1,503
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Potential for Adaptation Overrides Cost of Resistance

, , &
Pages 1415-1431 | Published online: 07 Sep 2015

References

  • Velayati AA , MasjediMR , FarniaPet al. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran . Chest136 ( 2 ), 420 – 425 ( 2009 ).
  • Mariam SH , WerngrenJ , AronssonJ , HoffnerS , AnderssonDI . Dynamics of antibiotic resistant Mycobacterium tuberculosis during long-term infection and antibiotic treatment . PLoS ONE6 ( 6 ), e21147 ( 2011 ).
  • Mwangi MM , KimC , ChungMet al. Whole-genome sequencing reveals a link between β-lactam resistance and synthetases of the alarmone (p)ppGpp in Staphylococcus aureus . Microb. Drug Res.19 ( 3 ), 153 – 159 ( 2013 ).
  • Baquero MR , NilssonAI , del Carmen TurrientesMet al. Polymorphic mutation frequencies in Escherichia coli: emergence of weak mutators in clinical isolates . J. Bacteriol.186 ( 16 ), 5538 – 5542 ( 2004 ).
  • Walsh C . Molecular mechanisms that confer antibacterial drug resistance . Nature406 ( 6797 ), 775 – 781 ( 2000 ).
  • Laxminarayan R , DuseA , WattalCet al. Antibiotic resistance-the need for global solutions . Lancet Infect. Dis.13 ( 12 ), 1057 – 1098 ( 2013 ).
  • Davies J , DaviesD . Origins and evolution of antibiotic resistance . Microbiol. Mol. Biol. Rev.74 ( 3 ), 417 – 433 ( 2010 ).
  • Andersson DI , LevinBR . The biological cost of antibiotic resistance . Curr. Opin. Microbiol.2 ( 5 ), 489 – 493 ( 1999 ).
  • Lenski RE . Bacterial evolution and the cost of antibiotic resistance . Int. Microbiol.1 ( 4 ), 265 – 270 ( 1998 ).
  • Andersson DI , HughesD . Antibiotic resistance and its cost: is it possible to reverse resistance?Nat. Rev. Microbiol.8 ( 4 ), 260 – 271 ( 2010 ).
  • Mariam DH , MengistuY , HoffnerSE , AnderssonDI . Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis . Antimicrob. Agents Chemother.48 ( 4 ), 1289 – 1294 ( 2004 ).
  • Björkman J , NagaevI , BergOG , HughesD , AnderssonDI . Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance . Science287 ( 5457 ), 1479 – 1482 ( 2000 ).
  • Chait R , CraneyA , KishonyR . Antibiotic interactions that select against resistance . Nature446 ( 7136 ), 668 – 671 ( 2007 ).
  • Trindade S , SousaA , XavierKB , DionisioF , FerreiraMG , GordoI . Positive epistasis drives the acquisition of multidrug resistance . PLoS Genet.5 ( 7 ), e1000578 ( 2009 ).
  • Angst DC , HallAR . The cost of antibiotic resistance depends on evolutionary history in Escherichia coli . BMC Evol. Biol.13 ( 1 ), 1 – l ( 2013 ).
  • Maisnier-Patin S , AnderssonDI . Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution . Res. Microbiol.155 ( 5 ), 360 – 369 ( 2004 ).
  • Comas I , BorrellS , RoetzerAet al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes . Nat. Genet.44 ( 1 ), 106 – 110 ( 2012 ).
  • De Vos M , MüllerB , BorrellSet al. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission . Antimicrob. Agents Chemother.57 ( 2 ), 827 – 832 ( 2013 ).
  • Davis BH , PoonAFY , WhitlockMC . Compensatory mutations are repeatable and clustered within proteins . Proc. Biol. Sci.276 ( 1663 ), 1823 – 1827 ( 2009 ).
  • Levin BR , PerrotV , WalkerN . Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria . Genetics154 ( 3 ), 985 – 997 ( 2000 ).
  • Poon A . The coupon collector and the suppressor mutation: estimating the number of compensatory mutations by maximum likelihood . Genetics170 ( 3 ), 1323 – 1332 ( 2005 ).
  • Sousa A , MagalhaesS , GordoI . Cost of antibiotic resistance and the geometry of adaptation . Mol. Biol. Evolut.29 ( 5 ), 1417 – 1428 ( 2012 ).
  • Gifford DR , MacLeanRC . Evolutionary reversals of antibiotic resistance in experimental populations of Pseudomonas aeruginosa . Evolution67 ( 10 ), 2973 – 2981 ( 2013 ).
  • Couturier M , DesmetL , ThomasR . High pleiotropy of streptomycin mutations in Escherichia coli . Biochem. Biophys. Res. Comm.16 ( 3 ), 244 – 248 ( 1964 ).
  • Romero E , RivaS , BertiM , FiettaAM , SilvestriLG . Pleiotropic effects of a rifampicin-resistant mutation in E. coli . Nature New Biol.246 ( 155 ), 225 – 228 ( 1973 ).
  • Koch A , MizrahiV , WarnerDF . The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin?Emerg. Microbes Infect.3 ( 3 ), e17 ( 2014 ).
  • Maughan H , GaleanoB , NicholsonWL . Novel rpoB mutations conferring rifampin resistance on Bacillus subtilis: global effects on growth, competence, sporulation, and germination . J. Bacteriol.186 ( 8 ), 2481 – 2486 ( 2004 ).
  • Jin DJ , WalterWA , GrossCA . Characterization of the termination phenotypes of rifampicin-resistant mutants . J. Mol. Biol. ( 1988 ).
  • Wrande M , RothJR , HughesD . Accumulation of mutants in ‘aging’ bacterial colonies is due to growth under selection, not stress-induced mutagenesis . Proc. Natl Acad. Sci. USA105 ( 33 ), 11863 – 11868 ( 2008 ).
  • Cui L , IsiiT , FukudaMet al. An rpoB mutation confers dual heteroresistance to daptomycin and vancomycin in Staphylococcus aureus . Antimicrob. Agents Chemother.54 ( 12 ), 5222 – 5233 ( 2010 ).
  • Watanabe Y , CuiL , KatayamaY , KozueK , HiramatsuK . Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus . J. Clin. Microbiol.49 ( 7 ), 2680 – 2684 ( 2011 ).
  • Brandis G , WrandeM , LiljasL , HughesD . Fitness-compensatory mutations in rifampicin-resistant RNA polymerase . Mol. Microbiol.85 ( 1 ), 142 – 151 ( 2012 ).
  • Brandis G , HughesD . Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates . J. Antimicrob. Chemother.68 ( 11 ), 2493 – 2497 ( 2013 ).
  • Reynolds MG . Compensatory evolution in rifampin-resistant Escherichia coli . Genetics156 ( 4 ), 1471 – 1481 ( 2000 ).
  • Schrag SJ , PerrotV , LevinBR . Adaptation to the fitness costs of antibiotic resistance in Escherichia coli . Proc. Royal Soc. B Biol. Sci.264 ( 1386 ), 1287 – 1291 ( 1997 ).
  • Maisnier-Patin S , BergOG , LiljasL , AnderssonDI . Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium . Mol. Microbiol.46 ( 2 ), 355 – 366 ( 2002 ).
  • Zhang H , LiD , ZhaoLet al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance . Nat. Genet.45 ( 10 ), 1255 – 1260 ( 2013 ).
  • Wagner GP , AltenbergL . Perspective: complex adaptations and the evolution of evolvability . Evolution967 – 976 ( 1996 ).
  • Handel A , RegoesRR , AntiaR . The role of compensatory mutations in the emergence of drug resistance . PLoS Comput. Biol.2 ( 10 ), e137 ( 2006 ).
  • Barrick JE , KauthMR , StrelioffCC , LenskiRE . Escherichia coli rpoB mutants have increased evolvability in proportion to their fitness defects . Mol. Biol. Evolut.27 ( 6 ), 1338 – 1347 ( 2010 ).
  • Farhat MR , ShapiroBJ , KieserKJet al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis . Nat. Genet.45 ( 10 ), 1183 – 1189 ( 2013 ).
  • Forsberg KJ , ReyesA , WangB , SelleckEM , SommerMOA , DantasG . The shared antibiotic resistome of soil bacteria and human pathogens . Science337 ( 6098 ), 1107 – 1111 ( 2012 ).
  • Nolan CM , WilliamsDL , CaveMDet al. Evolution of rifampin resistance in human immunodeficiency virus-associated tuberculosis . Am. J. Respir. Crit. Care Med.152 ( 3 ), 1067 – 1071 ( 1995 ).
  • Mwangi MM , WuSW , ZhouYet al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing . Proc. Natl Acad. Sci. USA104 ( 22 ), 9451 – 9456 ( 2007 ).
  • Sun G , LuoT , YangCet al. Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients . J. Infect. Dis.206 ( 11 ), 1724 – 1733 ( 2012 ).
  • Hermsen R , DerisJB , HwaT . On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient . Proc. Natl Acad. Sci. USA109 ( 27 ), 10775 – 10780 ( 2012 ).
  • Zhang Q , LambertG , LiaoDet al. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments . Science333 ( 6050 ), 1764 – 1767 ( 2011 ).
  • Wright GD . The antibiotic resistome . Expert Opin. Drug Discov.5 ( 8 ), 779 – 788 ( 2010 ).
  • Borrell S , TeoY , GiardinaFet al. Epistasis between antibiotic resistance mutations drives the evolution of extensively drug-resistant tuberculosis . Evolut. Med. Public Health2013 ( 1 ), 65 – 74 ( 2013 ).
  • Merker M , KohlTA , RoetzerAet al. Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients . PLoS ONE8 ( 12 ), e82551 ( 2013 ).
  • Jansen G , BarbosaC , SchulenburgH . Experimental evolution as an efficient tool to dissect adaptive paths to antibiotic resistance . Drug Resist. Updat.16 ( 6 ), 96 – 107 ( 2014 ).
  • Silhavy TJ , BermanML , EnquistLW . Experiments With Gene Fusions . Cold Spring Harbor Laboratory ( 1984 ).
  • Hegreness M . An equivalence principle for the incorporation of favorable mutations in asexual populations . Science311 ( 5767 ), 1615 – 1617 ( 2006 ).
  • Wolfram Mathworld™. Nelder-Mead Method . http://mathworld.wolfram.com/Nelder-MeadMethod.html .
  • Illingworth CJR , MustonenV . A method to infer positive selection from marker dynamics in an asexual population . Bioinformatics28 ( 6 ), 831 – 837 ( 2012 ).
  • Barrick Lab. breseq . http://barricklab.org/twiki/bin/view/Lab/ToolsBacterialGenomeResequencing .
  • Sniegowski PD , GerrishPJ . Beneficial mutations and the dynamics of adaptation in asexual populations . Philos. Trans. Royal Soc. B Biol. Sci.365 ( 1544 ), 1255 – 1263 ( 2010 ).
  • Fisher RA . The Genetical Theory of Natural Selection . Clarendon Press , Oxford, UK .
  • Gagneux S , LongCD , SmallPM , VanT , SchoolnikGK , BohannanBJM . The competitive cost of antibiotic resistance in Mycobacterium tuberculosis . Science312 ( 5782 ), 1944 – 1946 ( 2006 ).
  • Trauner A , BorrellS , ReitherK , GagneuxS . Evolution of drug resistance in tuberculosis: recent progress and implications for diagnosis and therapy . Drugs74 ( 10 ), 1063 – 1072 ( 2014 ).
  • Khan AI , DinhDM , SchneiderD , LenskiRE , CooperTF . Negative epistasis between beneficial mutations in an evolving bacterial population . Science332 ( 6034 ), 1193 – 1196 ( 2011 ).
  • Woods RJ , BarrickJE , CooperTF , ShresthaU , KauthMR , LenskiRE . Second-order selection for evolvability in a large Escherichia coli population . Science331 ( 6023 ), 1433 – 1436 ( 2011 ).
  • Maisnier-Patin S , PaulanderW , PennhagA , AnderssonDI . Compensatory evolution reveals functional interactions between ribosomal proteins S12, L14 and L19 . J. Mol. Biol.366 ( 1 ), 207 – 215 ( 2007 ).
  • Hall AR , MacLeanRC . Epistasis buffers the fitness effects of rifampicin-resistance mutations in Pseudomonas aeruginosa . Evolution.65 ( 8 ), 2370 – 2379 ( 2011 ).
  • Read AF , DayT , HuijbenS . The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy . Proc. Natl Acad. Sci. USA108 ( Suppl. 2 ), 10871 – 10877 ( 2011 ).
  • Stearns SC . Evolutionary medicine: its scope, interest and potential . Proc. Royal Soc. B Biol. Sci.279 ( 1746 ), 4305 – 4321 ( 2012 ).
  • Miskinyte M , SousaA , RamiroRSet al. The genetic basis of Escherichia coli pathoadaptation to macrophages . PLoS Pathog.9 ( 12 ), e1003802 ( 2013 ).