22,224
Views
0
CrossRef citations to date
0
Altmetric
Review

The Spectrum of Paroxysmal Dyskinesias

Article: FNL26 | Received 22 Dec 2018, Accepted 23 Apr 2019, Published online: 22 Aug 2019

References

  • ErroR, BhatiaKP. Unravelling of the paroxysmal dyskinesias. J. Neurol. Neurosurg. Psychiatr.0, 1–8 (2018). doi:10.1136/jnnp-2018-318932.
  • LanceJW. Familial paroxysmal dystonic choreoathetosis and its differentiation from related syndromes. Ann. Neurol.2, 285–293 (1977).
  • DemirkiranM, JankovicJ. Paroxysmal dyskinesias: clinical features and classification. Ann. Neurol.38, 571–579 (1995).
  • TinuperP, CerulloA, CirignottaF, CortelliP, LugaresiE, MontagnaP. Nocturnal paroxysmal dystonia with short lasting attacks. Three cases with evidence for an epileptic frontal lobe origin of seizures. Epilepsia31, 549–556 (1990).
  • ErroR, SheerinUM, BhatiaK. Paroxysmal dyskinesias revisited: a review of 500 genetically proven cases and a new classification. Mov. Disord.29, 1108–1116 (2014).
  • BlakeleyJ, JankovicJ. Secondary paroxysmal dyskinesias. Mov. Disord.17, 726–734 (2002).
  • BhatiaKP. Paroxysmal dyskinesias. Mov. Disord.26, 1157–1165 (2011).
  • KerteszA. Paroxysmal kinesigenic choreoathetosis. An entity within the paroxysmal choreoathetosis syndrome. Description of 10 cases, including 1 autopsied. Neurology17, 680–690 (1967).
  • BrunoMK, HallettM, Gwinn-HardyKet al.Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Neurology63, 2280–2287 (2004).
  • HouserMK, SolandVL, BhatiaKP, QuinnNP, MarsdenCD. Paroxysmal kinesigenic choreoathetosis: a report of 26 patients. J. Neurol.246, 120–126 (1999).
  • SunW, LiJ, ZhuY, YanX, WangW. Clinical features of paroxysmal kinesigenic dyskinesia: report of 24 cases. Epilepsy Behav.25, 695–699 (2012).
  • McGovernEM, RozeE, CounihanTJ. The expanding spectrum of paroxysmal movement disorders: update from clinical features to therapeutics. Curr. Opin. Neurol.31, 491–497 (2018).
  • HuangX-J, WangT, WangJ-Let al.Paroxysmal kinesigenic dyskinesia: clinical and genetic analyses of 110 patients. Neurology85, 1546–1553 (2015).
  • MountLA, RebackS. Familial paroxysmal choreoathetosis. Arch. Neurol. Psychiatr.44, 841–847 (1940).
  • BrunoMK, LeeHY, AuburgerGWet al.Genotype–phenotype correlation of paroxysmal nonkinesigenic dyskinesia. Neurology68, 1782–1789 (2007).
  • FinkJK, RainerS, WilkowskiJet al.Paroxysmal dystonic choreoathetosis: tight linkage to chromosome 2q. Am. J. Hum. Genet.59, 140–145 (1996).
  • GhezziD, ViscomiC, FerliniAet al.Paroxysmal non-kinesigenic dyskinesia is caused by mutations of the MR-1 mitochondrial targeting sequence. Hum. Mol. Genet.18, 1058–1064 (2009).
  • ZittelS, GanosC, MünchauA. Fatal paroxysmal non-kinesigenic dyskinesia. Eur. J. Neurol.22, e30–e31 (2015).
  • StefanoE, DjarmatiA, MomcilovicDet al.Clinical characteristics of paroxysmal nonkinesigenic dyskinesia in Serbian family with Myofibrillogenesis regulator 1 gene mutation. Mov. Disord.21, 2010–2015 (2006).
  • ByrneE, WhiteO, CookM. Familial dystonic choreoathetosis with myokymia; a sleep responsive disorder. J. Neurol. Neurosurg. Psychiatr.54, 1090–1092 (1991).
  • PlantGT, WilliamsAC, EarlCJ, MarsdenCD. Familial paroxysmal dystonia induced by exercise. J. Neurol. Neurosurg. Psychiatr.47, 275–279 (1984).
  • WaliGM. Paroxysmal hemidystonia induced by prolonged exercise and cold. J. Neurol. Neurosurg. Psychiatr.55, 236–237 (1992).
  • BhatiaKP, SolandVL, BhattMH, QuinnNP, MarsdenCD. Paroxysmal exercise-induced dystonia: eight new sporadic cases and a review of the literature. Mov. Disord.12, 1007–1012 (1997).
  • ClarkCN, WeberYW, LercheHet al.Paroxysmal exercise-induced dyskinesia of the hands. Mov. Disord.27, 1579–1580 (2012).
  • TacikP, LoensS, SchraderCet al.Severe familial paroxysmal exercise-induced dyskinesia. J. Neurol.261, 2009–2015 (2014).
  • WuLJ, JankovicJ. Runner’s dystonia. J. Neurol. Sci.251, 73–76 (2006).
  • ChenWJ, LinY, XiongZQet al.Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat. Genet.43, 1252–1255 (2011).
  • FruscioneF, ValenteP, SterliniBet al.PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity. Brain141, 1000–1016 (2018).
  • MeneretA, GaudeboutC, RiantF, VidailhetM, DepienneC, RozeE. PRRT2 mutations and paroxysmal disorders. Eur. J. Neurol.20, 872–878 (2013).
  • Ebrahimi-FakhariD, SaffariA, WestenbergerAet al.The evolving spectrum of PRRT2-associated paroxysmal diseases. Brain138, 3476–3495 (2015).
  • van VlietR, BreedveldG, deRijk-van Andel Jet al.PRRT2 phenotypes and penetrance of paroxysmal kinesigenic dyskinesia and infantile convulsions. Neurology79, 777–784 (2012).
  • LiHF, ChenWJ, NiWet al.PRRT2 mutation correlated with phenotype of paroxysmal kinesigenic dyskinesia and drug response. Neurology80, 1534–1535 (2013).
  • WangK, ZhaoX, DuYet al.Phenotypic overlap among paroxysmal dyskinesia subtypes: lesson from a family with PRRT2 gene mutation. Brain Dev.35, 664–666 (2013).
  • LiXR, HuangD, WangJet al.Paroxysmal hypnogenic dyskinesia is associated with mutations in the PRRT2 gene. Neurol. Genet.2, 66 (2016).
  • GardinerAR, BhatiaKP, StamelouMet al.PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology79, 2115–2121 (2012).
  • DaleRC, GardinerA, AntonyJet al.Familial PRRT2 mutation with heterogeneous paroxysmal disorders including paroxysmal torticollis and hemiplegic migraine. Dev. Med. Child Neurol.54, 958–960 (2012).
  • DelcourtM, RiantF, ManciniJet al.Severe phenotypic spectrum of biallelic mutations in PRRT2 gene. J. Neurol. Neurosurg. Psychiatr.86, 782–785 (2015).
  • LabateA, TarantinoP, ViriMet al.Homozygous c.649dupC mutation in PRRT2 worsens the BFIS/PKD phenotype wtih mental retardation, episodic ataxia, and absences. Epilepsia53, 196–199 (2012).
  • WeberA, KöhlerA, HahnAet al.Benign infantile convulsions (IC) and subsequent paroxysmal kinesigenic dyskinesia (PKD) in a patient with 16p11.2 microdeletion syndrome. Neurogenetics14, 251–253 (2013).
  • LiW, WangY, LiB, TangBet al.16p11.2 deletion in patients with paroxysmal kinesigenic dyskinesia but without intellectual disability. Brain Behav.8, e01134 (2018).
  • ValtortaF, BenfenatiF, ZaraFet al.PRRT2: from paroxysmal disorders to regulation of synaptic function. Trends Neurosci.39, 668–679 (2016).
  • ErroR, BhatiaKP, EspayAJet al.The epileptic and nonepileptic spectrum of paroxysmal dyskinesias: channelopathies, synaptopathies, and transportopathies. Mov. Disord.32, 310–318 (2017).
  • RainierS, ThomasD, TokarzDet al.Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch. Neurol.61, 1025–1029 (2004).
  • YehTH, LinJJ, LaiSCet al.Familial paroxysmal nonkinesigenic dyskinesia: clinical and genetic analysis of a Taiwanese family. J. Neurol. Sci.323, 80–84 (2012).
  • LeeHY, XuY, HuangYet al.The gene for paroxysmal non-kinesigenic dyskinesia encodes an enzyme in a stress response pathway. Hum. Mol. Genet.13, 3161–3170 (2004).
  • DuW, BautistaJF, YangHet al.Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat. Genet.37, 733–738 (2005).
  • GardinerAR, JafferF, DaleRCet al.The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain138, 3567–3580 (2015).
  • ShenY, GeWP, LiYet al.Protein mutated in paroxysmal dyskinesia interacts with the active zone protein RIM and suppresses synaptic vesicle exocytosis. Proc. Natl Acad. Sci. USA112, 2935–2941 (2015).
  • LeenWG, KlepperJ, VerbeekMMet al.Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain133, 655–670 (2010).
  • WeberYG, StorchA, WuttkeTVet al.GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J. Clin. Invest.118, 2157–2168 (2008).
  • SchneiderSA, Paisan-RuizC, Garcia-GorostiagaIet al.GLUT1 gene mutations cause sporadic paroxysmal exercise-induced dyskinesias. Mov. Disord.24, 1684–1688 (2009).
  • WeberYG, KammC, SulsAet al.Paroxysmal choreoathetosis/spasticity (DYT9) is caused by a GLUT1 defect. Neurology77, 959–964 (2011).
  • AuburgerG, RatzlaffT, LunkesAet al.A gene for autosomal dominant paroxysmal choreoathetosis/spasticity (CSE) maps to the vicinity of a potassium channel gene cluster on chromosome 1p, probably within 2 cM between D1S443 and D1S197. Genomics31, 90–94 (1996).
  • PearsonTS, PonsR, EngelstadK, KaneSA, GoldbergME, DeVivo DC. Paroxysmal eye-head movements in Glut1 deficiency syndrome. Neurology88, 1666–1673 (2017).
  • PellegrinS, CantalupoG, OpriRet al.EEG findings during ‘paroxysmal hemiplegia’ in a patient with GLUT1-deficiency. Eur. J. Paediatr. Neurol.21, 580–582 (2017).
  • KochH, WeberYG. The glucose transporter type 1 (Glut1) syndromes. Epilepsy Behav.91, 90–93 (2018).
  • GrasD, CousinC, KappelerCet al.A simple blood test expedites the diagnosis of glucose transporter type 1 deficiency syndrome. Ann. Neurol.82, 133–138 (2017).
  • SulsA, DedekenP, GoffinKet al.Paroxysmal exercise induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain131, 1831–1844 (2008).
  • PearsonTS, AkmanC, HintonVJet al.Phenotypic spectrum of glucose transporter type1 deficiency syndrome(Glut1DS). Curr. Neurol. Neurosci. Rep.13, 342 (2013).
  • WangHX, LiHF, LiuGL, WenXD, WuZY. Mutation analysis of MR-1, SLC2A1, and CLCN1 in 28 PRRT2-negative paroxysmal kinesigenic dyskinesia patients. Chin. Med. J.129, 1017–1021 (2016).
  • TianWT, HuangXJ, MaoXet al.Proline-rich transmembrane protein 2-negative paroxysmal kinesigenic dyskinesia: clinical and genetic analyses of 163 patients. Mov. Disord.33, 459–467 (2018).
  • ZhangZ, TianM, JiangYet al.De novo KCNMA1mutations in children with early-onset paroxysmal dyskinesia and developmental delay. Mov. Disord.30, 1290–1292 (2015).
  • YeşilG, AralaşmakA, AkyüzE, İçağasıoğluD, UygurŞahin T, BayramY. Expanding the phenotype of homozygous KCNMA1 mutations; dyskinesia, epilepsy, intellectual disability, cerebellar and corticospinal tract atrophy. Balkan. Med. J.35, 336–339 (2018).
  • OlgiatiS, SkorvanekM, QuadriMet al.Paroxysmal exercise-induced dystonia within the phenotypic spectrum of ECHS1 deficiency. Mov. Disord.31, 1041–1048 (2016).
  • KorenkeG, NuofferJ-M, AlhaddadBet al.Paroxysmal dyskinesia in ECHS1 defect with globus pallidus lesions. Neuropediatrics47, S01–10 (2016).
  • MahajanA, ConstantinouJ, SidiropoulosC. ECHS1 deficiency-associated paroxysmal exercise-induced dyskinesias: case presentation and initial benefit of intervention. J. Neurol.264, 185–187 (2017).
  • PetersH, FerdinandusseS, RuiterJP, WandersRJ, BonehA, PittJ. Metabolite studies in HIBCH and ECHS1 defects: Implications for screening. Mol. Genet. Metab.115, 168–173 (2015).
  • McWilliamCA, RidoutCK, BrownRMet al.Pyruvate dehydrogenase E2 deficiency: a potentially treatable cause of episodic dystonia. Eur. J. Paediatr. Neurol.14, 349–353 (2010).
  • HeadRA, BrownRM, ZolkipliZet al.Clinical and genetic spectrum of pyruvate dehydrogenase deficiency: dihydrolipoamide acetyltransferase (E2) deficiency. Ann. Neurol.58, 234–241 (2005).
  • CastiglioniC, VerrigniD, OkumaCet al.Pyruvate dehydrogenase deficiency presenting as isolated paroxysmal exercise induced dystonia successfully reversed with thiamine supplementation: case report and mini-review. Eur. J. Paediatr. Neurol.19, 497–503 (2015).
  • FriedmanJ, FeigenbaumA, ChuangNet al.Pyruvate dehydrogenase complex-E2 deficiency causes paroxysmal exercise-induced dyskinesia. Neurology89, 2297–2298 (2017).
  • MéneretA, RozeE. Paroxysmal movement disorders: an update. Rev Neurol.172, 433–445 (2016).
  • DaleRC, MelchersA, FungVS, Grattan-SmithP, HouldenH, EarlJ. Familial paroxysmal exercise-induced dystonia: atypical presentation of autosomal dominant GTP-cyclohydrolase 1 deficiency. Dev. Med. Child Neurol.52, 583–586 (2010).
  • ErroR, StamelouM, GanosCet al.The clinical syndrome of paroxysmal exercise induced dystonia: diagnostic outcomes and an algorithm. Mov. Disord. Clin. Pract.1, 57–61 (2014).
  • GardellaE, BeckerF, MøllerRSet al.Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann. Neurol.79, 428–436 (2016).
  • LarsenJ, CarvillGL, GardellaEet al.The phenotypic spectrum of SCN8A encephalopathy. Neurology84, 480–489 (2015).
  • WestenbergerA, MaxC, BrüggemannNet al.Alternating hemiplegia of childhood as a new presentation of adenylate cyclase 5-mutation-associated disease: a report of two cases. J. Pediatr.181, 306–308 (2017).
  • ChenDH, MéneretA, FriedmanJRet al.ADCY5-related dyskinesia: broader spectrum and genotype-phenotype correlations. Neurology85, 2026–2035 (2015).
  • FriedmanJR, MéneretA, ChenDHet al.ADCY5 mutation carriers display pleiotropic paroxysmal day and nighttime dyskinesias. Mov. Disord.31, 147–148 (2016).
  • MencacciNE, ErroR, WiethoffSet al.ADCY5 mutations are another cause of benign hereditary chorea. Neurology85, 80–88 (2015).
  • CarecchioM, ZorziG, RagonaF, ZibordiF, NardocciN. ATP1A3-related disorders: an update. Eur. J. Paediatr. Neurol.22, 257–263 (2018).
  • HeinzenEL, ArzimanoglouA, BrashearAet al.Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol.13, 503–514 (2014).
  • RosewichH, OhlenbuschA, HuppkePet al.The expanding clinical and genetic spectrum of ATP1A3-related disorders. Neurology82, 945–955 (2014).
  • SweneyMT, NewcombTM, SwobodaKJ. The expanding spectrum of neurological phenotypes in children with ATP1A3 mutations, alternating hemiplegia of childhood, rapid-onset dystonia-Parkinsonism, CAPOS and beyond. Pediatr. Neurol.52, 56e64 (2015).
  • GiffinNJ, BentonS, GoadsbyPJ. Benign paroxysmal torticollis of infancy: four new cases and linkage to CACNA1A mutation. Dev. Med. Child Neurol.44, 490–493 (2002).
  • Vila-PueyoM, GenéGG, Flotats-BastardesMet al.A loss-of-function CACNA1A mutation causing benign paroxysmal torticollis of infancy. Eur. J. Paediatr. Neurol.18, 430–433 (2014).
  • ShinM, DouglassLM, MilunskyJMet al.The genetics of benign paroxysmal torticollis of infancy: is there an association with mutations in the CACNA1A gene?J. Child. Neurol.31, 1057–1061 (2016).
  • FuchsO, PfarrN, PohlenzJet al.Elevated serum triiodothyronine and intellectual and motor disability with paroxysmal dyskinesia caused by a monocarboxylate transporter 8 gene mutation. Dev. Med. Child. Neurol.51, 240–244 (2009).
  • BrockmannK, DumitrescuAM, BestTTet al.X-linked paroxysmal dyskinesia and severe global retardation caused by defective MCT8 gene. J. Neurol.252, 663–666 (2005).
  • ScottBL, JankovicJ. Delayed-onset progressive movement disorders after static brain lesions. Neurology46, 68–74 (1996).
  • WalnO, JankovicJ. Paroxysmal movement disorders. Neurol. Clin.33, 137–152 (2015).
  • CiampiE, Uribe-San-MartínR, Godoy-SantínJ, CruzJP, Cárcamo-RodríguezC, JuriC. Secondary paroxysmal dyskinesia in multiple sclerosis: Clinical–radiological features and treatment. Case report of seven patients. Mult. Scler.23, 1791–1795 (2017).
  • BalintB, VincentA, MeinckHM, IraniSR, BhatiaKP. Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology. Brain141, 13–36 (2018).
  • ZhuM, ZhuX, WanH, HongD. Familial IBGC caused by SLC20A2 mutation presenting as paroxysmal kinesigenic dyskinesia. Parkinsonism Relat. Disord.20, 353–354 (2013).
  • WangC, MaX, XuXet al.A PDGFB mutation causes paroxysmal nonkinesigenic dyskinesia with brain calcification. Mov. Disord.32, 1104–1106 (2017).
  • PersoonS, KappelleLJ, KlijnCJ. Limb-shaking transient ischaemic attacks in patients with internal carotid artery occlusion: a case-control study. Brain133, 915–922 (2010).
  • MirsattariSM, BerryME, HoldenJK, NiW, NathA, PowerC. Paroxysmal dyskinesias in patients with HIV infection. Neurology52, 109–114 (1999).
  • JankovicJ. Can peripheral trauma induce distonia and other movement disorders? Yes!Mov. Disord.16, 7–12 (2001).
  • García-RuizPJ, CaboI, García-BermejoP, CarnalP. Escitalopram-induced paroxysmal dystonia. Clin. Neuropharmacol.30, 124–126 (2007).
  • Silveira-MoriyamaL, KovacS, KurianMAet al.Phenotypes, genotypes, and the management of paroxysmal movement disorders. Dev. Med. Child Neurol.60, 559–565 (2018).
  • MadhusudananM, BhatiaKP, BalintB. Paroxysmal craniocervical dyskinesia as manifestation of frontal lobe epilepsy. Mov. Disord.26, 2580–2582 (2011).
  • GanosC, AguirregomozcortaM, BatlaAet al.Psychogenic paroxysmal movement disorders--clinical features and diagnostic clues. Parkinsonism Relat. Disord.20, 41–46 (2014).
  • MorganJC, HughesM, FigueroaRE, SethiKD. Psychogenic paroxysmal dyskinesia following paroxysmal hemidystonia in multiple sclerosis. Neurology65, E12 (2005).
  • ErroR, BrigoF, TrinkaEet al.Psychogenic nonepileptic seizures and movement disorders: a comparative review. Neurol. Clin. Pract.6, 138–149 (2016).
  • MehtaSH, MorganJC, SethiKD. Paroxysmal dyskinesias. Curr. Treat Options Neurol.11, 170–178 (2009).
  • MinkJW. Treatment of paroxysmal dyskinesias in children. Curr. Treat Options Neurol.17, 350 (2015).
  • McGuireS, ChanchaniS, KhuranaDS. Paroxysmal dyskinesias. Semin. Pediatr. Neurol.25, 75–81 (2018).
  • HorisawaS, SumiM, AkagawaH, KawamataT, TairaT. Thalamotomy for paroxysmal kinesigenic dyskinesias in a multiplex family. Eur. J. Neurol.24, e71–e72 (2017).
  • LoherTJ, KraussJK, BurgunderJM, TaubE, SiegfriedJ. Chronic thalamic stimulation for treatment fo dystonic paroxysmal nonkinesigenic dyskinesia. Neurology56, 268–270 (2001).
  • van CollerR, SlabbertP, VaidyanathanJet al.Successful treatment of disabling paroxysmal nonkinesigenic dyskinesia with deep brain stimulation of the globus pallidus internus. Stereotact. Funct. Neurosurg.92, 388–392 (2014).
  • YamadaK, GotoS, SoyamaNet al.Complete suppression of paroxysmal nonkinesigenic dyskinesia by globus pallidus internus pallidal stimulation. Mov. Disord.21, 576–579 (2006).
  • PisciottaL, GherziM, StagnaroMet al.Alternating hemiplegia of childhood: pharmacological treatment of 30 Italian patients. Brain Dev.39, 521e8 (2017).
  • ChiLY, ZhaoXH, LiuXWet al.Alternating hemiplegia of childhood in Chinese following long-term treatment with flunarizine or topiramate. Int. J. Neurosci.122, 506e10 (2012).
  • KlepperJ. Glusoe-transporter deficiency syndrome (GLUT1DS) and the ketogenic diet. Epilepsia49, 46–49 (2008).
  • LeenWG, MewasinghL, VerbeekMMet al.Movement disorders in GLUT1 deficiency syndrome respond to the modified Atkins diet. Mov. Disord.28, 1439–1442 (2013).
  • MochelF, HainqueE, GrasDet al.Triheptanoin dramatically reduces paroxysmal motor disorder in patients with GLUT1 deficiency. J. Neurol. Neurosurg. Psychiatr.87, 550–553 (2016).
  • WaakM, MohammadSS, ComanDet al.GNAO1-related movement disorder with life-threatening exacerbations: movement phenomenology and response to DBS. J. Neurol. Neurosurg Psychiatr.89, 221–222 (2018).
  • DiFonzo A, MonfriniE, ErroR. Genetics of movement disorders and the practicing clinician; who and what to test for?Curr. Neurol. Neurosci. Rep.18, 37 (2018).
  • van EgmondME, LugtenbergCHA, BrouwerOFet al.A post hoc study on gene panel analysis for the diagnosis of dystonia. Mov. Disord.32, 569–575 (2017).
  • JiangYL, YuanF, YangYet al.CHRNA4 variant causes paroxysmal kinesigenic dyskinesia and genetic epilepsy with febrile seizures plus?Seizure56, 88–91 (2018).
  • LuJG, BishopJ, CheyetteSet al.A novel PRRT2 pathogenic variant in a family with paroxysmal kinesigenic dyskinesia and benign familial infantile seizures. Cold Spring Harb. Mol. Case Stud. (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793775/