Singapore . Hum. Vaccin. Immunother. doi:10.4161/hv.25562 ( 2013 ) (Epub ahead of print).
  • Sabchareon A , WallaceD , SirivichayakulCet al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled Phase 2b trial . Lancet380 , 1559 – 1567 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.