61
Views
0
CrossRef citations to date
0
Altmetric
Special Report

TDP-43 Depletion: Mechanism of Neuronal Cell Death in ALS

Pages 143-149 | Received 13 Apr 2018, Accepted 04 Jun 2018, Published online: 06 Jul 2018

References

  • Nguyen HP , Van BroeckhovenC, van der ZeeJ. ALS genes in the genomic era and their implications for FTD. Trends Genet.34(6), 404–423 (2018).
  • Rosen DR , SiddiqueT, PattersonDet al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature362(6415), 59–62 (1993).
  • Kaur SJ , McKeownSR, RashidS. Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene577(2), 109–118 (2016).
  • Arai T , HasegawaM, AkiyamaHet al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun.351(3), 602–611 (2006).
  • Neumann M , SampathuDM, KwongLKet al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science314(5796), 130–133 (2006).
  • Sreedharan J , BlairIP, TripathiVBet al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science319(5870), 1668–1672 (2008).
  • Yokoseki A , ShigaA, TanCFet al. TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann. Neurol.63(4), 538–542 (2008).
  • Liu YC , ChiangPM, TsaiKJ. Disease animal models of TDP-43 proteinopathy and their pre-clinical applications. Int. J. Mol. Sci.14(10), 20079–20111 (2013).
  • White MA , KimE, DuffyAet al. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nat. Neurosci.21(4), 552–563 (2018).
  • Nonaka T , KametaniF, AraiT, AkiyamaH, HasegawaM. Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum. Mol. Genet.18(18), 3353–3364 (2009).
  • Zhang YJ , XuYF, CookCet al. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc. Natl Acad. Sci. USA106(18), 7607–7612 (2009).
  • Che MX , JiangYJ, XieYY, JiangLL, HuHY. Aggregation of the 35-kDa fragment of TDP-43 causes formation of cytoplasmic inclusions and alteration of RNA processing. FASEB J.25(7), 2344–2353 (2011).
  • Walker AK , TripathyK, RestrepoCRet al. An insoluble frontotemporal lobar degeneration-associated TDP-43 C-terminal fragment causes neurodegeneration and hippocampus pathology in transgenic mice. Hum. Mol. Genet.24(25), 7241–7254 (2015).
  • Kitamura A , NakayamaY, ShibasakiAet al. Interaction of RNA with a C-terminal fragment of the amyotrophic lateral sclerosis-associated TDP43 reduces cytotoxicity. Sci. Rep.6, 19230 (2016).
  • Lagier-Tourenne C , PolymenidouM, ClevelandDW. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet.19(R1), R46–64 (2010).
  • Klaips CL , JayarajGG, HartlFU. Pathways of cellular proteostasis in aging and disease. J. Cell Biol.217(1), 51–63 (2018).
  • Budini M , RomanoV, QuadriZ, BurattiE, BaralleFE. TDP-43 loss of cellular function through aggregation requires additional structural determinants beyond its C-terminal Q/N prion-like domain. Hum. Mol. Genet.24(1), 9–20 (2015).
  • Prpar Mihevc S , BaralleM, BurattiE, RogeljB. TDP-43 aggregation mirrors TDP-43 knockdown, affecting the expression levels of a common set of proteins. Sci. Rep.6, 33996 (2016).
  • Iguchi Y , KatsunoM, NiwaJet al. TDP-43 depletion induces neuronal cell damage through dysregulation of Rho family GTPases. J. Biol. Chem.284(33), 22059–22066 (2009).
  • Chiang PM , LingJ, JeongYH, PriceDL, AjaSM, WongPC. Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc. Natl Acad. Sci. USA107(37), 16320–16324 (2010).
  • Kraemer BC , SchuckT, WheelerJMet al. Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol.119(4), 409–419 (2010).
  • Sephton CF , GoodSK, AtkinSet al. TDP-43 is a developmentally regulated protein essential for early embryonic development. J. Biol. Chem.285(9), 6826–6834 (2010).
  • Wu LS , ChengWC, HouSC, YanYT, JiangST, ShenCK. TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis48(1), 56–62 (2010).
  • Wu LS , ChengWC, ShenCK. Targeted depletion of TDP-43 expression in the spinal cord motor neurons leads to the development of amyotrophic lateral sclerosis-like phenotypes in mice. J. Biol. Chem.287(33), 27335–27344 (2012).
  • Iguchi Y , KatsunoM, NiwaJet al. Loss of TDP-43 causes age-dependent progressive motor neuron degeneration. Brain136(Pt 5), 1371–1382 (2013).
  • Sasaki S , IguchiY, KatsunoM, SobueG. Alterations in the blood-spinal cord barrier in TDP-43 conditional knockout mice. Neurosci. Lett.598, 1–5 (2015).
  • Polymenidou M , Lagier-TourenneC, HuttKRet al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci.14(4), 459–468 (2011).
  • Tollervey JR , CurkT, RogeljBet al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci.14(4), 452–458 (2011).
  • Lagier-Tourenne C , PolymenidouM, HuttKRet al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat. Neurosci.15(11), 1488–1497 (2012).
  • Buratti E , DorkT, ZuccatoE, PaganiF, RomanoM, BaralleFE. Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J.20(7), 1774–1784 (2001).
  • Ou SH , WuF, HarrichD, Garcia-MartinezLF, GaynorRB. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J. Virol.69(6), 3584–3596 (1995).
  • Mercado PA , AyalaYM, RomanoM, BurattiE, BaralleFE. Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Res.33(18), 6000–6010 (2005).
  • Bose JK , WangIF, HungL, TarnWY, ShenCK. TDP-43 overexpression enhances exon 7 inclusion during the survival of motor neuron pre-mRNA splicing. J. Biol. Chem.283(43), 28852–28859 (2008).
  • Vance C , RogeljB, HortobagyiTet al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science323(5918), 1208–1211 (2009).
  • Buratti E , BaralleFE. Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front. Biosci.13, 867–878 (2008).
  • Wang IF , WuLS, ShenCK. TDP-43: an emerging new player in neurodegenerative diseases. Trends Mol. Med.14(11), 479–485 (2008).
  • Ule J . Ribonucleoprotein complexes in neurologic diseases. Curr. Opin. Neurobiol.18(5), 516–523 (2008).
  • Casafont I , BengoecheaR, TapiaO, BercianoMT, LafargaM. TDP-43 localizes in mRNA transcription and processing sites in mammalian neurons. J. Struct. Biol.167(3), 235–241 (2009).
  • Buratti E , BaralleFE. The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation. RNA Biol.7(4), 420–429 (2010).
  • Xiao S , SanelliT, DibSet al. RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS. Mol. Cell. Neurosci.47(3), 167–180 (2011).
  • Hu F , PadukkavidanaT, VaegterCBet al. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron68(4), 654–667 (2010).
  • Lee WC , AlmeidaS, PrudencioMet al. Targeted manipulation of the sortilin-progranulin axis rescues progranulin haploinsufficiency. Hum. Mol. Genet.23(6), 1467–1478 (2014).
  • Yahara M , KitamuraA, KinjoM. U6 snRNA expression prevents toxicity in TDP-43-knockdown cells. PLoS ONE12(11), e0187813 (2017).
  • Prudencio M , Jansen-WestKR, LeeWCet al. Misregulation of human sortilin splicing leads to the generation of a nonfunctional progranulin receptor. Proc. Natl Acad. Sci. USA109(52), 21510–21515 (2012).
  • Nykjaer A , LeeR, TengKKet al. Sortilin is essential for proNGF-induced neuronal cell death. Nature427(6977), 843–848 (2004).
  • Ruan CS , LiuJ, YangMet al. Sortilin inhibits amyloid pathology by regulating non-specific degradation of APP. Exp. Neurol.299(Pt A), 75–85 (2018).
  • Deshaies JE , ShkretaL, MoszczynskiAJet al. TDP-43 regulates the alternative splicing of hnRNP A1 to yield an aggregation-prone variant in amyotrophic lateral sclerosis. Brain (2018).
  • Nehls J , KoppensteinerH, Brack-WernerR, FlossT, SchindlerM. HIV-1 replication in human immune cells is independent of TAR DNA binding protein 43 (TDP-43) expression. PLoS ONE9(8), e105478 (2014).
  • Kawahara Y , Mieda-SatoA. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc. Natl Acad. Sci. USA109(9), 3347–3352 (2012).
  • Freischmidt A , MullerK, LudolphAC, WeishauptJH. Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathol. Commun.1, 42 (2013).
  • Chen X , FanZ, McGeeWet al. TDP-43 regulates cancer-associated microRNAs. Protein Cell (2017).
  • Nishimoto Y , NakagawaS, HiroseTet al. The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Mol. Brain6, 31 (2013).
  • Gagliardi S , MilaniP, SardoneV, PansarasaO, CeredaC. From transcriptome to noncoding RNAs: implications in ALS mechanism. Neurol. Res. Int. 2012, 278725 (2012).
  • Lourenco GF , JanitzM, HuangY, HallidayGM. Long noncoding RNAs in TDP-43 and FUS/TLS-related frontotemporal lobar degeneration (FTLD). Neurobiol. Dis.82, 445–454 (2015).
  • Wan P , SuW, ZhuoY. The role of long noncoding RNAs in neurodegenerative diseases. Mol. Neurobiol.54(3), 2012–2021 (2017).
  • Shelkovnikova TA , RobinsonHK, TroakesC, NinkinaN, BuchmanVL. Compromised paraspeckle formation as a pathogenic factor in FUSopathies. Hum. Mol. Genet.23(9), 2298–2312 (2014).
  • Ishihara T , AriizumiY, ShigaAet al. Decreased number of Gemini of coiled bodies and U12 snRNA level in amyotrophic lateral sclerosis. Hum. Mol Genet.22(20), 4136–4147 (2013).
  • Tsuiji H , IguchiY, FuruyaAet al. Spliceosome integrity is defective in the motor neuron diseases ALS and SMA. EMBO Mol. Med.5(2), 221–234 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.