51
Views
0
CrossRef citations to date
0
Altmetric
Review

Novel Approaches to Imaging Epilepsy by MRI

Pages 295-304 | Published online: 23 Apr 2009

Bibiography

  • Margerison JH , CorsellisJAN: Epilepsy and the temporal lobes.Brain91, 499–531 (1968).
  • Blumenfeld H , McNallyKA, VanderhillSDet al.: Positive and negative network correlations in temporal lobe epilepsy.Cereb. Cortex14(8), 892–902 (2004).
  • Labate A , CerasaA, GambardellaA, AgugliaU, QuattroneA: Hippocampal and thalamic atrophy in mild temporal lobe epilepsy: a VBM study.Neurology71(14), 1094–1101 (2008).
  • Riederer F , LanzenbergerR, KayaMet al.: Network atrophy in temporal lobe epilepsy: a voxel-based morphometry study.Neurology71(6), 419–425 (2008).
  • Gong G , ConchaL, BeaulieuC, GrossDW: Thalamic diffusion and volumetry in temporal lobe epilepsy with and without mesial temporal sclerosis.Epilepsy Res.80(2–3), 184–193 (2008).
  • Guye M , RégisJ, TamuraMet al.: The role of corticothalamic coupling in human temporal lobe epilepsy.Brain129(Pt 7), 1917–1928 (2006).
  • Kimiwada T , JuhászC, MakkiMet al.: Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy.Epilepsia47(1), 167–175 (2006).
  • Salanova V , WorthR: Neurostimulators in epilepsy.Curr. Neurol. Neurosci. Rep.7(4), 315–319 (2007).
  • Pollo C , VillemureJG: Rationale, mechanisms of efficacy, anatomical targets and future prospects of electrical deep brain stimulation for epilepsy.Acta Neurochir. Suppl.97(Pt 2), 311–320 (2007).
  • Halpern CH , SamadaniU, LittB, JaggiJL, BaltuchGH: Deep brain stimulation for epilepsy.Neurotherapeutics5(1), 59–67 (2008).
  • Goldstein FB : The enzymatic synthesis of N-acetyl-aspartatic acid by sub-cellular preparation of rat brain.J. Biol. Chem.244, 4257–4260 (1969).
  • Hugg JW , LaxerKD, MatsonGB, MaudsleyAA, WeinerMW: Neuron loss localizes human temporal lobe epilepsy by in vivo proton magnetic resonance spectroscopic imaging.Ann. Neurol.34, 788–794 (1993).
  • Connelly A , JacksonGD, DuncanJS, KingMD, GadianDG: Magnetic resonance spectroscopy in temporal lobe epilepsy.Neurology44, 1411–1417 (1994).
  • Ng TC , ComairYG, XueMet al.: Temporal lobe epilepsy: presurgical localization with proton chemical shift imaging.Radiology193, 465–472 (1994).
  • Cendes F , AndermannF, PreulMC, ArnoldDL: Lateralization of temporal lobe epilepsy based on regional metabolic abnormalities in proton magnetic resonance spectroscopic images.Ann. Neurol.35, 211–216 (1994).
  • Hetherington HP , KuznieckyR, PanJWet al.: Proton nuclear magnetic resonance spectroscopic imaging in temporal lobe epilepsy at 4.1 T.Ann. Neurology38, 396–404 (1995).
  • Constantinidis I , MalkoJA, PetermanSB, et al.: Evaluation of magnetic resonance spectroscopic imaging as a diagnostic tool for the lateralization of epileptogenic seizure foci. Br. J. Radiol.69, 15–24 (1996).
  • Kuzniecky R , HuggJW, HetheringtonHet al.: Relative utility of spectroscopic imaging and hippocampal volumetry in the lateralization of mesial temporal lobe epilepsy.Neurology51(1), 66–71 (1998).
  • Garcia PA , LaxerKD, van der Grond Jet al.: Correlation of seizure frequency with N-acetyl-aspartate levels determined by magnetic resonance spectroscopic imaging. Magn. Reson. Imaging15(4), 475–478 (1997).
  • Lundbom N , GailyE, VuoriKet al.: Proton spectroscopic imaging shows abnormalities in glial and neuronal cell pools in frontal lobe epilepsy.Epilepsia42(12), 1507–1514 (2001).
  • Kuzniecky RI , HetheringtonHP, PanJWet al.: Proton spectroscopic imaging in patients with malformations of cortical development and epilepsy.Neurology48, 1018–1024 (1997).
  • Li LM , CendesF, BastosACet al.: Neuronal metabolic dysfunction in patients with cortical developmental malformations.Neurology50, 755–759 (1998).
  • Laxer KD , HubeschB, Sappey-MarinierD, WeinerMW: Increased pH and inorganic phosphate in temporal seizure foci demonstrated by 31P MRS.Epilepsia33, 618–623 (1992).
  • Hugg JW , LaxerKD, MatsonGBet al.: Lateralization of human focal epilepsy by 31P magnetic resonance spectroscopic imaging.Neurology42(10), 2011–2018 (1992).
  • Kuzniecky R , ElgavishGA, HetheringtonHP, EvanochkoWT, PohostGM: In vivo31P nuclear magnetic resonance spectroscopy of human temporal lobe epilepsy.Neurology42(8), 1586–1590 (1992).
  • Chu WJ , HetheringtonHP, KuznieckyRIet al.: Lateralization of human temporal lobe epilepsy by 31P NMR spectroscopic imaging at 4.1 T.Neurology51, 472–479 (1998).
  • Pan JW , KimJH, Cohen-GadolAet al.: Regional energetic dysfunction in hippocampal epilepsy.Acta Neurol. Scand.111(4), 218–224 (2005).
  • Pan JW , BebinEM, ChuWJ, HetheringtonHP: Ketosis and epilepsy: 31P spectroscopic imaging at 4.1 T.Epilepsia40(6), 703–707 (1999).
  • Garcia PA , LaxerKD, van der Grond Jet al.: Phosphorus magnetic resonance spectroscopic imaging in patients with frontal lobe epilepsy. Ann. Neurol.35(2), 217–221 (1994).
  • Vermathen P , LaxerKD, SchuffN, MatsonGB, WeinerMW: Evidence of neuronal injury outside the medial temporal lobe in temporal lobe epilepsy: N-acetyl aspartate concentration reductions detected with multi-section proton MR spectroscopic imaging-initial experience.Radiology26, 195–202 (2003).
  • Dlugos DJ , JaggiJ, O‘ConnorWMet al.: Hippocampal cell density and subcortical metabolism in temporal lobe epilepsy.Epilepsia40, 408–413 (1999).
  • Hetherington HP , KuznieckyRI, VivesKet al.: A subcortical network of dysfunction in TLE measured by magnetic resonance spectroscopy.Neurology69(24), 2256–2265 (2007).
  • Pan JW , KimJH, Cohen-GadolA, PanC, SpencerDD, HetheringtonHP: Regional energetic dysfunction in hippocampal epilepsy.Acta Neurol. Scand.111(4), 218–224 (2005).
  • Michaelis T , MerboldtKD, BruhnH, HanickeW, FrahmJ: Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra.Radiology187(1), 219–227 (1993).
  • Hetherington HP , PanJW, MasonGFet al.: Quantitative spectroscopic imaging of human brain at 4.1 T using image segmentation.Magn. Reson. Med.36(1), 21–29 (1996).
  • Wiedermann D , SchuffN, MatsonGBet al.: Short echo time multislice proton magnetic resonance spectroscopic imaging in human brain: metabolite distributions and reliability.Magn. Reson. Imaging19(8), 1073–1080 (1996).
  • Kuzniecky R , PalmerC, HuggJet al.: Magnetic resonance spectroscopic imaging in temporal lobe epilepsy: neuronal dysfunction or cell loss?Arch. Neurol.58(12), 2048–2053 (2001).
  • Cohen-Gadol AA , PanJW, KimJH, SpencerDD, HetheringtonHP: Mesial temporal lobe epilepsy: a proton magnetic resonance spectroscopy study and a histopathological analysis.J. Neurosurg.101(4), 613–620 (2004).
  • Hugg JW , KuznieckyRI, GilliamFG, MorawetzRB, FaughtRE, HetheringtonHP: Normalization of contralateral metabolic function following temporal lobectomy demonstrated by 1H magnetic resonance spectroscopic imaging.Ann. Neurol.40, 236–239 (1996).
  • Cendes F , AndermannF, DubeauF, MatthewPM, ArnoldDL: Normalization of neuronal metabolic dysfunction after surgery for temporal lobe epilepsy.Neurology49, 1525–1533 (1997).
  • Vermathen P , EndeG, LaxerKD, WeinerMW: Temporal lobectomy for epilepsy: recovery of the contralateral hippocampus measured by MRS.Neurology59(4), 633–636 (2002)
  • Serles W , LiLM, AntelSBet al.: Time course of postoperative recovery of N-acetyl-aspartate in temporal lobe epilepsy.Epilepsia42(2), 190–197 (2001).
  • Heales SJR , DaviesSEC, BtesTE, ClarkJB: Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetylaspartate concentration.Neurochem. Res.20, 31–38 (1995).
  • Bates TE , StrangwardM, KeelanJ, DaveyGP, MunroPMG, ClarkJB: Inhibition of N-acetylaspartate production: implications for MRS studies in vivo.Neuroreport7, 1397–1400 (1996).
  • Dlugos DJ , JaggiJ, O‘ConnorWMet al.: Hippocampal cell density and sub-cortical metabolism in temporal lobe epilepsy.Epilepsia40, 408–413 (1999).
  • Pautler RG , KoretskyAP: Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging.Neuroimage16(2), 441–448 (2002).
  • Pautler RG , SilvaAC, KoretskyAP: In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging.Magn. Reson. Med.40, 740–748 (1998).
  • Pautler RG , MongeauR, JacobsRE: In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI).Magn. Reson. Med.50(1), 33–39 (2003).
  • Pautler RG : Biological applications of manganese enhanced magnetic resonance imaging.Methods Mol. Med.124, 365–386 (2006).
  • Tucciarone J , ChuangKH, DoddSJet al.: Layer specific tracing of corticocortical and thalamocortical connectivity in the rodent using manganese enhanced MRI.Neuroimage44(3), 923–931 (2009).
  • Simmons JM , SaadZS, LizakMJ, OrtizM, KoretskyAP, RichmondBJ: Mapping prefrontal circuits in vivo with manganese-enhanced magnetic resonance imaging in monkeys.J. Neurosci.28(30), 7637–7647 (2008).
  • Silva AC , BockNA: Manganese-enhanced MRI: an exceptional tool in translational neuroimaging.Schizophr. Bull.34(4), 595–604 (2008).
  • Silva AC , LeeJH, WuCWet al.: Detection of cortical laminar architecture using manganese-enhanced MRI.J. Neurosci. Methods167(2), 246–257 (2008).
  • Nairismägi J , PitkänenA, NarkilahtiSet al.: Manganese-enhanced magnetic resonance imaging of mossy fiber plasticity in vivo.Neuroimage30(1), 130–135 (2006).
  • Immonen RJ , KharatishviliI, SierraAet al.: Manganese enhanced MRI detects mossy fiber sprouting rather than neurodegeneration, gliosis or seizure-activity in the epileptic rat hippocampus.Neuroimage40(4), 1718–1730 (2008).
  • Alvestad S , GoaPE, QuHet al.: In vivo mapping of temporospatial changes in manganese enhancement in rat brain during epileptogenesis.Neuroimage38(1), 57–66 (2007).
  • Medina LS , BernalB, DunoyerCet al.: Seizure disorders: functional MR imaging for diagnostic evaluation and surgical treatment – prospective study.Radiology236(1), 247–253 (2005).
  • Tharin S , GolbyA: Functional brain mapping and its applications to neurosurgery.Neurosurgery60(4 Suppl. 2), 185–201 (2007).
  • Chakraborty A , McEvoyAW: Presurgical functional mapping with functional MRI.Curr. Opin. Neurol.21(4), 446–451 (2008).
  • Biswal B , YetkinFZ, HaughtonVM, HydeJS: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.Magn. Reson. Med.34(4), 537–541 (1995).
  • Lowe MJ , MockBJ, SorensonJA: Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations.Neuroimage7(2), 119–132 (1998).
  • Auer DP : Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the ‘resting‘ brain.Magn. Reson. Imaging26(7), 1055–1064 (2008).
  • Fair DA , CohenAL, DosenbachNUet al.: The maturing architecture of the brain‘s default network.Proc. Natl Acad. Sci. USA105(10), 4028–4032 (2008).
  • Sorg C , RiedlV, MühlauMet al.: Selective changes of resting-state networks in individuals at risk for Alzheimer‘s disease.Proc. Natl Acad. Sci. USA20, 104(47), 18760–18765 (2007).
  • Lowe MJ , PhillipsMD, LuritoJTet al.: Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results.Radiology224(1), 184–192 (2002).
  • Liang M , ZhouY, JiangTet al.: Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging.Neuroreport17(2), 209–213 (2006).
  • Waites AB , BriellmannRS, SalingMM, AbbottDF, JacksonGD: Functional connectivity networks are disrupted in left temporal lobe epilepsy.Ann. Neurol.59(2), 335–343 (2006).
  • Bettus G , GuedjE, JoyeuxFet al.: Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms.Hum. Brain Mapp. DOI: 10.1002/hbm.20625 (2008) (Epub ahead of print).
  • Yacoub E , DuongTQ, Van De Moortele PFet al.: Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn. Reson. Med.49(4), 655–664 (2003).
  • Vaughan JT , GarwoodM, CollinsCMet al.: 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images.Magn. Reson. Med.46(1), 24–30 (2001).
  • Adriany G , Van de Moortele PF, Ritter Jet al.: A geometrically adjustable 16-channel transmit/receive transmission line array for improved RF efficiency and parallel imaging performance at 7 Tesla. Magn. Reson. Med.59(3), 590–597 (2008).
  • Van de Moortele PF , AkgunC, AdrianyGet al.: B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil.Magn. Reson. Med.54(6), 1503–1518 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.